首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 281 毫秒
1.
Previously, standardized snap-shot models of the Southern Benguela (1980–1989), Southern Humboldt (1992) and Southern Catalan Sea (1994) ecosystems were examined and found to facilitate assessment of ecosystem characteristics related to the gradient in exploitation status of the ecosystems; highest level of exploitation in the South Catalan Sea (North-western Mediterranean), high in the Southern Humboldt and lower in the Southern Benguela. Subsequently, these models were calibrated and fitted using available catch, fishing effort/mortality and abundance data series and incorporated environmental and internal drivers. This study furthers the previous comparative analyses by comparing changes in ecosystem structure using a selection of ecosystem indicators from the calibrated models and assessing how these indicators change over time in these three contrasting ecosystems. Indicators examined include community turnover rates (production/biomass), trophic level of landings and the community, biodiversity indicators, ratios of predatory/forage fish and pelagic/demersal fish biomass, catch ratios, and network analysis indicators. Using the set of model-derived indicators, the three ecosystems were ranked in terms of exploitation level. This ranking was performed using the values of these indicators in recent years (ecosystem state) as well as their trends over time (ecosystem trend). The non-parametric Kruskal–Wallis and Median tests were used to test for significance of the difference between indicators from the three ecosystems in the last 5 years of the simulation to compare present ecosystem states. We compared the slope of the lineal trend and its significance between ecosystems using the generalized least-squares regression taking auto-correlation into consideration to analyse ecosystem trends. The indicators that capture better the high impacts of fishing prevalent in the Mediterranean and Humboldt ecosystems, and the more conservative exploitation of the Southern Benguela, are the fish/invertebrates biomass and catch ratio, the demersal/pelagic fish biomass and catch ratio (depending on the ecosystem and the fishery being developed), flows to detritus, and the mean trophic level of the community (when large, poorly quantified groups such as zooplankton and detritus are excluded). This study suggests that the best option for classifying ecosystems according to the impact of fishing is to consider a broad range of indicators to understand how and why an ecosystem is responding to particular environmental or fishing drivers (or more likely a combination of these). Our results highlight the importance of including indicators capturing trends over time as well as recent ecosystem states. We also identified 23 pairs of indicators that correlated similarly in the three ecosystems (they showed a significant correlation with same sign). Further comparisons may contribute towards generalization of this list, progressing towards a better understanding of the behaviour of ecological indicators.  相似文献   

2.
Large, migratory predators are often cited as sentinel species for ecosystem processes and climate‐related changes, but their utility as indicators is dependent upon an understanding of their response to environmental variability. Documentation of the links between climate variability, ecosystem change and predator dynamics is absent for most top predators. Identifying species that may be useful indicators and elucidating these mechanistic links provides insight into current ecological dynamics and may inform predictions of future ecosystem responses to climatic change. We examine humpback whale response to environmental variability through stable isotope analysis of diet over a dynamic 20‐year period (1993–2012) in the California Current System (CCS). Humpback whale diets captured two major shifts in oceanographic and ecological conditions in the CCS. Isotopic signatures reflect a diet dominated by krill during periods characterized by positive phases of the North Pacific Gyre Oscillation (NPGO), cool sea surface temperature (SST), strong upwelling and high krill biomass. In contrast, humpback whale diets are dominated by schooling fish when the NPGO is negative, SST is warmer, seasonal upwelling is delayed and anchovy and sardine populations display increased biomass and range expansion. These findings demonstrate that humpback whales trophically respond to ecosystem shifts, and as a result, their foraging behavior is a synoptic indicator of oceanographic and ecological conditions across the CCS. Multi‐decadal examination of these sentinel species thus provides insight into biological consequences of interannual climate fluctuations, fundamental to advancing ecosystem predictions related to global climate change.  相似文献   

