共查询到20条相似文献,搜索用时 15 毫秒
1.
Sphingosine inhibits calmodulin-dependent enzymes 总被引:15,自引:0,他引:15
Sphingosine is a potent inhibitor of several calmodulin-dependent enzymes. The multifunctional Ca2+/calmodulin-dependent protein kinase, a Ca2+/calmodulin-dependent phosphodiesterase, and smooth muscle myosin light chain kinase are inhibited in vitro at concentrations previously shown to inhibit protein kinase C. Inhibition of each of the enzymes is competitive with calmodulin, suggesting that sphingosine may be a calmodulin antagonist. In the pituitary cell line GH3, sphingosine inhibits the phosphorylation of microtubule-associated protein 2 by the multifunctional Ca2+/calmodulin-dependent protein kinase and the phosphorylation of elongation factor 2 by Ca2+/calmodulin-dependent kinase III. These findings suggest that sphingosine, in blocking the effects of both the Ca2+.calmodulin complex and of diacylglycerol, may be a very effective inhibitor of both branches of the phosphatidylinositol signaling pathway. By extension, caution should be exercised in the use of sphingosine as a diagnostic test for the involvement of protein kinase C in biological processes. 相似文献
2.
Igarashi N Okada T Hayashi S Fujita T Jahangeer S Nakamura S 《The Journal of biological chemistry》2003,278(47):46832-46839
Sphingosine kinase-1 (SPHK1) is a key enzyme catalyzing the formation of an important bioactive lipid messenger, sphingosine 1-phosphate, and is implicated in the regulation of cell proliferation and antiapoptotic processes. Biological features of another isozyme SPHK2, however, remain unclear. The present studies were undertaken to characterize SPHK2 by comparison with SPHK1. When SPHK2 was transiently expressed in various cell lines, it was localized in the nuclei as well as in the cytosol, whereas SPHK1 was distributed in the cytosol but not in the nucleus. We have mapped a functional nuclear localization signal (NLS) to the N-terminal region of SPHK2. We have observed that the expression of SPHK2 in various cell types causes inhibition of DNA synthesis, resulting in the cell cycle arrest at G1/S phase. We have also demonstrated that an NLS mutant of SPHK2, SPHK2R93E/R94E, failed to enter the nucleus and to inhibit DNA synthesis. Moreover, a fusion protein, NLS-SPHK1, where SPHK1 was fused to the NLS sequence of SPHK2 acquired the ability to enter nuclei and inhibited DNA synthesis. These results indicate that SPHK2 localizes in the nuclei and causes inhibition of DNA synthesis, and this may affect subsequent cellular events. 相似文献
3.
N Blanchouin-Emeric M Zenatti G Defaye B Aupetit 《Journal of steroid biochemistry》1988,30(1-6):453-456
The action of verapamil, a calcium channel blocker, on the last step of aldosterone biosynthesis (transformation of 18-hydroxycorticosterone into aldosterone) was studied using duck adrenal mitochondria in the absence of regulatory factors. Results show that 10(-5) M verapamil inhibits the transformation of 18-hydroxycorticosterone into aldosterone by 52.8%. Moreover, our findings show that verapamil induces only a slight inhibition of respiratory capacity without action on respiratory control and does not displace 18-hydroxycorticosterone from cytochrome P450 11 beta which catalyses the reaction. Thus, this study does not explain the mechanism of inhibition induced by verapamil on the last step of aldosterone synthesis but it is of interest to note, for clinical use, that this inhibition is not linked to regulatory factors of aldosterone production. Since primary hyperaldosteronisms are characterized by their independence vis-á-vis regulatory factors, administration of verapamil may be particularly interesting for treatment of primary hyperaldosteronisms. 相似文献
4.
New mechanisms to control aldosterone synthesis. 总被引:1,自引:0,他引:1
Arterial hypertension is a frequent and leading cardiovascular risk factor, and primary aldosteronism is a well-recognized cause of secondary hypertension. Aldosterone is the basic regulator of extracellular fluid volume and electrolyte balance. Alterations in plasma aldosterone levels significantly contribute to the development and the severity of hypertension. Adrenal steroidogenesis is controlled by two major feedback loops: the hypothalamic-pituitary-adrenal axis, which regulates cortisol synthesis, and the renin-angiotensin-aldosterone system, which directs aldosterone production. In addition to angiotensin, potassium, and corticotropin-which belong to the classic stimulators of aldosterone-neuropeptides, catecholamines, and prostaglandins are also known to stimulate aldosterone synthesis. Recently, several new mechanisms have been characterized that control the release of aldosterone by adrenocortical cells, among them endothelial cell-derived factors and adipokines. Further identification and characterization of these factors may help in the development of novel therapies for the treatment of arterial hypertension, various metabolic diseases, and other disorders. 相似文献
5.
