首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 671 毫秒
1.
tsJT60, a temperature-sensitive (ts) mutant cell line of Fischer rat, is viable at both permissive (34 degrees C) and non-permissive (39.5 degrees C) temperatures. The cells grow normally in exponential growth phase at both temperatures, but when stimulated with fetal bovine serum (FBS) from G0 phase they re-enter S phase at 34 degrees C but not at 39.5 degrees. When tsJT60 cells were transformed with adenovirus (Ad) 5 wild type, they grew well at both temperatures, expressed E1A and E1B genes, and formed colonies in soft agar. When tsJT60 cells were transformed with Ad5 dl313, that lacks E1B gene, the transformed cells grew well at 34 degrees C but failed to form colony in soft agar. They died very soon at 39.5 degrees C. 3Y1 cells (a parental line of tsJT60) transformed with dl313 grew well at both temperatures, although neither expressed E1B gene nor formed colonies in soft agar. The phenotype of being lethal at 39.5 degrees C of dl313-transformed tsJT60 cells was complemented by cell fusion with 3Y1BUr cells (5-BrdU-resistant 3Y1), but not with tsJT60TGr cells (6-thioguanine resistant tsJT60). These results indicate that the lethal phenotype is related to the ts mutation of tsJT60 cells and also to the deletion of E1B gene of Ad5.  相似文献   

2.
Adenovirus type 12 gene 401 function in transforming infection   总被引:1,自引:1,他引:0       下载免费PDF全文
The temperature-sensitive DNA-minus mutant, H12ts401, transformed two to eight times more hamster embryo cells than wild-type 12 adenovirus at 38.5 degrees C, but was unable to establish transformation of cultures of hamster embryo brain and rat 3Y1 cells at 41.5 and 40 degrees C, respectively. Another H12ts406 DNA-minus mutant was not defective in cell transformation at these restrictive temperatures. Both mutants, however, induced T-antigen and cell DNA synthesis after infection of 3Y1 cells at 40 degrees C.  相似文献   

3.
The susceptibility of targets to destruction by tumoricidal rat and mouse macrophages was studied with virus-transformed cell lines in which various elements of the transformed phenotype are only expressed at specific temperatures. BHK cells transformed by the ts3 mutant of polyoma virus, rat embryo 3Y1 cells transformed by a temperature-sensitive A cistron mutant of simian virus 40 (SV40) and the ts-H6-15 temperature-sensitive line of SV40-transformed mouse 3T3 cells were killed in vitro by macrophages at both the permissive (33 °C) or nonpermissive (39 °C) temperatures for expression of the transformed phenotype. 3T3, 3Y1 and BHK cells transformed by wild-type SV40 or polyoma virus were also destroyed by tumoricidal macrophages at both 33 and 39 °C, but untransformed 3T3, 3Y1, and BHK cells were not. Thus, transformed cells are killed by macrophages regardless of whether or not they express cell surface LETS protein or Forssman antigen, display surface changes which permit agglutination by low doses of plant lectins, express SV40 T antigen, have a low saturation density, or exhibit density-dependent inhibition of DNA synthesis.  相似文献   

4.
Role of simian virus 40 gene A function in maintenance of transformation.   总被引:108,自引:73,他引:35       下载免费PDF全文
Mouse, hamster, and human cells were transformed at the permissive temperature by mutants from simian virus 40 (SV40) complementation group A in order to ascertain the role of the gene A function in transformation. The following parameters of transformation were monitored with the transformed cells under permissive and nonpermissive conditions: morphology; saturation density; colony formation on plastic, on cell monolayers, and in soft agar; uptake of hexose; and the expression of SV40 tumor (T) and surface (S) antigens. Cells transformed by the temperature-sensitive (ts) mutants exhibited the phenotype of transformed cells at the nonrestrictive temperature for all of the parameters studied. However, when grown at the restrictive temperature, they were phenotypically similar to normal, untransformed cells. Growth curves showed that the (ts) A mutant-transformed cells exhibited the growth characteristics of wild-type virus-transformed cells at the permissive temperature and resembled normal cells when placed under restrictive conditions. There were 3-to 51-fold reductions in the levels of saturation density, colony formation, and uptake of hexose when the mutant-transformed cells were the elevated temperature as compared to when they were grown at the permissive temperature. Mutant-transformed cells from the nonpermissive temperature were able to produce transformed foci when shifted down to permissive conditions, indicating that the phenotypically reverted cells were still viable and that the reversion was a reversible event. SV40 T antigen was present in the cells at both temperatures, but S antigen was not detected in cells maintained at the nonpremissive temperature. All of the wild-type virus-transformed cells exhbited a transformed cells exhibited a transformed phenotype when grown under either restrictive or nonrestrictive conditions. Thers results indicate that the SV40 group A mutant-transformed cells are temperature sensitive for the maintenance of growth properties characteristics of transformation. Virus rescued from the mutant-transformed cells by the transfection method was ts, suggesting that the SV40 gene A function, rather than a cellular one, is responsible for the ts behavior of the cells.  相似文献   