3.
ABSTRACT: This study intends to give recommendations to the management of Paraty fishery in Brazil through an interplay of local and scientific knowledge. In particular, the objectives are the following: 1) to describe the Paraty fishery; 2) to compare the fishermen's local ecological knowledge with recorded fish landings and previous studies in Paraty; 3) to combine the data on local fishing and on local/Caicara livelihoods with the SES (social-ecological systems) Model. The methods include a systematic survey of fishing in Tarituba and Praia Grande, which are located in the northern end and the central part of the Paraty municipality, respectively. For four days each month, systematic data on catches at landing points were collected, as well as macroscopic gonad analysis data for the fishes Centropomus parallelus and C. undecimalis (snook, robalo), Epinephelus marginatus (grouper, garoupa), Scomberomorus cavalla (King mackerel, cavala), and Lutjanus synagris (Lane snapper, vermelho). Spring and summer are important seasons during which some species reproduce, and the integration of fishing periods for some target species could assist in fishing management through the use of closed seasons. Fishermen could obtain complementary earnings from tourism and from the "defeso system" (closed season including a salary payment) to conserve fishing stocks. The SES model facilitates an understanding of the historical context of fishing, its economic importance for local livelihoods, the constraints from conservation measures that affect fishermen, and the management processes that already exist, such as the defeso. If used to integrate fishing with complementary activities (tourism), such a system could improve the responsibility of fishermen regarding the conservation of fish stocks.  相似文献   

4.
Using the Ecopath with Ecosim software, a trophic structure model of the Beibu Gulf was constructed to explore the energy flows and provide a snapshot of the ecosystem operations. Input data were mainly from the trawl survey data collected from October 1998 to September 1999 and related literatures. The impacts of various fishing pressure on the biomass were examined by simulation at different fishing mortality rates. The model consists of 20 functional groups (boxes), each representing organisms with a similar role in the food web, and only covers the major trophic flows in the Beibu Gulf ecosystem. It was found that the food web of the Beibu Gulf was dominated by the primary producers path, and phytoplankton was the primary producer mostly used as a food source. The fractional trophic levels ranged from 1.0 to 4.02, and the marine mammals occupied the highest trophic level. Using network analysis, the ecosystem network was mapped into a linear food chain, and six discrete trophic levels were found with a mean transfer efficiency of 11.2%. The Finn cycling index was 9.73%. The path length was 1.821. The omnivory index was 0.197. The ecosystem had some degree of instability due to exploitation and other human activities, according to Odum’s theory of ecosystem development. A 10-year simulation was performed for each fishery scenario. The fishing mortality rate was found to have a strong impact on the biomass. By keeping the fishing mortality rate at the current level for all fishing sectors, scenario 1 had a drastic decrease in the large fish groups. The biomass of the small and medium pelagic fish would increase to some extent. The biomass of the small and low trophic level species, jellyfish, prawns and benthic crustaceans would be stable. The total biomass of the fishery resources would have a 10% decrease from the current biomass after 10 years. In contrast, the reduced fishing mortality rate induced the recovery of biomass (scenarios 2–4). In scenario 2, the biomass of the large demersal fish and the large pelagic fish would increase to over 16 times and 10 times, respectively, of their current level. In scenario 4, the biomass of the large pelagic fish would increase to over 3 times of its current level. The total biomass of the fish groups, especially the high trophic level groups, would become significantly higher after 10 years, which illustrates the contribution on biomass recovery by relaxing the fishing pressure. Electronic supplementary material  The online version of this article (doi:) contains supplementary material, which is available to authorized users. Author contributions: Xiaoping Jia designed research; Zuozhi Chen and Yongsong Qiu performed research; Zuozhi Chen, Yongsong Qiu, and Shannan Xu analyzed data; and Zuozhi Chen and Shannan Xu wrote the article.  相似文献   

5.
The effects of climate and fishing on marine ecosystems have usually been studied separately, but their interactions make ecosystem dynamics difficult to understand and predict. Of particular interest to management, the potential synergism or antagonism between fishing pressure and climate forcing is analysed in this paper, using an end-to-end ecosystem model of the southern Benguela ecosystem, built from coupling hydrodynamic, biogeochemical and multispecies fish models (ROMS-N2P2Z2D2-OSMOSE). Scenarios of different intensities of upwelling-favourable wind stress combined with scenarios of fishing top-predator fish were tested. Analyses of isolated drivers show that the bottom-up effect of the climate forcing propagates up the food chain whereas the top-down effect of fishing cascades down to zooplankton in unfavourable environmental conditions but dampens before it reaches phytoplankton. When considering both climate and fishing drivers together, it appears that top-down control dominates the link between top-predator fish and forage fish, whereas interactions between the lower trophic levels are dominated by bottom-up control. The forage fish functional group appears to be a central component of this ecosystem, being the meeting point of two opposite trophic controls. The set of combined scenarios shows that fishing pressure and upwelling-favourable wind stress have mostly dampened effects on fish populations, compared to predictions from the separate effects of the stressors. Dampened effects result in biomass accumulation at the top predator fish level but a depletion of biomass at the forage fish level. This should draw our attention to the evolution of this functional group, which appears as both structurally important in the trophic functioning of the ecosystem, and very sensitive to climate and fishing pressures. In particular, diagnoses considering fishing pressure only might be more optimistic than those that consider combined effects of fishing and environmental variability.  相似文献   