Regulation of aldosterone synthesis 总被引:2,自引:0,他引:2
The effects of angiotensin II and ACTH on cyclic AMP and aldosterone synthesis were studied in cells isolated from the bovine adrenal cortex. Angiotensin is a more potent stimulus of aldosterone synthesis than ACTH and the action of ACTH on aldosterone synthesis in cells from the glomerulosa is augmented by the presence of cells from the fasciculata. Angiotensin stimulates aldosterone synthesis in the absence of detectable changes in cyclic AMP, but the cells do respond to dibutyryl cyclic AMP leaving open the possibility that a cyclic nucleotide may play a role in the steroidogenic action of this hormone in the outer zone of the bovine adrenal cortex. 相似文献
6.
Sphingosine 1-phosphate: synthesis and release 总被引:4,自引:0,他引:4
Sphingosine 1-phosphate (Sph-1-P) is a bioactive sphingolipid, acting both as an intracellular second messenger and extracellular mediator, in mammalian cells. In cell types where Sph-1-P acts as an intracellular messenger, stimulation-dependent synthesis of Sph-1-P, possibly resulting from sphingosine (Sph) kinase activation, is essential. Since this important kinase has recently been cloned, precise regulation of intracellular Sph-1-P synthesis will be clarified in the near future. As an intercellular mediator, elucidation of sources for extracellular Sph-1-P is important, in addition to identification of the cell surface receptors for this phospholipid. Blood platelets are very unique in that they store Sph-1-P abundantly (possibly due to the existence of highly active Sph kinase and a lack of Sph-1-P lyase) and release this bioactive lipid extracellularly upon stimulation. It is likely that platelets are an important source for extracellular Sph-1-P, especially for plasma and serum Sph-1-P. Platelet-derived Sph-1-P seems to play an important role in vascular biology. 相似文献
7.
Osamu Kozawa Haruhiko Tokuda Hiroyuki Matsuno Toshihiko Uematsu 《Journal of cellular biochemistry》1998,70(3):338-345
We previously reported that prostaglandin (PG)E1 and PGF2α induce the synthesis of interleukin-6 (IL-6) via activation of protein kinase (PK)A and PKC, respectively, in osteoblast-like MC3T3-E1 cells. In addition, we have shown that basic fibroblast growth factor (bFGF) elicits IL-6 synthesis through intracellular Ca2+ mobilization in these cells and that tumor necrosis factor-α (TNF) induces IL-6 synthesis through sphingosine 1-phosphate produced by sphingomyelin hydrolysis. In the present study, among sphingomyelin metabolites, we examined the effect of sphingosine on IL-6 synthesis induced by various agonists in MC3T3-E1 cells. Sphingosine inhibited the IL-6 synthesis induced by PGF2α or 12-O-tetradecanoylphorbol-13-acetate, an activator of PKC. Sphingosine suppressed the PGE1-induced IL-6 synthesis. The IL-6 synthesis induced by cholera toxin, forskolin, or dibutyryl cAMP was inhibited by sphingosine. Sphingosine inhibited the IL-6 synthesis induced by bFGF or A23187. However, sphingosine did not affect the IL-6 synthesis induced by interleukin-1. On the contrary, sphingosine enhanced the TNF-induced IL-6 synthesis. DL-threo-Dihydrosphingosine, an inhibitor of sphingosine kinase, reduced the enhancement by sphingosine as well as the TNF-effect. These results indicate that sphingosine modulates the IL-6 synthesis stimulated by various agonists in osteoblasts. J. Cell. Biochem. 70:338–345. © 1998 Wiley-Liss, Inc. 相似文献
8.