5.
The growth properties of hamster cells transformed by wild-type Simian virus 40 (SV40), by early SV40 temperature-sensitive mutants of the A complementation group, and by spontaneous revertants of these mutants were studied. All of the tsA mutant-transformed cells were temperature sensitive in their ability to form clones in soft agar and on monolayers of normal cells except for CHLA-30L1, which was not temperature sensitive in the latter property. All cells transformed by stable revertants of well-characterized tsA mutants possessed certain growth properties in common with wild-type-transformed cells at both temperatures. Virus rescued from tsA transformants including CHLA30L1 was temperature sensitive for viral DNA replication, whereas that rescued from revertant and wild-type transformants was not thermolabile in this regard. T antigen present in crude extracts of tsA-transformed cells including CHLA30L1, grown at 33 degreeC, was temperature sensitive by in vitro immunoassay, whereas that from wild-type-transformed cells was relatively stable. T antigen from revertant transformants was more stable than the tsA protein. Partially purified T antigen from revertant-transformed cells was nearly as stable as wild-type antigen in its ability to bind DNA after heating at 44 degrees C, whereas T antigen from tsA30 mutant-transformed cells was relatively thermolabile. These results further indicate that T antigen is a product of the SV40 A gene. Significantly more T antigen was found in extracts of CHLA30L1 grown to high density at the nonpermissive temperature than in any other tsA-transformed cell similarly grown. This is consistent with the suggestion that the amount of T antigen synthesized in CHLA30L1 is large enoughto allow partial expression of the transformed phenotype at the restrictive temperature. Alternatively, the increase in T antigen concentration may be secondary to one or more genetic alterations that independently affect the transformed phenotype of these cells.  相似文献   

6.
The function of the A gene of simian virus 40 (SV40) in transformation of BALB/c-3T3 cells was investigated by infecting at the permissive temperature with wild-type SV40 and with six tsA mutants whose mutation sites map at different positions in the early region of the SV40 genome. Cloned transformants were then characterized as to the temperature sensitivity of the transformed phenotype. Of 16 tsA transformants, 15 were temperature sensitive for the ability to overgrow a monolayer of normal cells, whereas three of three wild-type transformants were not. This pattern of temperature sensitivity of the transformed phenotype was also observed when selected clones were assessed for the ability to grow in soft agar and in medium containing low concentration of serum. The temperature resistance of the one exceptional tsA transformant could be attributed neither to the location of the mutation site in the transforming virus nor to transformation by a revertant virus. This temperature-resistant tsA transformant, however, was demonstrated to contain a higher intracellular concentration of SV40 T antigen than a temperature-sensitive line transformed by the same tsA mutant. A tsA transformant displaying the untransformed phenotype at the nonpermissive temperature was found to be susceptible to retransformation by wild-type virus at this temperature, demonstrating that the temperature sensitivity of the tsA transformants is due to the viral mutation and not to a cellular defect. These results indicate that continuous expression of the product of the SV40 A gene is required to maintain the transformed phenotype in BALB/c-3T3 cells.  相似文献   