6.
Ecosystem modelling is increasingly used to explore ecosystem-level effects of changing environmental conditions and management actions. For coral reefs there has been increasing interest in recent decades in the use of ecosystem models for evaluating the effects of fishing and the efficacy of marine protected areas. However, ecosystem models that integrate physical forcings, biogeochemical and ecological dynamics, and human induced perturbations are still underdeveloped. We applied an ecosystem model (Atlantis) to the coral reef ecosystem of Guam using a suite of management scenarios prioritized in consultation with local resource managers to review the effects of each scenario on performance measures related to the ecosystem, the reef-fish fishery (e.g., fish landings) and coral habitat. Comparing tradeoffs across the selected scenarios showed that each scenario performed best for at least one of the selected performance indicators. The integrated ‘full regulation’ scenario outperformed other scenarios with four out of the six performance metrics at the cost of reef-fish landings. This model application quantifies the socio-ecological costs and benefits of alternative management scenarios. When the effects of climate change were taken into account, several scenarios performed equally well, but none prevented a collapse in coral biomass over the next few decades assuming a business-as-usual greenhouse gas emissions scenario.  相似文献   

7.
The ability to understand and ultimately predict ecosystem response to multiple pressures is paramount to successfully implement ecosystem-based management. Thresholds shifts and nonlinear patterns in ecosystem responses can be used to determine reference points that identify levels of a pressure that may drastically alter ecosystem status, which can inform management action. However, quantifying ecosystem reference points has proven elusive due in large part to the multi-dimensional nature of both ecosystem pressures and ecosystem responses. We used ecological indicators, synthetic measures of ecosystem status and functioning, to enumerate important ecosystem attributes and to reduce the complexity of the Northeast Shelf Large Marine Ecosystem (NES LME). Random forests were used to quantify the importance of four environmental and four anthropogenic pressure variables to the value of ecological indicators, and to quantify shifts in aggregate ecological indicator response along pressure gradients. Anthropogenic pressure variables were critical defining features and were able to predict an average of 8-13% (up to 25-66% for individual ecological indicators) of the variation in ecological indicator values, whereas environmental pressures were able to predict an average of 1-5 % (up to 9-26% for individual ecological indicators) of ecological indicator variation. Each pressure variable predicted a different suite of ecological indicator’s variation and the shapes of ecological indicator responses along pressure gradients were generally nonlinear. Threshold shifts in ecosystem response to exploitation, the most important pressure variable, occurred when commercial landings were 20 and 60% of total surveyed biomass. Although present, threshold shifts in ecosystem response to environmental pressures were much less important, which suggests that anthropogenic pressures have significantly altered the ecosystem structure and functioning of the NES LME. Gradient response curves provide ecologically informed transformations of pressure variables to explain patterns of ecosystem structure and functioning. By concurrently identifying thresholds for a suite of ecological indicator responses to multiple pressures, we demonstrate that ecosystem reference points can be evaluated and used to support ecosystem-based management.  相似文献   

8.
In the present study, we tested five trophic indicators and we demonstrated their usefulness to assess the environmental status of marine ecosystems and to implement an ecosystem approach to fisheries management (EAFM). The tested indicators include the slope of the biomass spectrum, the mean trophic level (MTL), the marine trophic index (MTI) and two newly developed indicators, the high trophic level indicator (HTI) and the apex predator indicator (API). Indicators are compared between current state and potential reference situations, using as case studies: the Celtic Sea/Bay of Biscay, North Sea and English Channel ecosystems. Trophic spectra are obtained from Ecopath models while reference situations are estimated, simulating with EcoTroph and Ecosim different fishing pressures including three candidate scenarios for an EAFM. Inter-ecosystems assessments are done using Ecopath models, simulations outputs and scientific surveys data to assess the current states of the studied ecosystems, contrast the reference situations and analyze the responses of all indicators. Sensitivity analyses are also conducted on the main simulation parameters to test the robustness of the chosen indicators. Ecosystems specific targets for EAFM are proposed for the five trophic indicators estimated from whole-ecosystem models, while in the Celtic Sea/Bay of Biscay ecosystem targets are proposed for the MTL (=3.85) and HTI (48%) estimated from standard bottom-trawl surveys. The HTI is proposed to be relevant for survey data and the API is recommended using whole-ecosystem models. We conclude that HTI and API show trends in ecosystems health better than MTI.  相似文献   