The effects of different bioactive sphingoid molecules on NOS activity of differentiated cerebellar granule cells were investigated by measuring the conversion of [3H]arginine to [3H]citrulline. Cytosolic Ca2+-dependent NOS activity was strongly inhibited in a dose-dependent manner by sphingosine in concentrations of 1-40 microM. This inhibition seems to be peculiar to sphingosine in that ceramide, N-acetylsphingosine, sphingosine-1P, sphinganine and tetradecylamine have no effect on the cytosolic enzyme at the considered concentrations, suggesting that it is the bulk of the sphingosine hydrophilic portion that is critical for cytosolic NOS inhibition. This inhibition of cytosolic NOS is not reversed by increasing the arginine concentration, so a competitive mechanism can be excluded. Instead, increasing the concentrations of calmodulin led to loss of sphingosine inhibition, suggesting that sphingosine interferes with the calmodulin-dependent activation of the enzyme by a competitive mechanism. Sphingosine and related compounds had no effect on the particulate Ca2+-independent NOS activity. The data obtained suggest that sphingosine could be involved in the regulation of NO production in neurons. 相似文献
9.
Sphingosine 1-phosphate (Sph-1-P) is a bioactive sphingolipid, acting both as an intracellular second messenger and extracellular mediator, in mammalian cells. In cell types where Sph-1-P acts as an intracellular messenger, stimulation-dependent synthesis of Sph-1-P, possibly resulting from sphingosine (Sph) kinase activation, is essential. Since this important kinase has recently been cloned, precise regulation of intracellular Sph-1-P synthesis will be clarified in the near future. As an intercellular mediator, elucidation of sources for extracellular Sph-1-P is important, in addition to identification of the cell surface receptors for this phospholipid. Blood platelets are very unique in that they store Sph-1-P abundantly (possibly due to the existence of highly active Sph kinase and a lack of Sph-1-P lyase) and release this bioactive lipid extracellularly upon stimulation. It is likely that platelets are an important source for extracellular Sph-1-P, especially for plasma and serum Sph-1-P. Platelet-derived Sph-1-P seems to play an important role in vascular biology. 相似文献
10.
Hanke CJ Campbell WB 《American journal of physiology. Endocrinology and metabolism》2000,279(4):E846-E854
The regulation of aldosterone synthesis by endogenous nitric oxide (NO) was examined in cultured cells of the adrenal cortex. Endothelial NO synthase (eNOS) was detected by Western blot in cultured adrenal endothelial cells (ECs) but not in zona glomerulosa (ZG) cells or adrenal fibroblasts. Neither inducible (iNOS) nor neuronal NOS (nNOS) isoforms were detected in the cells. Only ECs had NOS activity and converted [(3)H]L-arginine to [(3)H]L-citrulline. Angiotensin II (ANG II, 100 nM) increased EC production of nitrate/nitrite by 2.4-fold. Coincubation with ECs or treatment with DETA nonoate increased the fluorescence of ZG cells loaded with an NO-sensitive dye, diaminofluorescein 2 diacetate (DAF-2 DA). DETA nonoate inhibited ANG II (1 nM) and potassium (10 mM) -stimulated aldosterone release in a concentration-related manner. This inhibitory effect of NO was enhanced >10-fold by decreasing the oxygen concentration from 21 to 8%. Coincubation of EC and ZG cells in 8% oxygen inhibited ANG II-induced aldosterone release, and inhibition was reversed by blockade of NOS. These findings indicate that adrenal EC-derived NO inhibits aldosterone release by cultured ZG cells and that the sensitivity to NO inhibition is increased at low oxygen concentrations. 相似文献
11.
《Comparative biochemistry and physiology. C: Comparative pharmacology》1992,101(2):269-272
1. Sphingosine inhibited the binding of [3H]quinuclidinyl benzilate (QNB), a potent and specific muscarinic antagonist, in dispersed rat parotid acinar cells.2. The inhibition of [3H]QNB binding was expressed as decrease in affinity without significant change of a number of membrane sites.3. The effect of Sphingosine on the binding was not affected by the chelation of extracellular Ca2+.4. H-7, an inhibitor of protein kinase C, failed to decrease [3H]QNB binding.5. Stearylamine, an analogue of Sphingosine, was as effective as Sphingosine in inhibiting [3H]QNB binding.6. These results suggest that Sphingosine inhibits muscarinic cholinergic receptor binding by a mechanism that is independent on extracellular Ca2+ and protein kinase C. 相似文献
12.
