首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 78 毫秒
1.
The labeling strategy with gold nanoparticles for the conventional surface plasmon resonance (SPR) signal enhancement has been frequently used for the sensitive determination of small molecules binding to its interaction partners. However, the influence of gold nanoparticles with different size and shape on SPR signal is not known. In this paper, three kinds of gold nanoparticles, namely nanorods, nanospheres, and nanooctahedrons with different size, were prepared and used to investigate their effects on the conventional SPR signal at a fixed excitation wavelength 670 nm. It was found that the SPR signal (i.e., resonant angle shift) was varied with the shapes and sizes of gold nanoparticles in suspension at a fixed concentration due to their different plasmon absorbance bands. For gold nanorods with different longitudinal absorbance bands, three conventional SPR signal regions could be clearly observed when the gold nanorod suspensions were separately introduced onto the SPR sensor chip surface. One region was the longitudinal absorbance bands coinciding with or close to the SPR excitation wavelength that suppressed the SPR angle shift. The second region was the longitudinal absorbance bands at 624 to 639 and 728 to 763 nm that produced a moderate increase on the SPR resonant angle shift. The third region was found for the longitudinal absorbance bands from 700 to 726 nm that resulted in a remarkable increase in the SPR angle shift responses. This phenomenon can be explained on the basis of calculation of the correlation of SPR angle shift response with the gold nanorod longitudinal absorbance bands. For nanospheres and nanooctahedrons, the SPR angle shift responses were found to be particle shape and size dependent in a simple way with a sustaining increase when the sizes of the nanoparticles were increased. Consequently, a guideline for choosing gold nanoparticles as tags is suggested for the SPR determination of small molecules with binding to the immobilized interaction partners.  相似文献   

2.
Peptide-conjugated gold nanorods for nuclear targeting   总被引:2,自引:0,他引:2  
Resonant electron oscillations on the surface of noble metal nanoparticles (Au, Ag, Cu) create the surface plasmon resonance (SPR) that greatly enhances the absorption and Rayleigh (Mie) scattering of light by these particles. By adjusting the size and shape of the particles from spheres to rods, the SPR absorption and scattering can be tuned from the visible to the near-infrared region (NIR) where biologic tissues are relatively transparent. Further, gold nanorods greatly enhance surface Raman scattering of adsorbed molecules. These unique properties make gold nanorods especially attractive as optical sensors for biological and medical applications. In the present work, gold nanorods are covalently conjugated with a nuclear localization signal peptide through a thioalkyl-triazole linker and incubated with an immortalized benign epithelial cell line and an oral cancer cell line. Dark field light SPR scattering images demonstrate that nanorods are located in both the cytoplasm and nucleus of both cell lines. Single cell micro-Raman spectra reveal enhanced Raman bands of the peptide as well as molecules in the cytoplasm and the nucleus. Further, the Raman spectra reveal a difference between benign and cancer cell lines. This work represents an important step toward both imaging and Raman-based intracellular biosensing with covalently linked ligand-nanorod probes.  相似文献   

3.
This paper presents a simple method to extract information about thin organic films from surface plasmon resonance (SPR) spectra. From numerical simulations it was found that a shift (Δθ SPR) of an absorption peak in the SPR spectrum was directly proportional to the product of the thin organic film thickness and the refractive index difference between the thin organic film and a buffer soaking the sample. It was also found that Δθ SPR was not sensitive to the thin organic film support of a gold film and a glass cover slip. Relationships between Δθ SPR and distributions of macromolecule structures, in the thin organic films were theoretically established. Formulae were derived for a homemade SPR system to calculate length, transverse area, density and surface concentration of macromolecules in the thin organic film. The validity of these treatments was checked by precisely measuring the size of a single distearoylphosphatidylcholine molecule on a gold-supported phospholipid film; by quantitatively monitoring hybridization of synthesized oligonucleotides strands based on a biotin/avidin system; and by quantitatively detecting the steric hindrance of rabbit C-reactive protein specifically bound to phospholipid monolayers composed of synthesized lipids. Received: 4 May 1998 / Revised version: 27 July 1998 / Accepted: 27 August 1998  相似文献   