9.
The trophic role of snappers was evaluated on the continental shelves of the south-western Gulf of Mexico and the Yucatan in the south-eastern Gulf of Mexico. Mass-balanced, steady-state trophic models of the two ecosystems were constructed with Ecopath and perturbations were simulated in the ecosystems with Ecosim by increasing fishing mortality. Impacts were measured by changes in biomass of snappers and other groups, and in some indices of stability: persistence, recovery time and resilience. The snapper populations differed between ecosystems. The western Gulf of Mexico system appeared more complex and more stable than the Continental Shelf of Yucatan. Although overall stability indices between ecosystem suggested a similar structure and function, there were clear differences at a group level. Correlation of stability attributes between groups suggested differences in the role of snappers between the ecosystems suggesting that each stock should be managed individually.  相似文献   

10.
Although seagrass-based indicators are widely used to assess coastal ecosystem status, there is little universality in their application. Matching the plethora of available indicators to specific management objectives requires a detailed knowledge of their species-specific sensitivities and their response time to environmental stressors. We conducted an extensive survey of experimental studies to determine the sensitivity and response time of seagrass indicators to ecosystem degradation and recovery. We identified seagrass size and indicator type (i.e. level of biological organization of the measure) as the main factors affecting indicator sensitivity and response time to degradation and recovery. While structural and demographic parameters (e.g. shoot density, biomass) show a high and unspecific sensitivity, biochemical/physiological indicators present more stressor-specific responses and are the most sensitive detecting early phases of environmental improvement. Based on these results we present a simple decision tree to assist ecosystem managers to match adequate and reliable indicators to specific management goals.  相似文献   

11.
Trophic interactions and community structure in the upwelling system off Central Chile (USCCh) (33-39°S) are analyzed using biological and ecological data concerning the main trophic groups and the Ecopath with Ecosim software version 5.0 (EwE). The model encompasses the fisheries, cetaceans, sea lion, marine birds, cephalopods, large-sized pelagic fish (sword fish), medium-sized pelagic fish (horse mackerel, hoki), small-sized pelagic fish (anchovy, common sardine), demersal fish (e.g. Chilean hake, black conger-eel), benthic invertebrates (red squat lobster, yellow squat lobster) and other groups such as zooplankton, phytoplankton and detritus. Input data was gathered from published and unpublished reports and our own estimates. Trophic interactions, system indicators and food web attributes are calculated using network analysis routines included in EwE. Results indicate that trophic groups are aligned around four trophic levels (TL) with phytoplankton and detritus at the TL=1, while large-sized pelagic fish and cetaceans are top predators (TL>4.0). The fishery is located at an intermediate to low trophic level (TL=2.97), removing about 15% of the calculated system primary production. The pelagic realm dominates the system, with medium-sized pelagic fish as the main fish component in biomass, while small-sized pelagic fish dominate total landings. Chilean hake is by far the main demersal fish component in both, biomass and yield. Predators consume the greater part of the production of the most important fishery resources, particularly juvenile stages of Chilean hake. Consequently, mortality by predation is an important component of total mortality. However, fishery also removes a large fraction of common sardine, anchovy, horse mackerel, and Chilean hake. The analysis of direct and indirect trophic impacts reveals that Chilean hake is a highly cannibalistic species. Chilean hake is also an important predator on anchovy, common sardine, benthic invertebrates, and demersal fish. The fisheries heavily impact on Chilean hake, common sardine, anchovy, and horse mackerel. Total system biomass (B=476 t km−2 year−1) and throughput (T=89454 t km−2 year−1) estimated in the USCCh model are in accordance with models of comparable systems. Considering system attributes derived from network analysis, the USCCh can be characterized as an immature system, with short trophic chains and low trophic transfer efficiency. Finally, we suggest that trophic interactions should be considered in stock assessment and management programs in USCCh. In addition, future research programs should be carried out in order to understand the ecosystem effects of fishing and trophic control in this highly productive food web.  相似文献   

