首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Parasitic dinoflagellates of the genus Amoebophrya infect free-living dinoflagellates, some of which can cause harmful algal blooms (HABs). High prevalence of Amoebophrya spp. has been linked to the decline of some HABs in marine systems. The objective of this study was to evaluate the impact of Amoebophrya spp. on the dynamics of dinoflagellate blooms in Salt Pond (MA, USA), particularly the harmful species Alexandrium fundyense. The abundance of Amoebophrya life stages was estimated 3–7 days per week through the full duration of an annual A. fundyense bloom using fluorescence in situ hybridization coupled with tyramide signal amplification (FISH- TSA). More than 20 potential hosts were recorded including Dinophysis spp., Protoperidinium spp. and Gonyaulax spp., but the only dinoflagellate cells infected by Amoebophrya spp. during the sampling period were A. fundyense. Maximum A. fundyense concentration co-occurred with an increase of infected hosts, followed by a massive release of Amoebophrya dinospores in the water column. On average, Amoebophrya spp. infected and killed ∼30% of the A. fundyense population per day in the end phase of the bloom. The decline of the host A. fundyense population coincided with a dramatic life-cycle transition from vegetative division to sexual fusion. This transition occurred after maximum infected host concentrations and before peak infection percentages were observed, suggesting that most A. fundyense escaped parasite infection through sexual fusion. The results of this work highlight the importance of high frequency sampling of both parasite and host populations to accurately assess the impact of parasites on natural plankton assemblages.  相似文献   

2.
The population dynamics of potentially harmful phytoplankton in the semi-closed, coastal Bizerte Lagoon, Tunisia, in the south-western Mediterranean, were examined from November 2007 to February 2009 at six sampling stations, three situated in areas of mussel and oyster farming. The harmful species monitored included the potential producers of amnesic shellfish poisoning (Pseudo-nitzschia spp.), paralytic shellfish poisoning (Alexandrium spp.), diarrheic shellfish poisoning (Dinophysis spp. and Prorocentrum spp.), ichthyotoxins (Cochlodinium polykrikoides, Akashiwo sanguinea and Karenia mikimotoi), yessotoxins (Gonyaulax spinifera) and the discolouration of water (Neoceratium lineatum and Protoperidinium sp.). These were numerically dominated by potentially toxic species of the diatom genus Pseudo-nitzschia, which were present year-round at all stations. Prorocentrum spp., Dinophysis spp. and Neoceratium lineatum were the most abundant and recurrent harmful dinoflagellates, exhibiting their highest densities at the shellfish farming stations. Alexandrium spp. bloomed only on one occasion, reaching its highest densities at a shellfish farming station. Canonical correspondence analyses revealed significant relationships between the harmful phytoplankton species monitored and the environmental conditions. The widespread distribution of harmful phytoplankton in Bizerte Lagoon, with the permanent presence of Pseudo-nitzschia spp. and the high frequency of dinoflagellate blooms in the shellfish areas, suggests a potential risk of shellfish poisoning events in the region.  相似文献   

3.
While several studies have suggested that bacterium-phytoplankton interactions have the potential to dramatically influence harmful algal bloom dynamics, little is known about how bacteria and phytoplankton communities interact at the species composition level. The objective of the current study was to determine whether there are specific associations between diverse phytoplankton and the bacteria that co-occur with them. We determined the phylogenetic diversity of bacterial assemblages associated with 10 Alexandrium strains and representatives of the major taxonomic groups of phytoplankton in the Gulf of Maine. For this analysis we chose xenic phytoplankton cultures that (i) represented a broad taxonomic range, (ii) represented a broad geographic range for Alexandrium spp. isolates, (iii) grew under similar cultivation conditions, (iv) had a minimal length of time since the original isolation, and (v) had been isolated from a vegetative phytoplankton cell. 16S rRNA gene fragments of most Bacteria were amplified from DNA extracted from cultures and were analyzed by denaturing gradient gel electrophoresis and sequencing. A greater number of bacterial species were shared by different Alexandrium cultures, regardless of the geographic origin, than by Alexandrium species and nontoxic phytoplankton from the Gulf of Maine. In particular, members of the Roseobacter clade showed a higher degree of association with Alexandrium than with other bacterial groups, and many sequences matched sequences reported to be associated with other toxic dinoflagellates. These results provide evidence for specificity in bacterium-phytoplankton associations.  相似文献   