7.
A fibroblast line of the 3T3 type with a low saturation density was established from Fisher rat embryo cells. After infection with either wild-type or tsa mutant polyoma virus, transformants were isolated and cloned at 33 degrees C on the basis of their ability either to grow as dense foci on plastic in liquid medium (type N) or to form colonies in soft agar (type A). Polyoma T antigen was detected in all of the transformed lines. The following growth characteristics were studied for both types at 33 and 41 degrees C: saturation density, growth in soft agar and at a low serum concentration, colony-forming ability, and generation time. tsa-N transformants behaved at 33 degrees C similarly to transformed cells, but reverted at 41 degrees C to the nontransformed phenotype for all of these characters. tsa-A transformants and all of the wild-type transformants exhibited the transformed phenotype at both low and high temperatures. These results led us to distinguish at least two types of virus-induced transformants. In one of them, the activity of the protein affected by the tsa mutation appears to be necessary for the expression of several of the characters defining the transformed state.  相似文献   

8.
SV40-transformed cells with temperature-dependent serum requirements.   总被引:5,自引:0,他引:5  
D Toniolo  C Basilico 《Cell》1975,4(3):255-262
We have isolated temperature-sensitive SV40-transformed 3T3 cells which are unable to grow in low or depleted serum at the nonpermissive temperature. At 39 degrees C, these cells do not grow in 1 percent serum, but they grow if the serum concentration is raised to 10 percent. At 32 degrees they grow in both serum concentrations. This phenotype seems to be due to a cellular mutation, as the virus rescued from these cells is wild-type. We tested whether other characteristics of transformed cells were expressed in a temperature sensitive way. While high saturation density is ts in these cells, other parameters of transformation are expressed at both temperatures. In addition, when these cells are incubated in low serum at 39 degrees C, they keep synthesizing DNA and lose viability very fast, while under the same conditions normal 3T3 cells remain viable for long times and are unable to initiate DNA synthesis. These cells therefore do not appear to revert to a normal phenotype at the high temperature, and they are more likely to represent transformed cell variants with a temperature-dependent serum requirement.  相似文献   

9.
Transformation by the oncogenic virus SV40 has been shown to alter the expression of cellular genes at the level of RNA abundance. Many of these genes have yet to be identified. We have determined, by Northern blot analysis, the abundance levels of several growth-regulated genes in SV40-transformed cell lines to determine if their expression is altered and correlates with the ability of SV40 transformed cells to grow in low serum containing media. The mRNA abundance levels of the G1-specific genes 2A9/calcyclin, 2F1/translocase, and 4F1/vimentin were determined in the parental hamster fibroblast cell line, tk-ts13, and in two SV40 transformants, HR5 and HR8 cells, grown in medium containing 10% calf serum (normal medium) and in HR5 and HR8 cells adapted to passage in medium containing low serum. A spontaneous transformant of the parental line capable of growth in low serum in the absence of SV40 transformation (tk-ts13/1%), was also included in these studies. The low serum adapted SV40-transformed cells and the spontaneous tk-ts13 transformed cells grew more vigorously than their nonadapted counterparts in medium containing low serum. The low serum adapted cells also grew to higher saturation densities in low serum and to densities comparable to those in high serum, whereas the nonadapted cells grew to low saturation densities in low serum, but not as low as the untransformed parental.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

10.
Differentiation of human epidermal cells transformed by SV40   总被引:20,自引:3,他引:17       下载免费PDF全文
Human epidermal cells were transformed with DNA from wild-type SV40 virus or with DNA from a temperature-sensitive A mutant (tsA209). The SV40-transformed cells differed from nontransformed cells in their morphologic appearance, growth properties, and expression of certain characteristics associated with differentiation. The transformed cells were more variable in size and shape than their nontransformed counterparts and were less stratified and less keratinized. While the growth properties of the cells were similar under optimal growth conditions, the transformed cells could be propagated under stringent growth conditions that did not support the growth of nontransformed human epidermal cells. The transformants still required a 3T3 feeder layer for growth, remained anchorage dependent as assayed in soft agar, and were not tumorigenic in athymic nude mice. The expression of certain differentiated functions of the human epidermal cell, the presence of keratins and cross-linked envelopes, was decreased in the transformed cells, and these functions could be restored at the nonpermissive temperature in the tsA209 transformed cells.  相似文献   