12.
Marine Protected Areas (MPAs) offer a unique opportunity to test the assumption that fishing pressure affects some trophic groups more than others. Removal of larger predators through fishing is often suggested to have positive flow-on effects for some lower trophic groups, in which case protection from fishing should result in suppression of lower trophic groups as predator populations recover. We tested this by assessing differences in the trophic structure of reef fish communities associated with 79 MPAs and open-access sites worldwide, using a standardised quantitative dataset on reef fish community structure. The biomass of all major trophic groups (higher carnivores, benthic carnivores, planktivores and herbivores) was significantly greater (by 40% - 200%) in effective no-take MPAs relative to fished open-access areas. This effect was most pronounced for individuals in large size classes, but with no size class of any trophic group showing signs of depressed biomass in MPAs, as predicted from higher predator abundance. Thus, greater biomass in effective MPAs implies that exploitation on shallow rocky and coral reefs negatively affects biomass of all fish trophic groups and size classes. These direct effects of fishing on trophic structure appear stronger than any top down effects on lower trophic levels that would be imposed by intact predator populations. We propose that exploitation affects fish assemblages at all trophic levels, and that local ecosystem function is generally modified by fishing.  相似文献   

13.

Purpose

Overfishing is a relevant issue to include in all life cycle assessments (LCAs) involving wild caught fish, as overfishing of fish stocks clearly targets the LCA safeguard objects of natural resources and natural ecosystems. Yet no robust method for assessing overfishing has been available. We propose lost potential yield (LPY) as a midpoint impact category to quantify overfishing, comparing the outcome of current with target fisheries management. This category primarily reflects the impact on biotic resource availability, but also serves as a proxy for ecosystem impacts within each stock.

Methods

LPY represents average lost catches owing to ongoing overfishing, assessed by simplified biomass projections covering different fishing mortality scenarios. It is based on the maximum sustainable yield concept and complemented by two alternative methods, overfishing though fishing mortality (OF) and overfishedness of biomass (OB), that are less data-demanding.

Results and discussion

Characterization factors are provided for 31 European commercial fish stocks in 2010, representing 74 % of European and 7 % of global landings. However, large spatial and temporal variations were observed, requiring novel approaches for the LCA practitioner. The methodology is considered compliant with the International Reference Life Cycle Data System (ILCD) standard in most relevant aspects, although harmonization through normalization and endpoint characterization is only briefly discussed.

Conclusions

Seafood LCAs including any of the three approaches can be a powerful communicative tool for the food industry, seafood certification programmes, and for fisheries management.  相似文献   

14.
The performance of 20 fishery production systems off the state of Pará in the northern region of Brazil was compared using the 'RAPFISH' methodology, with 57 identified attributes distributed among five evaluation fields: economics, sociology, ecology, technology and politics. The results indicated the existence of three large groups of fishery sectors: (i) industrial (red snapper with traps, the Laulao catfish, shrimp trawl) and semi-industrial (lobster) fisheries; (ii) large-scale artisanal fisheries (acoupa weakfish, red snapper with lines, king mackerel, Spanish mackerel, coco sea catfish); and (iii) small-scale artisanal fisheries (shellfish, crab, estuarine longline, fish traps, etc.). While the industrial and large-scale artisanal systems demonstrated greater sustainability from an economic and social standpoint, small-scale fisheries appeared to be more ecologically sustainable. Based on the results, a reduction in industrial fishing efforts is recommended, along with the establishment of licensing quotas for fishing vessels, as well as an increased investment in research on proper guidance and management of the semi-industrial and large-scale artisanal fisheries sectors. For small-scale artisanal fisheries, economic incentives are suggested for the aggregate value of the products and to assist fishers in the development of an appropriate social organization. Finally, it is believed that a greater stakeholder involvement in the decision-making process would improve management actions for all modalities.  相似文献   