4.
The parasitic dinoflagellates in the genus of Amoebophrya can infect broad ranges of planktonic dinoflagellates, and transform algal biomass into organic matter that can be recycled within the planktonic community. The ecological significance of Amoebophrya spp. during harmful algal bloom (HAB) events was gradually recognized along with revelation of its host specificity and diversity in picoplankton communities. The eutrophicated coastal waters of China are frequently affected by HABs, particularly in Changjiang (Yangtze River) estuary and the adjacent East China Sea; while, no research has been conducted to explore the ecological roles of parasitism during HAB events and the related dinoflagellate bloom dynamics. For the first time, we confirmed the presence of Amoebophrya infections in the planktonic community of this region; six species of dinoflagellates were infected, including Ceratium tripos, Scrippsiella trochoidea, Gonyaulax spinifera, Gymnodinium sp., Gonyaulax sp. and an Alexandrium sp. Molecular sequences retrieved from environmental water samples revealed high genetic diversity of Amoebophryidae-like organisms in the water column. Amoebophrya-infected dinoflagellates were only observed in high salinity (>20) stations suggesting that salinity may be a factor limiting the distribution of Amoebophyra infections in natural environment. Whereas, no evidence of Amoebophrya infection was observed in the bloom-forming species Karenia mikimotoi, suggesting that K. mikimotoi in this region was likely free of Amoebophridae infection.  相似文献   

5.
Members of the Amoebophrya ceratii complex are endoparasitic dinoflagellates that parasitize a number of their dinoflagellate relatives, including toxic and/or harmful algal bloom-forming species. Despite many studies on the occurrence, prevalence, biology and molecular phylogeny of Amoebophrya spp., little attention has been given to toxin dynamics of host population following parasitism. Using Amoebophrya sp. infecting the paralytic shellfish toxin (PSP)-producing dinoflagellate Alexandrium fundyense, we addressed the following questions: (1) does parasitism by Amoebophrya sp. alter toxin content and toxin profiles of the dinoflagellate A. fundyense over the infection cycle? and (2) do parasite dinospores produced at the end of the infection cycle retain host toxins and thus potentially act as a vector to convey PSP toxin through the marine microbial food-web? Toxin time-course experiments showed that the PSP toxin contents did not vary significantly over the infection cycle, but mean toxin content for infected cultures was significantly higher than that for uninfected cultures. Host toxins were not detected in the free-living, dinospore stage of the parasite. Therefore, our results indicate that Amoebophrya sp. does not function as a vector for transferring PSP toxins to higher trophic levels. Rather, Amoebophrya infections appear to play an important role in maintaining healthy ecosystems by transforming potent toxins-producing dinoflagellates into non-toxic dinospores, representing “edible food” for consumers of the marine microbial food-web during toxic algal bloom event.  相似文献   

6.
Amoebophrya is an obligate endoparasite infecting wide ranges of marine organisms in coastal and oceanic waters. The parasitoid has received growing attention, due to its enormous genetic diversity in seawaters and suppressive effects on the growth of host dinoflagellates. Harmful algal blooms (HABs) caused by planktonic dinoflagellates have significantly impacted the coastal environment and mariculture in China. Series of studies have been conducted to reveal the occurrence mechanism and negative impacts of HABs in past decades, while the factors contributing to the recession of HABs have rarely been studied. Thus, the host range, prevalence and diversity of Amoebophrya along the coastline of China were systemically investigated to facilitate future studies on the ecological roles of the parasitoid. Overall, 10 dinoflagellate taxa were found to be infected by Amoebophrya spp., and the prevalence ranged from 0.03% to 2.50%. Sequencing of environmental genomic DNA revealed substantial diversity and significant regional heterogeneity of Amoebophryidae sequences derived from 12 coastal bays, while no significant correlation was observed among geographical locations. Phylogenetic analyses of 18S rDNA sequences derived from individual Amoebophrya-infected cells indicated the host divergence of the parasitoid and lend credence to the multiple species assumption. The results further revealed the broad host range, wide distribution and substantial diversity of Amoebophrya in the coastal waters of China, that should not be neglected in future studies on the succession of HABs, as well as the ecological significance of this parasitoid in marine microbial food webs.  相似文献   