Turnover of 32P-labelled phosphatidylinositol (PI) was examined in isolated adrenal glomerulosa cells. Increased incorporation of [32P]phosphate into PI in response to angiotensin II was completely prevented by Li+. A simultaneous accumulation of 32P activity in phosphatidic acid (PA) was also observed. Angiotensin II increased the breakdown of PI despite the presence of Li+. These results suggest that Li is a suitable tool to interrupt the accelerated PI cycle in angiotensin-stimulated cells. Aldosterone production of superfused cells was inhibited by Li+ when the cells were stimulated with angiotensin II. On the other hand, Li+ did not inhibit the aldosterone response of the cells to ACTH, a hormone which acts via cyclic AMP and does not enhance PI turnover in these cells. On the basis of these results, we assume that the inhibitory effect of Li+ on aldosterone production is related to its effect on PI turnover. 相似文献
13.
The acute and chronic effects of metoclopramide on aldosterone secretion in the rat model were examined. Metoclopramide 50 micrograms iv in dexamethasone-treated rats did not increase plasma aldosterone concentration. Chronic infusion of metoclopramide (72 micrograms/hr) over 5 days also did not show any increase in the plasma or urinary aldosterone concentration when compared with control rats. Metoclopramide in vitro showed no effect on aldosterone secretion from rat adrenal capsular cells but it inhibited serotonin-mediated aldosterone secretion from the same cells significantly. 相似文献
14.
We report CTP:phosphocholine cytidylyltransferase (CT) as another target enzyme of sphingosine actions in addition to the well-characterized protein kinase C. Effects of sphingosine and lysophingolipids were studied on the activity of purified cytidylyltransferase prepared by the method of Weinhold et al. (Weinhold, P. A., Rounsifer, M.E., and Feldman, D.A. (1986) J. Biol. Chem. 261, 5104-5110). The sphingolipids were tested as components of egg phosphatidylcholine (PC) vesicles, 25 mol% sphingosine inhibited the CT activity by about 50%. The inhibition of CT by sphingosine and lysosphingolipids was reversible. Sphingosine was found to be a reversible inhibitor of CT with respect to the activating lipids such as phosphatidylserine, phosphatidylinositol, phosphatidylglycerol, and fatty acid:phosphatidylcholine vesicles. Egg PC vesicles containing sphingosine, psychosine (galactosylsphingosine), glucopsychosine (glucosylsphingosine), and lysosphingomyelin (sphingosylphosphorylcholine) suppressed the activation by PC/oleic acid vesicles, whereas the parent sphingolipids did not. Egg PC vesicles containing oleylamine and hexadecyltrimethylamine inhibited CT activity, whereas egg PC-octylamine vesicles did not alter the enzyme activity. This indicates the importance of an amino group and long alkyl chain. LysoPC, a known detergent, did not inhibit the enzyme activity under the same assay conditions in which sphingosine inhibited. These results are the first report of a lipid inhibitor of purified CT. 相似文献
15.
Sphingosine inhibits monocyte tissue factor-initiated coagulation by altering factor VII binding 总被引:3,自引:0,他引:3
P R Conkling K L Patton Y A Hannun C S Greenberg J B Weinberg 《The Journal of biological chemistry》1989,264(31):18440-18444
Tissue factor is a lipoprotein, expressed on the surface of cells, which binds coagulation Factor VII or VIIa, leading to activation of Factors X and IX with subsequent fibrin generation. Cellular tissue factor activity is important in pathophysiologic processes such as inflammation and disseminated intravascular coagulation. In this study, the long-chain base sphingosine inhibited coagulation initiated by lipopolysaccharide-stimulated intact human monocytes. Sphingosine (5-100 microM) also profoundly inhibited thromboplastin-initiated coagulation (greater than 90% decrease in thromboplastin activity). This inhibition was dose- and time-dependent. Sphingosine inhibited neither the intrinsic pathway of coagulation nor thrombin generation of fibrin. The sphingosine analogues sphingomyelin, ceramide, or N-acetylsphingosine did not affect thromboplastin activity, suggesting that the polar head of sphingosine was necessary for interaction of the molecule with the coagulation system. Investigation of the biochemical mechanism revealed that sphingosine (5-50 microM), but neither sphingomyelin nor ceramide, inhibited specific binding of radiolabeled Factor VII to lipopolysaccharide-stimulated intact monocytes. The results suggest that sphingosine may regulate monocyte tissue factor-initiated coagulation by modulating Factor VII binding to tissue factor. Sphingosine may represent a new class of inhibitors of hemostasis. 相似文献
16.