15.
The study aimed to describe and assess indicators that can potentially contribute to the development of Ecosystem-based Approach to Fisheries Management (EAFM) of prawn stocks in the Malindi-Ungwana Bay, the most productive coastal ecosystem in Kenya. A comprehensive EAFM is required to holistically manage fisheries resources and their associated habitats. The study assessed ecological indicators based on objectives of harvest sustainability and biodiversity conservation. Analyses were performed on data sourced from the State Department of Fisheries, and research databases. Trends in historical landings (1985–2010) of penaeid shrimps from the Malindi-Ungwana Bay were analyzed using LOWESS. Number-size spectra analysis was used to assess the exploitation status of the shrimps, while biomass-trophic level spectra (BTLS) analysis was applied as a potential tool for analyzing multifactor effects on the bay. IndiSeas-based ecosystem indicators were used to assess impact of the prawn trawl fishery on biodiversity of the bay. Results indicate long-term series with two peaks (1997 and 2000) in historical landings of penaeid shrimps and a monotonous decline in catches during 2002–2010. Slopes of number-size spectra suggested increased fishing mortality with time (2008–2012), while patterns of intercepts indicated a general increase in fisheries productivity of the bay. BTLS analysis using demersal fish survey and fish by-catch data suggested reduced levels of biomass across trophic levels and a temporal decline in trophic levels of fish species caught, however, the short time span constrains robust conclusions from the BTLS analysis. Biodiversity and conservation based indicators (e.g. fish sizes, trophic levels and proportion of predators in catches) adopted from the IndiSeas program showed the Malindi-Ungwana Bay to be ecologically degraded. There is need to initiate long-term monitoring programs to strengthen temporal scale of analysis of the datasets and to support use of ecological indicators for resource management and development of an EAFM in data-poor WIO countries.  相似文献   

16.
Phenology is an important variable affecting the annual net ecosystem production (NEP) of terrestrial ecosystems. A new phenological indicator was proposed based on the ratio of respiration season length and growing season length (respiration–growth length ratio, RGR). Validation of this new phenological indicator was conducted using continuous flux measurements at contrasting boreal deciduous and evergreen forests in Canada. Analyses based on yearly anomalies of both annual NEP and phenological indicators indicated that the RGR can explain more proportion of interannual NEP variability compared to existing phenological metrics, including the carbon uptake period and the autumn lag. A multivariate regression model was used to predict the respiration–growth length ratio anomaly using anomalies of spring air temperature, autumn radiation and soil water content (SWC), which serves as a prerequisite for this indicator being scaled up for regional applications where flux data were unavailable. By normalization growing season length, interannual NEP showed comparable sensitivity to RGR variations of different plant functional types, which is a great advantage over other phenological indicators. The high potential of RGR in explaining interannual NEP variability may highlight the importance of respiration process in controlling annual NEP, which has probably been overlooked or underestimated in existing phenological studies. The comparable sensitivity of RGR to annual NEP observed at different plant functional types would favor its application in tracking interannual variability of NEP regionally and complementary to existing indices to promote our understanding of carbon sequestration with future climate change.  相似文献   

17.
Fisheries have an enormous economic importance, but reconciling their socio‐economic features with the conservation and sustainability of marine ecosystems presents major challenges. Bycatch mortality from fisheries is clearly among the most serious global threats for marine ecosystems, affecting a wide range of top predators. Recent estimates report ca. 200,000 seabirds killed annually by bycatch in European waters. However, there is an urgent need to rigorously estimate actual mortality rates and quantify effects of bycatch on populations. The Mediterranean Sea is one of the most impacted regions. Here, we estimate for the first time both bycatch mortality rates and their population‐level effects on three endemic and vulnerable Mediterranean taxa: Scopoli's shearwater, Mediterranean shag, and Audouin's gull, that die in different types of fishing gears: longlines, gillnets and sport trolling, respectively. We use multi‐event capture–recapture modelling to estimate crucial demographic parameters, including the probabilities of dying in different fishing gears. We then build stochastic demography models to forecast the viability of the populations under different management scenarios. Longline bycatch was particularly severe for adults of Scopoli's shearwaters and Audouin's gulls (ca. 28% and 23% of total mortality, respectively) and also for immature gulls (ca. 90% of mortality). Gillnets had a lower impact, but were still responsible for ca. 9% of juvenile mortality on shags, whereas sport trolling only slightly influenced total mortality in gulls. Bycatch mortality has high population‐level impacts in all three species, with shearwaters having the highest extinction risk under current mortality rates. Different life‐history traits and compensatory demographic mechanisms between the three species are probably influencing the different bycatch impact: for shearwaters, urgent conservation actions are required to ensure the viability of their populations. Results will be very useful for guiding future seabird conservation policies and moving towards an ecosystem‐based approach to sustainable fisheries management.  相似文献   