4.
Here, we report for the first time the synthesis of bismuth-coated silver nanoparticles in dichroic bismuth glass nanocomposites by a novel and simple one-step melt quench technique without using any external reducing agent. The metallic silver nanoparticles (Ag NPs) were generated first, and subsequently, metallic bismuth was deposited on the Ag NPs and formed a thick layer. The reduction of Bi3+ to Bio and subsequently its deposition on the Ag NPs (which were formed earlier than Bio) in the K2O–Bi2O3–B2O3 (KBB) glass system have been explained by their standard reduction potentials. The UV–vis absorption spectra show a prominent surface plasmon resonance (SPR) absorption band at 575 nm at lower concentrations (up to 0.01 wt%); three bands at 569, 624 and 780 nm at medium concentration (0.02–0.03 wt%); and two weak bands at 619 and 817 nm at highest concentration (0.06 wt%) of silver. They have been explained by the electrodynamics theories. TEM images reveal the conversion of spheroidal (5–15 nm) to hexagonal (10–35 nm) shaped Ag NPs with the increase in concentration of silver (up to 0.06 wt%). SAED pattern confirms the crystalline planes of rhombohedral bismuth and cubic silver. Thermal treatment at 360 °C, which is the glass transformation temperature (T g) of the sample containing lower concentration of silver (0.007 wt%), shows red-shifted SPR band due to increase in size of NPs. Whereas the sample containing higher concentration (0.06 wt%) of silver under similar treatment exhibited changes in SPR spectral profile happened due to conversion to spherical NPs from hexagonal shape and reduction in size (10–20 nm) of NPs after heat treatment for 65 h. HRTEM images corroborate the different orientations of the NPs. FESEM images reveal hexagonal disk like structure having different orientations. Dichroic nature of the nanocomposites has been explained with the size and shape of Ag nanoparticles. We believe that this work will create new avenues in the area of nanometal–glass hybrid nanocomposites and the materials have significant applications in the field of optoelectronics and nanophotonics.  相似文献   

5.
Gold nanorods are known to exhibit two distinct surface plasmon oscillations namely, transverse and longitudinal bands corresponding to oscillations of conduction electrons along width and length of gold nanorods. Considerable changes in these surface plasmon resonance peak positions occurred when KOH was added to the nanorod solution. Nanorods with initial longitudinal plasmon band at 739, 796, and 895 nm are studied with variation in KOH concentration. While the longitudinal plasmon resonance peak showed blue shift, transverse plasmon resonance peak exhibited only intensity variations. Changes could be attributed to the shape transition of gold nanorods on variation of pH in the solution. Shape transition of gold nanorods is confirmed by transmission electron microscopy images.  相似文献   

6.
A novel series of elliptical gold (Au0) nanoparticles (18–40 nm) embedded antimony glass (K2O-B2O3-Sb2O3) dichroic nanocomposites have been synthesized by a single-step melt-quench in-situ thermochemical reduction technique. X-ray and selected area electron diffractions manifest growth of Au0 nanoparticles along the (111) and (200) crystallographic planes. The transmission electron microscopic image reveals elliptical Au0 nanoparticles having an aspect ratio varying in the range 1.2–2.1. The dichroic behavior of the nanocomposites arises due to elliptical shape of the Au0 nanoparticles. These nanocomposites show strong surface plasmon resonance (SPR) band of Au nanoparticles in the range 610–681 nm and it exhibit red-shifts with increasing Au concentration. They, when co-doped with Sm2O3 and excited at 949 nm, exhibit about sevenfold enhancement of the upconverted red emission transition of 4G5/26H9/2 at 636 nm due to local electric field enhancement effect of Au0 nanoparticles induced by its SPR. These nanocomposites are the promising materials for laser, display, and various nanophotonic applications.  相似文献   