11.
Lymphoid cell lines were isolated that were inducible for the expression of surface immunoglobulin by shift from 35.5 to 39.5 degrees C after infection of mouse bone marrow cells with a mutagen-treated Abelson murine leukemia virus. Virus produced by one of the cell lines (ts49) transmitted the temperature-sensitive phenotype to new lymphoid transformants as well as to NIH/3T3 cells. In addition, the tyrosine autophosphorylating activity of the p120gag-abl protein synthesized in ts49-transformed cells was found to be temperature-sensitive. Shift experiments using ts49-transformed lymphoid cells showed that at 39.5 degrees C they synthesize increased amounts of mu and kappa chain RNA and protein, and that they can be further induced to secrete IgM when treated with lipopolysaccharide.  相似文献   

12.
Transformation of isolated rat hepatocytes with simian virus 40   总被引:3,自引:1,他引:2       下载免费PDF全文
Rat hepatocytes were transformed by simian virus 40 (SV40). Hepatocytes from two different strains of rats and a temperature-sensitive mutant (SV40tsA 1609), as well as wild-type virus were used. In all cases, transformed cells arose from approximately 50% of the cultures containing hepatocytes on collagen gels or a collagen gel-nylon mesh substratum. Cells did not proliferate in mock-infected cultures. SV40-transformed hepatocytes were epithelial in morphology, retained large numbers of mitochondria, acquired an increased nucleus to cytoplasm ratio, and contained cytoplasmic vacuoles. Evidence that these cells were transformed by SV40 came from the findings that transformants were 100% positive for SV40 tumor antigen expression, and that SV40 was rescued when transformed hepatocytes were fused with monkey cells. All SV40-transformed cell lines tested formed clones in soft agarose. Several cell lines transformed by SV40tsA 1609 were temperature dependent for colony formation on plastic dishes. Transformants were diverse in the expression of characteristic liver gene functions. Of eight cell lines tested, one secreted 24% of total protein as albumin, which was comparable to albumin production by freshly plated hepatocytes; two other cell lines produced 4.2 and 5.7%, respectively. Tyrosine aminotransferase activity was present in five cell lines tested but was inducible by dexamethasone treatment in only two. We conclude from these studies that adult, nonproliferating rat hepatocytes are competent for virus transformation.  相似文献   

13.
Y C Chen  M J Hayman  P K Vogt 《Cell》1977,11(3):513-521
Fibroblasts from European field vole (Microtus agrestis) and from normal rat kidney (NRK) have been infected by avian sarcoma virus mutants which are temperature-sensitive for the maintenance of transformation. These cells are transformed at 33 degrees C, but show normal cell characteristics in morphology, colony formation in agar, saturation density, sugar uptake and membrane proteins at 39 degrees C and 40 degrees C, the nonpermissive temperatures. Ts mutant virus was rescued from most of the ts transformed cell lines. NRK cells infected by avian sarcoma virus ts mutants and kept at the nonpermissive temperature can be transformed by wild-type avian sarcoma virus. The susceptibility of the temperature-sensitive NRK lines to this transformation is higher than the susceptibility of uninfected NRK at either permissive or nonpermissive temperature.  相似文献   

