首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
DNA polymerase (pol) η is a specialized error-prone polymerase with at least two quite different and contrasting cellular roles: to mitigate the genetic consequences of solar UV irradiation, and promote somatic hypermutation in the variable regions of immunoglobulin genes. Misregulation and mistargeting of pol η can compromise genome integrity. We explored whether the mutational signature of pol η could be found in datasets of human somatic mutations derived from normal and cancer cells. A substantial excess of single and tandem somatic mutations within known pol η mutable motifs was noted in skin cancer as well as in many other types of human cancer, suggesting that somatic mutations in A:T bases generated by DNA polymerase η are a common feature of tumorigenesis. Another peculiarity of pol ηmutational signatures, mutations in YCG motifs, led us to speculate that error-prone DNA synthesis opposite methylated CpG dinucleotides by misregulated pol η in tumors might constitute an additional mechanism of cytosine demethylation in this hypermutable dinucleotide.  相似文献   

2.
Tumour-derived DNA found in the plasma of cancer patients provides the probability to detect somatic mutations from circulating cell-free DNA (cfDNA) in plasma samples. However, clonal hematopoiesis (CH) mutations affect the accuracy of liquid biopsy for cancer diagnosis and treatment. Here, we integrated landscape of CH mutations in 11,725 pan-cancer patients of Chinese and explored effects of CH on liquid biopsies in real-world. We first identified 5933 CHs based on panel sequencing of matched DNA of white blood cell and cfDNA on 301 genes for 5100 patients, in which CH number of patients had positive correlation with their diagnosis age. We observed that canonical genes related to CH, including DNMT3A, TET2, ASXL1, TP53, ATM, CHEK2 and SF3B1, were dominant in the Chinese cohort and 13.29% of CH mutations only appeared in the Chinese cohort compared with the Western cohort. Analysis of CH gene distribution bias indicated that CH tended to appear in genes with functions of tyrosine kinase regulation, PI3K-Akt signalling and TP53 activity, suggesting unfavourable effects of CH mutations in cancer patients. We further confirmed effect of driver genes carried by CH on somatic mutations in liquid biopsy of cancer patients. Forty-eight actionable somatic mutations in 17 driver genes were considered CH genes in 92 patients (1.80%) of the Chinese cohort, implying potential impacts of CH on clinical decision-making. Taken together, this study exhibits strong evidence that gene mutations from CH interfere accuracy of liquid biopsies using cfDNA in cancer diagnosis and treatment in real-world.  相似文献   

3.
DNA mismatch repair and cancer   总被引:31,自引:0,他引:31  
Five human DNA mismatch repair genes have been identified that, when mutated, cause susceptibility to hereditary nonpolyposis colorectal cancer (HNPCC). Mutational inactivation of both copies of a DNA mismatch repair gene results in a profound repair defect and progressive accumulation of mutations throughout the genome. Some of the mutations confer selective advantage on the cells, giving rise to cancer. Recent discoveries suggest that apart from postreplication repair, DNA mismatch repair proteins have several other functions that are highly relevant to carcinogenesis. These include DNA damage surveillance, prevention of recombination between nonidentical sequences and participation in meiotic processes (chromosome pairing). A brief overview of these different features of the human DNA mismatch repair system will be provided, with the emphasis in their implications in cancer development.  相似文献   

4.
An overview of the mechanisms of mutagenesis and carcinogenesis   总被引:4,自引:0,他引:4  
Sarasin A 《Mutation research》2003,544(2-3):99-106
Cancer is a genetic disease due to the accumulation of numerous mutations rendering the tumour cell insensitive to control by the local cellular environment and by the whole organism. Analysis of the frequency of appearance of human cancer as a function of age shows that between four and seven mutations in key genes are usually necessary to produce most human cancers. Interesting debates in the literature are concerned with the idea that normal mutation rates followed by selective advantage of mutated clones are enough to produce the numerous mutations found in human cancers. Alternatively, the mutator phenotype hypothesis is based on the idea that the normal mutation rates are insufficient to account for the multiple mutations found in tumours. It is, however, difficult not only to know this exact mutation frequency in cells but also to know the total number of cell divisions giving rise to a cancer. Therefore, during at least one step in the carcinogenic process, a mutator phenotype in target cells may occur due to mutations controlling the fidelity of DNA replication or DNA repair, the apoptosis pathways or the cell cycle checkpoint regulations. Among the multiple mutations found in human cancers such as gene amplification, chromosome alterations and translocations, point mutations are very important and the molecular mechanisms of their production are well documented. I will describe in detail the various mechanisms that a cell can use to produce point mutations due to lower fidelity in the DNA polymerisation step or to inefficient repair pathways. The presence of multiple mutations in human cancer is interesting not only in terms of understanding the carcinogenesis process in humans but also in eventually promoting strategies to decrease the efficiency of this process and to increase cancer therapy regimen.  相似文献   