7.
The relationship between body temperature (T b) and the plasma concentrations of arginine vasotocin (AVT) and angiotensin II (AII) was examined in conscious, adult Pekin ducks. Exposure of birds to an ambient temperature of 40 °C for 3 h increased T b by about 1.5 °C and increased breathing rate five-fold. Plasma osmolality was elevated from the normothermic value of 294.9 ± 1.4 mosmol kg−1 by about 8 mosmol kg−1 Circulating AVT levels increased by about 2 pg ml−1 from a basal concentration of 4.98 ± 0.15 pg ml−1, a rise which could be accounted for by the change in osmotic status. Plasma AII concentrations were unchanged from the pre-heat exposure value of 31.8 ± 3.4 pg ml−1. Time control birds, exposed only to an ambient temperature of 22 °C demonstrated no significant changes in any of the measured variables. The results suggest that an increased T b has no direct effect on the circulating concentrations of AVT or AII in ducks. Accepted: 2 June 1997  相似文献   

8.
A wet suit may not provide adequate thermal protection when diving in moderately cold water (17–18°C), and any resultant mild hypothermia may impair performance during prolonged diving. We studied heat exchange during a dive to a depth of 5 m in sea water (17–18.5°C) in divers wearing a full wet suit and using closed-circuit oxygen breathing apparatus. Eight fin swimmers dived for 3.1 h and six underwater scooter (UWS) divers propelled themselves through the water for 3.7 h. The measurements taken throughout the dive were the oxygen pressure in the cylinder and skin and rectal temperatures (T re). Each subject also completed a cold score questionnaire. The T re decreased continuously in all subjects. Oxygen consumption in the fin divers (1.40 l · min−1) was higher than that of the UWS divers (1.05 l · min−1). The mean total insulation was 0.087°C · m2 · W−1 in both groups. Mean body insulation was 37% of the total insulation (suit insulation was 63%). The reduction in T re over the 1st hour was related to subcutaneous fat thickness. There was a correlation between cold score and T re at the end of 1 h, but not after that. A full wet suit does not appear to provide adequate thermal protection when diving in moderately cold water. Accepted: 21 January 1997  相似文献   

9.
Polyhydroxyalkanoates (PHA) are synthesized by many bacteria as inclusion bodies, and their biodegradability and structural diversity have been studied with a view to their potential application as biodegradable materials. In this paper, Fourier-transform infrared spectroscopy (FT-IR) was used to carry out rapid qualitative analysis of PHA in intact bacterial cells. The FT-IR spectra of pure PHA containing short-chain-length monomers, such as hydroxybutyrate (HB), medium-chain-length hydroxyalkanoate (mclHA) monomers including hydroxyoctanoate (HO) and hydroxydecanoate (HD), or both HB and mclHA monomers, showed their strong characteristic band at 1728 cm−1, 1740 cm−1 or 1732 cm−1 respectively. Other accompanying bands near 1280 cm−1 and 1165 cm−1 helped identify the types of PHA. The intensity of the methylene band near 2925 cm−1 provided additional information for PHA characterization. In comparison, bacterial cells accumulating the above PHA also showed strong marker bands at 1732 cm−1, 1744 cm−1 or 1739 cm−1, corresponding to intracellular PHB, mclPHA and P(HB + mclHA) respectively. The accompanying bands visible in pure PHA were also observable in the intact cells. The FT-IR results were further confirmed by gas chromatography analysis. Received: 14 October 1998 / Received revision: 29 December 1998 / Accepted: 30 December 1998  相似文献   

10.
The photoluminescence of silver nanoparticles glasses obtained by ionic exchange and annealing is investigated for various ionic exchange times. These glasses are prepared by immersion of silicate glass samples in a molten salt bath of molar concentration 10% AgNO3 in NaNO3 at T = 320 °C. Scanning electron microscopy measurement in electron diffraction scattering (EDS) configuration confirms the silver presence in the various glasses, and the UV/visible absorption gives the evolution of the spectra after ionic exchange and plasmon resonance apparition after annealing. After annealing at 450 °C, both diagnostics inform us about the particles’ formation and the silver rediffusion. Silver nanoparticle growth after annealing prior leads to photoluminescence exaltation and quenching for the longest exchange samples. Subsequently, we propose potential mechanisms of the nanoparticle formation with an initial depolymerization of the silicate network during the ionic exchange and repolymerization during annealing.  相似文献   