Becciolini L Meacci E Donati C Cencetti F Rapizzi E Bruni P 《Biochimica et biophysica acta》2006,1761(1):43-51
This study shows that sphingosine 1-phosphate (S1P) exerts an anti-migratory action in C2C12 myoblasts by reducing directional cell motility and fully abrogating the chemotactic response to insulin-like growth factor-1. The anti-migratory response to S1P required ligation to S1P(2), being attenuated in myoblasts where the receptor was down-regulated by specific antisense oligodeoxyribonucleotides or small interfering RNA (siRNA) and conversely potentiated in S1P(2)-overexpressing myoblasts. The investigation of RhoA and Rac GTPases, critically implicated in cell motility regulation, demonstrated that RhoA was rapidly activated by S1P, while Rac1 was unaffected within the first 5 min but stimulated thereafter. RhoA, but not Rac activation, was identified as a S1P(2)-dependent pathway in experiments in which receptor expression was attenuated by siRNA treatment or up-regulated by S1P(2)-encoding plasmid transfection. Finally, by expression of the dominant negative mutant of RhoA, the GTPase was found implicated in the anti-migratory action of S1P, whereas modulation of Rac1 functionality unaffected the anti-chemotactic effect of S1P, ruling out a role for this protein in the biological response. Since S1P was previously shown to inhibit myoblast proliferation and stimulate myogenesis, the here identified novel biological activity is in favour of a complex physiological role of the sphingolipid in the process of muscle repair. 相似文献
17.
Arunabha Ganguly Carolyn Waldron 《The Journal of steroid biochemistry and molecular biology》1994,50(5-6):253-260
We have examined the relative roles of the calcium-calmodulin system and protein kinase C in angiotensin-mediated aldosterone secretion. We used a highly specific protein kinase C inhibitor, calphostin C and two well-accepted calmodulin inhibitors, W-7 and calmidazolium. Although both types of inhibitors affected angiotensin-induced aldosterone secretion, as judged by the inhibitory doses of these compounds, angiotensin-evoked aldosterone secretion was more sensitive to calmodulin inhibition than protein kinase C inhibition. Manipulation of intracellular calcium by dantrolene and thapsigargin also modified aldosterone secretion significantly. 相似文献
18.
A Sp?t 《Journal of steroid biochemistry》1988,29(4):443-453
Adrenal glomerulosa cell is a suitable model for a comparative study of signal transducing mechanisms since its secretory activity is regulated by at least three different mechanisms: the adenylate cyclase-cAMP system (for ACTH), the voltage-dependent Ca2+ channel (for K+ and perhaps for angiotensin II) and the inositol 1,4,5-trisphosphate-Ca2+ system (for angiotensin II and vasopressin). The role of inositol phosphates, extracellular Ca2+ and protein kinase C in the induction and sustaining of aldosterone production by cells exposed to angiotensin II is critically reviewed. 相似文献
19.
20.
Studies were initiated to determine whether the formation of lipid-linked oligosaccharides was coupled to the synthesis of protein. Canine kidney cells were grown with [2-3H]mannose or [3H]leucine in the presence of cycloheximide or puromycin and the effect of these inhibitors on the synthesis of proteins and lipid-linked oligosaccharides was measured. In all cases, the inhibition of protein synthesis resulted in a substantial inhibition in the incorporation of mannose into the lipid-linked oligosaccharides, although the synthesis of mannosyl-phosphoryl-dolichol was only slightly inhibited. Cycloheximide had no effect on the in vitro incorporation of mannose into lipid-linked oligosaccharides when GDP-[14C]mannose was incubated with aorta microsomal preparations. The inhibition of lipid-linked oligosaccharides was apparently not due to a decrease in the amount of glycosyltransferases as a result of protein degradation in the absence of protein synthesis, nor was it the result of a more rapid degradation of lipid-linked oligosaccharides. The inhibition also did not appear to be due to limitations in the available dolichyl-phosphate. The results suggest that the formation of lipid-linked oligosaccharides may be regulated by end product inhibition. 相似文献