14.
Mouse embryo fibroblasts and 3T3 cells were transformed by wild-type, tsB4, tsA7, tsA58, and tsA209 simian virus 40. Clones of transformants were generated both in soft agar and in liquid medium by focus formation and at both high and relatively low multiplicities of infection. All transformants were assayed for three phenotypes of transformation: (i) the ability to form highly multinucleated cells in cytochalasin B-supplemented medium, i.e., uncontrolled nuclear division; (ii) the capacity to continue DNA synthesis at increasing cell density; and (iii) the ability to form colonies in soft agar. The great majority of mouse embryo fibroblast transformants generated with tsA mutant virus were temperature sensitive for transformation in all three assays, regardless of the input multiplicity or whether they were generated in liquid medium or soft agar. These transformants exhibited a normal or near-normal phenotype at the nonpermissive temperature of 40 degrees C. All but one of the transformants which appeared transformed at both temperatures were in the A209 group. In contrast to mouse embryo fibroblasts, transformants generated with 3T3 cells and tsA virus were often not temperature sensitive, exhibiting the transformation phenotypes at both temperatures. This phenomenon was more often observed when 3T3 transformants were generated in soft agar. These results, along with other published data, suggest that uncontrolled nuclear division and uncontrolled DNA synthesis are a function of the simian virus 40 A gene. Finally, with the 3T3 transformants, there was often discordance in the expression of transformation among the three phenotypes. Some tsA transformants were temperature sensitive in one of two assays but were transformed at both 33 and 40 degrees C in the remaining assay(s). Other transformants exhibited a normal cytochalasin B response at either temperature but were temperature sensitive in the other assays.  相似文献   

15.
We have investigated the responsiveness to growth factors (GFs) of primary baby rat kidney (BRK) cells transformed by the E1 region of adenovirus 5 or 12. The in vitro growth of non-oncogenic adenovirus 5-transformed BRK cells is largely independent of serum GFs, whereas growth of highly oncogenic adenovirus 12-transformed cells is strictly dependent on GFs present in serum. For the growth of adenovirus 12 E1-transformed BRK cells serum can be replaced by insulin or insulin-like growth factor-I but not by epidermal growth factor. To maintain the in vitro growth of adenovirus 12-transformed cells physiological levels of insulin-like growth factor-I, but not of insulin, are sufficient. Similar results have been found with adenovirus-transformed primary murine cells and with transformants of an established rat cell line, NRK 49F. This indicates that the observed GF responsiveness is not dependent of the cell type used but is determined by the serotype of the adenovirus-transforming region. Using hybrid E1 regions consisting of E1A of one serotype and E1B of the other, we show that the pattern of GF-responsiveness correlates with the origin of the E1A region. The differences in the GF-responsiveness of the adenovirus 5-transformed and adenovirus 12-transformed cells will be discussed in terms of the oncogenicity of these cells.  相似文献   

16.
Transformation of a specific clone of Fischer rat embryo (CREF) cells with wild-type 5 adenovirus (Ad5) or the E1a plus E1b transforming gene regions of Ad5 results in epithelioid transformants that grow efficiently in agar but that do not induce tumors when inoculated into nude mice or syngeneic Fischer rats. In contrast, CREF cells transformed by a host-range Ad5 mutant, H5hrl, which contains a single base-pair deletion of nucleotide 1055 in E1a resulting in a 28-kd protein (calculated) in place of the wild-type 51-kd acidic protein, display a cold-sensitive transformation phenotype and an incomplete fibroblastic morphology but surprisingly do induce tumors in nude mice and syngeneic rats. Tumors develop in both types of animals following injection of CREF cells transformed by other cold-sensitive Ad5 E1a mutants (H5dl101 and H5in106), which contain alterations in their 13S mRNA and consequently truncated 289AA proteins. CREF cells transformed with only the E1a gene (0-4.5 m.u.) from H5hrl or H5dl101 also produce tumors in these animals. To directly determine the role of the 13S E1a encoded 289AA protein and the 12S E1a encoded 243AA protein in initiating an oncogenic phenotype in adenovirus-transformed CREF cells, we generated transformed cell lines following infection with the Ad2 mutant pm975, which synthesizes the 289AA E1a protein but not the 243AA protein, and the Ad5 mutant H5dl520 and the Ad2 mutant H2dl1500, which do not produce the 289AA E1a protein but synthesize the normal 243AA E1a protein. All three types of mutant adenovirus-transformed CREF cells induced tumors in nude mice and syngeneic rats. Tumor formation by these mutant adenovirus-transformed CREF cells was not associated with changes in the arrangement of integrated adenovirus DNA or in the expression of adenovirus early genes. These results indicate, therefore, that oncogenic transformation of CREF cells can occur in the presence of a wild-type 13S E1a protein or a wild-type 12S E1a protein when either protein is present alone, but does not occur when both wild-type E1a proteins are present.  相似文献   