18.
The value of estuarine habitats is often measured by their contribution to the adult component of the population, but a broader suite of attributes can also contribute to nursery function. Identifying and quantifying these elements allows habitat repair to be effectively targeted toward improving ecosystem function for desirable species. We present a study that incorporates stable isotopes and quantitative sampling to investigate the relative importance of different estuarine areas for juveniles of exploited prawn species within the context of habitat rehabilitation, and the potential drivers of these relationships. Eastern King Prawn (Penaeus [Melicertus] plebejus) and School Prawn (Metapenaeus macleayi) were studied for two years in the lower Hunter River estuary, on the temperate east coast of Australia. The higher salinity areas near the lower end of the estuary were most important for Eastern King Prawn, and marsh systems in the lower estuary were only important for the species where there was good connectivity with oceanic water. Areas along the estuary were important for juvenile School Prawn, especially marsh habitats, and relative abundance tended to increase with increasing distance along the estuary. Designation of effective juvenile habitat for School Prawn may have been affected by high fishing mortality in fished areas, but this requires further investigation. Salinity, depth, turbidity and distance along the estuary were all important indicators of prawn distribution. The implications of these patterns for current and future habitat rehabilitation in temperate Australia are discussed.  相似文献   

19.
Reference points can help implement an ecosystem approach to fisheries management (EAF), by establishing precautionary removal limits for nontarget species and target species of ecological importance. PBR (Potential Biological Removal), developed under the U.S. Marine Mammal Protection Act (MMPA), is a limit for direct mortality for marine mammals, but it does not account for indirect effects of fishing due to prey depletion. I propose a generalization of PBR (called PBR*) to account for plausible changes in marine mammal carrying capacity (ΔK) from prey biomass decline relative to two example benchmarks: SSBMSY (maximum sustainable yield biomass for all known prey species) or SSBK (unfished prey biomass). PBR* can help identify when indirect fishing effects (alone, or combination with direct mortality estimates) may stymie MMPA objectives, and could inform catch limit estimates for target species that are also important as marine mammal prey. As a case study, I applied PBR* estimates to evaluate the possible combined direct + indirect effects of fishing on cetaceans in northeastern U.S. waters. Estimated distributions for ΔK were based on fish stock assessments and meta‐analysis of predator‐prey relationships from the mammalian literature. Based on this analysis, increased risk of marine mammal depletion due to indirect fishing effects was not evident, although this result must be interpreted cautiously given our limited understanding of cetacean diets and marine trophic dynamics. This study is intended to illustrate a possible practical approach for incorporating indirect fisheries impacts on marine mammals into a comprehensive management framework, and it raises several scientific and policy issues that merit further investigation.  相似文献   

20.
This study explored the potential for otolith geochemistry in snapper (Family: Lutjanidae) to identify residency in juvenile nursery habitats with distinctive carbon isotope values. Conventional bulk otolith and muscle stable isotope analyses (SIA) and essential amino acid (AA) SIA were conducted on snapper collected from seagrass beds, mangroves, and coral reefs in the Red Sea, Caribbean Sea, and Pacific coast of Panama. While bulk stable isotope values in otoliths showed regional differences, they failed to distinguish nursery residence on local scales. Essential AA δ13C values in otoliths, on the other hand, varied as a function of habitat type and provided a better tracer of residence in different juvenile nursery habitats than conventional bulk otolith SIA alone. A strong linear relationship was found between paired otolith and muscle essential AA δ13C values regardless of species, geographic region, or habitat type, indicating that otolith AAs recorded the same dietary information as muscle AAs. Juvenile snapper in the Red Sea sheltered in mangroves but fed in seagrass beds, while snapper from the Caribbean Sea and Pacific coast of Panama showed greater reliance on mangrove-derived carbon. Furthermore, compound-specific SIA revealed that microbially recycled detrital carbon, not water-column-based new phytoplankton carbon, was the primary carbon source supporting snapper production on coastal reefs of the Red Sea. This study presented robust tracers of juvenile nursery residence that will be crucial for reconstructing ontogenetic migration patterns of fishes among coastal wetlands and coral reefs. This information is key to determining the importance of nursery habitats to coral reef fish populations and will provide valuable scientific support for the design of networked marine-protected areas.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号