11.
We examined the relationship between body temperature (Tb) of free flying pigeons and ambient water vapor pressure and temperature. Core or near core Tb of pigeons were measured using thermistors inserted into the cloaca and connected to small transmitters mounted on the tail feathers of free flying tippler pigeons (Columba livia). Wet and dry bulb temperatures were measured using modified transmitters mounted onto free-flying pigeons. These allowed calculation of relative humidity and hence water vapor pressure at flight altitudes. Mean Tb during flight was 42.0 ± 1.3 °C (n = 16). Paired comparisons of a subset of this data indicated that average in-flight Tb increased significantly by 1.2 ± 0.7 °C (n = 7) over that of birds at rest (t = −4.22, P < 0.05, n = 7) within the first 15 min of takeoff. In addition, there was a small but significant increase in Tb with increasing ambient air (Ta) when individuals on replicate flights (n = 35) were considered. Inclusion of water vapor pressure into the regression model did not improve the correlation between body temperature and ambient conditions. Flight Tb also increased a small (0.5 °C) but significant amount (t = 2.827, P < 0.05, n = 8) from the beginning to the end of a flight. The small response of Tb to changing flight conditions presumably reflects the efficiency of convection as a heat loss mechanism during sustained regular flight. The increase in Tb on landing that occurred in some birds was a probable consequence of a sudden reduction in convective heat loss. Accepted: 2 February 1999  相似文献   

12.
金纳米棒具有独特的光学性质、表面易修饰性、较低的生物毒性和良好的生物相容性,因而在成像、光热治疗和药物载带等方面具有极高的潜在应用价值.本文综述了典型的金纳米棒表面修饰方法及其在生物成像、光热治疗和药物治疗中的应用,重点阐述了通过金纳米棒同时实现肿瘤诊断和治疗相结合的研究进展.  相似文献   

13.
Twenty male buffalo calves (15 months, 200.2 ± 9.75) were divided into four groups of five animals in each and fed diets without (T1) or supplemented with 0.3 ppm selenium (Se) + 40 ppm zinc (Zn) (T2), 0.3 ppm Se + 40 ppm Zn + 10 ppm copper (Cu) (T3), and 40 ppm Zn + 10 ppm Cu (T4) for 120 days, during which blood samples were collected on days 0, 40, 80, and 120. Concentrations of glucose, total protein, albumin, globulin, urea, uric acid, and creatinine were similar in all the four groups. The level of different serum enzymes viz. lactate dehydrogenase, alkaline phosphatase, glutamate pyruvate transaminase, and glutamate oxaloacetate transaminase, and hormones viz. T3, T4, testosterone and insulin were similar (P > 0.05) among the four groups but the ratio of T4/T3 was reduced (P < 0.05) in the groups (T2 and T3) where selenium was supplemented at 120th day of supplementation. It was deduced that supplementation of 0.3 ppm Se and/or 10.0 ppm of Cu with 40 ppm Zn had no effect on blood metabolic profile in buffalo calves, except the ratio of T4 and T3 hormone which indicates that selenium plays an important role in converting T4 hormone to T3 which is more active form of thyroid hormone.  相似文献   

14.
The present study monitored daily and seasonal variations of rectal temperature in response to different environmental temperatures in alpacas bred in the Italian Apennines at 300 m a.s.l. In each season, the rectal temperature of 33 clinically healthy alpacas was measured three times/day (morning, midday, afternoon). Ambient temperatures were also recorded. Rectal temperatures ranged from a minimum value of 35.1 to a maximum of 39.4°C, with a maximum daily thermal excursion (ΔTrec) of 3.2°C. Temperatures increased throughout the day, with highly significant differences recorded in both young and adult animals between all the time bands (P < 0.001). These differences were particularly dramatic for adults in summer, when the mean rectal temperature in the morning was 36.3 ± 0.13°C, probably as a consequence of recent shearing. Significant ΔTrec differences were recorded depending on the season in both young and adult animals (P < 0.001), with the highest ΔTrec values recorded in summer (although the highest daily ambient excursion value was recorded in winter). In conclusion, similarly to alpacas bred in their natural environment, alpacas bred in Italy show a wide thermal neutrality zone, which is probably an adaptive response, that allows the animals to save energy. In the Italian Apennines, in order to prevent situations of hypothermia, with possible detrimental effects on alpacas’ health and welfare, shearing should be carried out only in warm seasons.  相似文献   