17.
Ten temperature-sensitive (ts) mutants of adenovirus type 12 which produce plaques at 31 but not at 38.5 C have been isolated after mutagenesis with nitrosoguanidine or nitrous acid. The mutants have been classified into six separate complementation groups. DNA-DNA hybridizations have shown that at 38.5 C the ts 401 and 406 mutants of groups B and E, respectively, synthesized less than 10% of the normal level of viral DNA. The two mutants were also defective in the production of late proteins at the nonpermissive temperature, as shown by fluorescent-antibody tests and analysis by sodium dodecyl sulfatepolyacrylamide gel electrophoresis. Genetic recombination between the ts viruses 401 and 406 has been demonstrated; the recombination frequency for the wild-type virus production was 17.7%. Both mutants induced an increase in thymidine kinase activity at 38.5 C. Moreover, the two viral DNA-defective mutants shut off host DNA synthesis at the restrictive temperature. It is striking that at 38.5 C ts virus 401 transformed two to eight times more hamster cells than the wild-type virus, whereas ts virus 406 transformed at a frequency similar to the wild-type virus.  相似文献   

18.
tsJT60, a temperature-sensitive (ts) cell-cycle mutant of Fischer rats, is viable at both the permissive (34 degrees C) and nonpermissive (40 degrees C) temperatures. The cells grow normally in exponential growth phase at both temperatures, but when stimulated with serum from G0 phase they enter S phase at 34 degrees C but not at 40 degrees C. tsJT60 cells transformed with human adenovirus (Ad) 12 dl205, which lacks the E1B 19-kDa polypeptide gene, were lethal at 40 degrees C, whereas tsJT60 cells transformed with Ad12 wt, dl207, which lacks E1B 58-kDa protein gene, or in206B, which produces 19- to 58- kDa fused protein, were viable. Degradation of cell DNA occurred in dl205-transformed tsJT60 cultured at both 34 degrees C and 40 degrees C. Neither cytocidal phenotype nor degradation of DNA occurred in 3Y1 cells (a parental line of tsJT60) transformed with dl205. These results suggest that the lethal phenotype and degradation of DNA are related to the ts mutation in tsJT60 and also to the lack of Ad12 E1B 19kDa polypeptide.  相似文献   

19.
We have investigated the functional roles of two structural subsets of simian virus 40 (SV40) large T antigen, namely homo-oligomers and complexes with the host cellular p53 protein, for the transformed phenotype. We examined T antigen produced in cells transformed by temperature-sensitive SV40 large T mutants: heat-sensitive or unrestricted SV40 tsA58-transformed rat cells and unrestricted tsA1499 transformants. In both unrestricted cell lines, T antigen was temperature-sensitive only for the formation of fast sedimenting homo-oligomers. Corresponding to our recent observations obtained with tsA1499-infected monkey cells, in tsA1499 transformants large T was competent to form stable T-p53 complexes independently of the temperature. However, T antigen coded for by tsA58, which is heat-sensitive for binding to p53, occurred in stable complexes with this protein in unrestricted tsA58 transformants under all conditions. Furthermore, in both unrestricted transformants T-p53 complexes arise in the absence of homo-oligomers of T antigen. In conclusion, T antigen homo-oligomers are not involved in cell transformation, whereas T-p53 complexes may be involved in the maintenance of this phenotype.  相似文献   

20.
Fisher rat fibroblasts (FR 3T3), transformed with the tsA30 mutant of simian virus 40 and selected by colony formation in soft agar, maintained the transformed phenotype at high temperature, whereas most transformants isolated from foci were found to undergo a phenotypic reversion toward the normal state in their saturation density, ability to grow in soft agar, and rate of 2-deoxyglucose transport. The temperature-independent phenotype observed in agar-selected transformants was not due to a reversion of the viral mutation. These results, similar to those previously obtained with polyoma virus tsa mutants, further suggest that two distinct mechanisms may operate in both cases for maintaining the transformed phenotype. Immunofluorescence studies suggested a different regulation of T antigen synthesis in these two classes of transformants.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号