5.
There is increasing evidence that most human cancers contain multiple mutations. By the time a tumor is clinically detectable it may have accumulated tens of thousands of mutations. In normal cells, mutations are rare events occurring at a rate of 10(-10) mutations per nucleotide per cell per generation. We have argued that the mutation rates exhibited by normal human cells are insufficient to account for the large number of mutations found in human cancers, and therefore, that an early event in tumorigenesis is the development of a mutator phenotype. In normal cells, spontaneous and induced DNA damage is balanced by multiple pathways for DNA repair, and most DNA damage is repaired without error. However, in tumor cells this balance may be shifted such that damage overwhelms the repair capacity, resulting in the accumulation of multiple mutations. Our hypothesis is that multiple random mutations occur during carcinogenesis. The sequential mutations that are observed in some human tumors result from selective events required for tumor progression. We consider the possibility that endogenous sources of DNA damage, in particular oxidative DNA damage, may contribute to genomic instability and to a mutator phenotype in some tumors. Endogenous and environmental sources of reactive oxygen species (ROS) are abundant. In tumor cells, antioxidant or DNA repair capacity may be insufficient to compensate for the production of ROS, and these endogenous ROS may be capable of damaging DNA and inducing mutations in critical DNA stability genes. The possibility that oxidative DNA damage could be a significant source of the genomic instability characteristic of human cancers is exciting, because it may be feasible to modulate the extent of oxidative damage through antioxidant therapy. The use of antioxidants to reduce the extent of molecular damage by ROS could delay the progression of cancer.  相似文献   

6.
Mitochondrial DNA (mtDNA) mutations are implicated in pathogenesis of human diseases including cancer. To prevent mutations cells have developed repair systems to counteract harmful genetic changes caused by DNA damaging agents. One such DNA repair protein is the O(6)-Methylguanine-DNA methyltransferase (MGMT) that prevents certain types of alkylation damage. Yet, the role of MGMT in preventing alkylation induced DNA damage in mtDNA is unclear. We explored the idea of increasing cell survival after alkylation damage by overexpressing MGMT in mitochondria. We show that overexpression of this repair protein in mitochondria increases cell survival after treatment with the DNA damaging agent MNNG.  相似文献   

7.
Tumorigenesis is a multi-step process in which normal cells transform into malignant tumors following the accumulation of genetic mutations that enable them to evade the growth control checkpoints that would normally suppress their growth or result in apoptosis. It is therefore important to identify those combinations of mutations that collaborate in cancer development and progression. DNA copy number alterations (CNAs) are one of the ways in which cancer genes are deregulated in tumor cells. We hypothesized that synergistic interactions between cancer genes might be identified by looking for regions of co-occurring gain and/or loss. To this end we developed a scoring framework to separate truly co-occurring aberrations from passenger mutations and dominant single signals present in the data. The resulting regions of high co-occurrence can be investigated for between-region functional interactions. Analysis of high-resolution DNA copy number data from a panel of 95 hematological tumor cell lines correctly identified co-occurring recombinations at the T-cell receptor and immunoglobulin loci in T- and B-cell malignancies, respectively, showing that we can recover truly co-occurring genomic alterations. In addition, our analysis revealed networks of co-occurring genomic losses and gains that are enriched for cancer genes. These networks are also highly enriched for functional relationships between genes. We further examine sub-networks of these networks, core networks, which contain many known cancer genes. The core network for co-occurring DNA losses we find seems to be independent of the canonical cancer genes within the network. Our findings suggest that large-scale, low-intensity copy number alterations may be an important feature of cancer development or maintenance by affecting gene dosage of a large interconnected network of functionally related genes.  相似文献   