15.
In this paper, we report on luminescence and absorbance effects of Er+3:Au-doped tellurite glasses synthesized by a melting-quenching and heat treatment technique. After annealing times of 2.5, 5.0, 7.5, and 10.0 h, at 300 °C, the gold nanoparticles (GNP) effects on the Er+3 are verified from luminescence spectra and the corresponding levels lifetime. The localized surface plasmon resonance around 800 nm produced a maximum fluorescence enhancement for the band ranging from 800 to 840 nm, corresponding to the transitions 4H11/2 → 4I13/2 (805 nm) and 4S3/2 → 4I13/2 (840 nm), with annealing time till 7.5 h. The measured lifetime of the levels 4H11/2 and 4S3/2 confirmed the lifetime reduction due to the energy transfer from the GNP to Er+3, causing an enhanced photon emission rate in these levels.  相似文献   

16.
The triggering of transitory egg desertion in fasting and incubating blue petrels (Halobaena caerulea, nocturnal burrowing seabirds living in the subantarctic region) was investigated by continuously monitoring both body temperature (T sto) and egg temperature (T egg) with a telemetry system, and by measuring body mass (BM) loss. The birds were kept captive in their burrow and incubated day and night without any interruption; there was no day-night cycle in T sto and T egg, which averaged 39.9 °C and 32.0 °C, respectively. There was no evidence of hypothermia as a way to save energy in this fasting situation. Egg desertion occurred at night and was an abrupt and definitive phenomenon reflected by a simultaneous fall in T egg and a peak in T sto. After egg desertion, a distinct day-night cycle of body temperature was observed, T sto being 0.6 °C higher during night-time (P < 0.05), probably reflecting increased nocturnal activity. BM at egg desertion averaged 166.7 ± 3.8 g in telemetered birds and 164.4 ± 1.6 g in␣a group of free-living birds. Throughout fasting, the␣specific daily BM loss remained at 46 ± 1 g · kg−1 · day−1, but increased sharply below a critical BM of 160.0 ± 2.5 g. Thus, fasting incubating blue petrels spontaneously desert their egg when reaching a BM threshold. This BM is very close to a critical value in fasting birds and mammals that corresponds to a critical depletion of fat stores and to a shift from lipid to protein utilization. This strongly suggests that such a metabolic shift triggers behavioural changes leading to egg desertion and refeeding, which is of great relevance to the understanding of the long-term control of food intake and BM. Accepted: 16 July 1998  相似文献   

17.
This study compares the thermal ecology of male bearded dragon lizards (Pogona barbata) from south-east Queensland across two seasons: summer (1994–1995) and autumn (1995). Seasonal patterns of body temperature (T b) were explored in terms of changes in the physical properties of the thermal environment and thermoregulatory effort. To quantify thermoregulatory effort, we compared behavioral and physiological variables recorded for observed lizards with those estimated for a thermoconforming lizard. The study lizards' field T bs varied seasonally (summer: grand daily mean (GDM) 34.6 ± 0.6°C, autumn: GDM 27.5 ± 0.3°C) as did maximum and minimum available operative temperatures (summer: GDM T max 42.1 ± 1.7°C, T min 32.2 ± 1.0°C, autumn: GDM T max 31.7 ± 1.2°C, T min 26.4 ± 0.5°C). Interestingly, the range of temperatures that lizards selected in a gradient (selected range) did not change seasonally. However, P. barbata thermoregulated more extensively and more accurately in summer than in autumn; lizards generally displayed behaviors affecting heat load nonrandomly in summer and randomly in autumn, leading to the GDM of the mean deviations of lizards' field T bs from their selected ranges being only 2.1 ± 0.5°C in summer, compared to 4.4 ± 0.5°C in autumn. This seasonal difference was not a consequence of different heat availability in the two seasons, because the seasonally available ranges of operative temperatures rarely precluded lizards from attaining field T bs within their selected range, should that have been the goal. Rather, thermal microhabitat distribution and social behavior appear to have had an important influence on seasonal levels of thermoregulatory effort. Received: 28 April 1997 / Accepted: 29 December 1997  相似文献   