8.
Recently, an increasing number of studies indicate that mutations in mitochondrial genome may contribute to cancer development or metastasis. Hence, it is important to determine whether the mitochondrial DNA might be a good, clinically applicable marker of cancer. This review describes hereditary as well as somatic mutations reported in mitochondrial DNA of colorectal cancer cells. We showed here that the entire mitochondrial genome mutational spectra are different in colorectal cancer and non-tumor cells. We also placed the described mutations on the phylogenetic context, which highlighted the recurrent problem of data quality. Therefore, the most important rules for adequately assessing the quality of mitochondrial DNA sequence analysis in cancer have been summarized. As follows from this review, neither the reliable spectrum of mtDNA somatic mutations nor the association between hereditary mutations and colorectal cancer risk have been resolved. This indicates that only high resolution studies on mtDNA variability, followed by a proper data interpretation employing phylogenetic knowledge may finally verify the utility of mtDNA sequence (if any) in clinical practice.  相似文献   

9.
Aberrant DNA methylation is frequently observed in disease, including many cancer types, yet the underlying mechanisms remain unclear. Because germline and somatic mutations in the genes that are responsible for DNA methylation are infrequent in malignancies, additional mechanisms must be considered. Mycoplasmas spp., including Mycoplasma hyorhinis, efficiently colonize human cells and may serve as a vehicle for delivery of enzymatically active microbial proteins into the intracellular milieu. Here, we performed, for the first time, genome-wide and individual gene mapping of methylation marks generated by the M. hyorhinis CG- and GATC-specific DNA cytosine methyltransferases (MTases) in human cells. Our results demonstrated that, upon expression in human cells, MTases readily translocated to the cell nucleus. In the nucleus, MTases selectively and efficiently methylated the host genome at the DNA sequence sites free from pre-existing endogenous methylation, including those in a variety of cancer-associated genes. We also established that mycoplasma is widespread in colorectal cancers, suggesting that either the infection contributed to malignancy onset or, alternatively, that tumors provide a favorable environment for mycoplasma growth. In the human genome, ∼11% of GATC sites overlap with CGs (e.g., CGATmCG); therefore, the methylated status of these sites can be perpetuated by human DNMT1. Based on these results, we now suggest that the GATC-specific methylation represents a novel type of infection-specific epigenetic mark that originates in human cells with a previous exposure to infection. Overall, our findings unveil an entirely new panorama of interactions between the human microbiome and epigenome with a potential impact in disease etiology.  相似文献   

10.
11.
12.
The molecular biology of cancer   总被引:12,自引:0,他引:12  
The process by which normal cells become progressively transformed to malignancy is now known to require the sequential acquisition of mutations which arise as a consequence of damage to the genome. This damage can be the result of endogenous processes such as errors in replication of DNA, the intrinsic chemical instability of certain DNA bases or from attack by free radicals generated during metabolism. DNA damage can also result from interactions with exogenous agents such as ionizing radiation, UV radiation and chemical carcinogens. Cells have evolved means to repair such damage, but for various reasons errors occur and permanent changes in the genome, mutations, are introduced. Some inactivating mutations occur in genes responsible for maintaining genomic integrity facilitating the acquisition of additional mutations. This review seeks first to identify sources of mutational damage so as to identify the basic causes of human cancer. Through an understanding of cause, prevention may be possible. The evolution of the normal cell to a malignant one involves processes by which genes involved in normal homeostatic mechanisms that control proliferation and cell death suffer mutational damage which results in the activation of genes stimulating proliferation or protection against cell death, the oncogenes, and the inactivation of genes which would normally inhibit proliferation, the tumor suppressor genes. Finally, having overcome normal controls on cell birth and cell death, an aspiring cancer cell faces two new challenges: it must overcome replicative senescence and become immortal and it must obtain adequate supplies of nutrients and oxygen to maintain this high rate of proliferation. This review examines the process of the sequential acquisition of mutations from the prospective of Darwinian evolution. Here, the fittest cell is one that survives to form a new population of genetically distinct cells, the tumor. This review does not attempt to be comprehensive but identifies key genes directly involved in carcinogenesis and demonstrates how mutations in these genes allow cells to circumvent cellular controls. This detailed understanding of the process of carcinogenesis at the molecular level has only been possible because of the advent of modern molecular biology. This new discipline, by precisely identifying the molecular basis of the differences between normal and malignant cells, has created novel opportunities and provided the means to specifically target these modified genes. Whenever possible this review highlights these opportunities and the attempts being made to generate novel, molecular based therapies against cancer. Successful use of these new therapies will rely upon a detailed knowledge of the genetic defects in individual tumors. The review concludes with a discussion of how the use of high throughput molecular arrays will allow the molecular pathologist/therapist to identify these defects and direct specific therapies to specific mutations.  相似文献   

13.
Gastric cancer is the one of the major causes of cancer-related death, especially in Asia. Gastric adenocarcinoma, the most common type of gastric cancer, is heterogeneous and its incidence and cause varies widely with geographical regions, gender, ethnicity, and diet. Since unique mutations have been observed in individual human cancer samples, identification and characterization of the molecular alterations underlying individual gastric adenocarcinomas is a critical step for developing more effective, personalized therapies. Until recently, identifying genetic mutations on an individual basis by DNA sequencing remained a daunting task. Recent advances in new next-generation DNA sequencing technologies, such as the semiconductor-based Ion Torrent sequencing platform, makes DNA sequencing cheaper, faster, and more reliable. In this study, we aim to identify genetic mutations in the genes which are targeted by drugs in clinical use or are under development in individual human gastric adenocarcinoma samples using Ion Torrent sequencing. We sequenced 737 loci from 45 cancer-related genes in 238 human gastric adenocarcinoma samples using the Ion Torrent Ampliseq Cancer Panel. The sequencing analysis revealed a high occurrence of mutations along the TP53 locus (9.7%) in our sample set. Thus, this study indicates the utility of a cost and time efficient tool such as Ion Torrent sequencing to screen cancer mutations for the development of personalized cancer therapy.  相似文献   

14.
Mitochondrial DNA (mtDNA) is essential for the ability of mammalian cells to generate a functional oxidative phosphorylation system. Mutations in mtDNA occur in human disease and also during ageing. Here, we address three questions concerning the occurrence and accumulation of mtDNA mutations during the lifespan of the mammalian cell. What sort of mutations accumulate with age in humans and other mammals? How is the female germ line spared from the accumulation of such mutations as occurs in many somatic tissues, so that neonates normally start life with a ‘clean sheet'? Is the occurrence of mtDNA mutations associated with the functional decline of cells and tissues during ageing? We argue that mtDNA mutations in somatic cells do not just reflect a passive imprint of ageing, but they are causally associated with the loss of bioenergetic function during the ageing process.  相似文献   

15.
We have previously described a methotrexate-resistant cell line (MTX M) characterized by amplified dihydrofolate reductase (DHFR) genes, cytoplasmic p53 localization, and p53 stable tetramers. To investigate the p53 functionality in MTX M, the effect of chemical/physical agents was studied. In MTX M cells, DNA damage did not induce p53 or mdm-2 protein, while in the parental V79 cells, a residual p53 activity was found. cDNA sequencing showed that V79 and MTX M cells share the same mutations, indicating that the complete loss of p53 function in MTX M cells was due to cytoplasmic sequestration of a mutated p53 with residual activity. In Chinese hamster, both p53 and DHFR genes map on short arm of chromosome 2 suggesting that p53 itself might be amplified. However, fluorescence in situ hybridization with a hamster p53 probe showed only a single signal. Thus, the presence of p53 stable tetramers in MTX M cells, although correlated with DNA amplification, could not be the consequence of either p53 or DHFR gene amplification. Expression of a C-terminal human p53 peptide does not induce p53 nuclear accumulation, indicating that the cytoplasmic localization is due to a mechanism different from that already described in cancer cell lines. Treatments with Sodium Butyrate induced beta-tubulin polymerization, but did not apparently organize a normal microtubule network, which is shown to be important for the p53 localization. Our data indicated that in MTX M cells, p53 is sequestered in the cytoplasm by a novel mechanism that abrogates p53 residual function.  相似文献   

16.
Breast cancer is the most common malignancy in women. Radiotherapy is frequently used in patients with breast cancer, but some patients may be more susceptible to ionizing radiation, and increased exposure to radiation sources may be associated to radiation adverse events. This susceptibility may be related to deficiencies in DNA repair mechanisms that are activated after cell-radiation, which causes DNA damage, particularly DNA double strand breaks. Some of these genetic susceptibilities in DNA-repair mechanisms are implicated in the etiology of hereditary breast/ovarian cancer (pathologic mutations in the BRCA 1 and 2 genes), but other less penetrant variants in genes involved in sporadic breast cancer have been described. These same genetic susceptibilities may be involved in negative radiotherapeutic outcomes. For these reasons, it is necessary to implement methods for detecting patients who are susceptible to radiotherapy-related adverse events. This review discusses mechanisms of DNA damage and repair, genes related to these functions, and the diagnosis methods designed and under research for detection of breast cancer patients with increased radiosensitivity.  相似文献   