18.
Holes pushed into the surface of laboratory grade CaCO3 powder reproduced visible and measurable luminescence similar to that seen and measured in coral skeletons. Heating such powder to 450 °C for 2 h did not destroy the luminescence although it did destroy luminescence in powdered coral skeleton. The effect in coral skeletal powder was probably due to carbonisation of contained organics because addition of small and increasing amounts of powdered charcoal to laboratory grade CaCO3 increasingly attenuated luminescence. Luminescent lines and bands in coral skeletons have previously been ascribed to incorporation of humic substances. However, coating laboratory grade powder with humic acid attenuates rather than enhances luminescence. Ultra-violet lamps used to display coral luminescent lines and bands emit significant amounts of violet and blue visible light. Reflection of these visible wavelengths from the surface of laboratory grade CaCO3 powder obscured luminescence of the powder. Multiple reflections within a hole in the powder resulted in absorption of the short wavelengths of visible light, including violet and blue light that would otherwise mask luminescence, and their re-emission at longer wavelengths. Luminescent bands in offshore corals were associated with the low-density regions of the annual density banding pattern. Luminescent lines in skeletons of inshore corals were in narrow regions of low-density skeleton, probably resulting from altered growth during periods of lowered salinity. Accepted: 20 April 2000  相似文献   

19.
Phytoplankton bloom in commercial shrimp ponds using green-water technology   总被引:2,自引:0,他引:2  
Phytoplankton community composition, density, and succession were studied in tropical commercial ponds with euryhaline tiger shrimp (Penaeus monodon Fabricius) using green-water technology at two different stocking densities [T1 10 post-larvae (PL) m−2 and T2 15 PL m−2] in one grow-out season (May–October 2005) in Leganes, Iloilo, Philippines. Weekly qualitative and quantitative analyses of phytoplankton were done along with physicochemical analyses of the pond waters. A total of 103 taxa belonging to nine different algal classes were observed. Of these classes, the Chlorophyceae, Cyanophyceae and Bacillariophyceae constituted the great bulk of the phytoplankton population. The two treatments did not show any significant differences in the growth pattern of phytoplankton over time and in their diversity indices. Although T2 had higher values than T1 for algal density and species diversity index, the differences were not significant. The mean Shannon-Wiener diversity index for T2 (1.56) was higher than T1 (1.39) but not significantly different. Both treatment ponds had Chlorophyceae as the dominant algae during the initial culture phase [0–35 days of culture (DOC)], which coincided with high salinity (average = 35.67 ppt) and relatively high N:P ratios (average = 1.95). The chlorophycean bloom was made up mostly of Nannochloropsis sp. The cyanophycean bloom occurred towards the final culture phase (84–112/126 DOC) when there was low salinity (average = 19.5 ppt) and relatively high N:P ratios (average 2.01). A short diatom bloom occurred in T2 at the same time that the N:P ratios rose dramatically to 4.2 at 42 DOC. Among the eight physicochemical parameters examined, positive correlations were noted among alkalinity, ammonium-nitrogen, nitrite-nitrogen and phytoplankton community. High species diversity index and species richness could have enhanced the stability of favorable Nannochloropsis blooms, especially in T2. No differences were noted between the two treatments in terms of the shrimp’s biomass at harvest time (T1 = 28.9 and T2 = 29.4 g fresh wt per shrimp), although a significantly higher survival rate (P < 0.05) was observed in T1 (97%) than in T2 (56%). Both treatments were able to control the occurrence of the luminous bacterium Vibrio harveyi. Presented at the 6th Meeting of the Asia Pacific Society of Applied Phycology, Manila, Philippines.  相似文献   

20.
In2O3 nanoparticle-assembled nanorods with distinct surface morphologies have been newly synthesized by a dehydration process of self-assembled In(OH)3 nanorods obtained from a liquid-based route. The reaction mechanism and the structural transformation between these two one-dimensional nanorods, In2O3 and In(OH)3, were precisely characterized by means of various qualitative and quantitative analyses with X-ray scattering simulations. The broad absorption band in the UV–visible spectrum evidently originates from the nanoparticle-assembling effect within the In2O3 nanorods. An intensive photoluminescence emission at 440 nm observed under an excitation wavelength of 325 nm is attributed to the existence of oxygen vacancies within the In2O3 nanorods.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号