17.
RecQ helicases play an important role in the maintenance of genomic stability in pro- and eukaryotes. This is highlighted by the human genetic diseases Werner, Bloom's and Rothmund–Thomson syndrome, caused by respective mutations in three of the five human RECQ genes. The highest numbers of RECQ homologous genes are found in plants, e.g. seven in Arabidopsis thaliana . However, only limited information is available on the functions of plant RecQ helicases, and no biochemical characterization has been performed. Here, we demonstrate that AtRECQ2 is a (d)NTP-dependent 3'→5' DNA helicase. We further characterized its basal properties and its action on various partial DNA duplexes. Importantly, we demonstrate that AtRECQ2 is able to disrupt recombinogenic structures: by disrupting various D-loop structures, AtRECQ2 may prevent non-productive recombination events on the one hand, and may channel repair processes into non-recombinogenic pathways on the other hand, thus facilitating genomic stability. We show that a synthetic partially mobile Holliday junction is processed towards splayed-arm products, possibly indicating a branch migration function for AtRECQ2. The biochemical properties defined in this work support the hypothesis that AtRECQ2 might be functionally orthologous to the helicase part of the human RecQ homologue HsWRN.  相似文献   

18.
Germline mutations in DNA mismatch repair (MMR) genes are the cause of hereditary non-polyposis colorectal cancer/Lynch syndrome (HNPCC/LS) one of the most common cancer predisposition syndromes, and defects in MMR are also prevalent in sporadic colorectal cancers. In the past, the generation and analysis of mouse lines with knockout mutations in all of the known MMR genes has provided insight into how loss of individual MMR genes affects genome stability and contributes to cancer susceptibility. These studies also revealed essential functions for some of the MMR genes in B cell maturation and fertility. In this review, we will provide a brief overview of the cancer predisposition phenotypes of recently developed mouse models with targeted mutations in MutS and MutL homologs (Msh and Mlh, respectively) and their utility as preclinical models. The focus will be on mouse lines with conditional MMR mutations that have allowed more accurate modeling of human cancer syndromes in mice and that together with new technologies in gene targeting, hold great promise for the analysis of MMR-deficient intestinal tumors and other cancers which will drive the development of preventive and therapeutic treatment strategies.  相似文献   

19.
Clinical studies with prostate cancer tissue indicate that alterations in androgen receptor (AR) or c-Met overexpression are associated with androgen-independent progression. We investigated the interaction between AR and c-Met signaling in human prostate cancer cells. Androgen withdrawal or AR-specific small interfering RNA significantly reduced the growth rate while each maneuver induced the expression of c-Met. Knockdown of both AR and c-Met expression markedly inhibited the cell growth. Furthermore, microarray analysis indicated that the activation of c-Met down-regulated the expression of DNA repair-related genes including 8-oxoguanine DNA glycosylase. Exogenous hepatocyte growth factor also induced the production of intracellular reactive oxygen species and resulted in the accumulation of DNA damages. These results suggested that the activation of c-Met signaling may lead to induction of spontaneous mutations or genomic instability, which may lead to the progression of androgen-independent state. Thus, c-Met signaling is utilized for survival and growth under the androgen-depleted condition.  相似文献   

20.
Hypoxia generated in tumors has been shown to contribute to mutations and genetic instability. However, the molecular mechanisms remain incompletely defined. Since reactive oxygen species (ROS) are overproduced immediately after reoxygenation of hypoxic cells and generate oxidized guanine, we assumed that the mechanisms might involve translesion DNA polymerases that can bypass oxidized guanine. We report here that hypoxia as well as hypoxia mimetics, desferrioxamine, and CoCl(2), enhanced the expression of DNA polymerase iota (pol iota) in human tumor cell lines. Searching the consensus sequence of hypoxia response element to which HIF-1 binds revealed that it locates in the intron 1 of the pol iota gene. These results suggest that HIF-1-mediated pol iota gene expression may be involved in the generation of translesion mutations during DNA replication after hypoxia followed by reoxygenation, thereby contributing to the accumulation of genetic changes in tumor cells.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号