7.
Red tides caused by the marine dinoflagellate Cochlodinium polykrikoides Margalef pose significant environmental problems worldwide. Recently, the existence of severe blooms attributable to a single Cochlodinium Schütt species has been questioned by many researchers. Herein we investigated the dinoflagellate composition of harmful algal blooms (HABs) attributed to C. polykrikoides in Korean coastal waters at nine different stations (St.). The component species of Cochlodinium blooms were examined by using microscopic and gene-cloning methods. In the nine study areas, C. polykrikoides was the predominant species of HABs in St. 2, 4, 7, and St. 9. Based on the morphological identification, the bloom was initially thought to be caused only by C. polykrikoides; however, we detected additional bloom-forming dinoflagellates (Polykrikos schwartzii Bütschli and Polykrikos kofoidii Chatton), and diatoms (Pseudo-nitzschia americana (Hasle) Fryxell) along with C. polykrikoides. The parasitic dinoflagellates Amoebophrya Koeppen and Euduboscquella Coats, Bachvaroff & Delwiche were found to be co-located with Cochlodinium in our study, and for the first time, Cochlodinium fulvescens Iwataki, Kawami & Matsuoka was detected in Korea (west coast). These results suggest co-existence of multiple dinoflagellates in bloom populations of Cochlodinium and describe the composition of other dinoflagellate blooms (e.g., Polykrikos spp.) in Korean coastal regions. This co-occurrence may be considered during efforts to monitor and control HABs.  相似文献   

8.
Characterizing ecological relationships between viruses, bacteria and phytoplankton in the ocean is critical to understanding the ecosystem; however, these relationships are infrequently investigated together. To understand the dynamics of microbial communities and environmental factors in harmful algal blooms (HABs), we examined the environmental factors and microbial communities during Akashiwo sanguinea HABs in the Jangmok coastal waters of South Korea by metagenomics. Specific bacterial species showed complex synergistic and antagonistic relationships with the A. sanguinea bloom. The endoparasitic dinoflagellate Amoebophrya sp. 1 controlled the bloom dynamics and correlated with HAB decline. Among nucleocytoplasmic large DNA viruses (NCLDVs), two Pandoraviruses and six Phycodnaviruses were strongly and positively correlated with the HABs. Operational taxonomic units of microbial communities and environmental factors associated with A. sanguinea were visualized by network analysis: A. sanguineaAmoebophrya sp. 1 (r = .59, time lag: 2 days) and A. sanguineaEctocarpus siliculosus virus 1 in Phycodnaviridae (0.50, 4 days) relationships showed close associations. The relationship between A. sanguinea and dissolved inorganic phosphorus relationship also showed a very close correlation (0.74, 0 day). Microbial communities and the environment changed dynamically during the A. sanguinea bloom, and the rapid turnover of microorganisms responded to ecological interactions. A. sanguinea bloom dramatically changes the environments by exuding dissolved carbohydrates via autotrophic processes, followed by changes in microbial communities involving host‐specific viruses, bacteria and parasitoids. Thus, the microbial communities in HAB are composed of various organisms that interact in a complex manner.  相似文献   

9.
《Harmful algae》2002,1(4):333-341
An ingestion experiment was carried out in Rı́a de Pontevedra (Spain) with the copepod Temora longicornis in order to determine ingestion rates of the DSP toxin-producers, Dinophysis spp. (Dinophyceae), and the excretion rate of Dinophysis spp. cells within the faecal pellets. Ingestion rate was a function of dinoflagellate abundance and did not vary with either the amount, or the composition of the co-occurring phytoplankton species in the food suspension. Faecal pellet production increased at higher food concentrations. Intact Dinophysis spp. cells representing 34.4% of the total Dinophysis cells ingested by the copepods were found within the pellets. T. longicornis was the only dominant copepod species in the area that fed on Dinophysis spp., thus the pellets produced by T. longicornis were the main source of copepod “toxic” pellets in the media during blooms of Dinophysis spp. These “toxic” pellets might contribute to the maintenance of the toxic algal blooms, if the cells inside the pellets remain viable, can spread the potential toxicity of the toxic dinoflagellates throughout the pelagic food web due to coprophagy, and/or be an important toxic vector into the benthic food web. However, during a Dinophysis spp. bloom, the percentage of cells excreted daily within the pellets was lower than 1% of the total dinoflagellate population and, moreover, copepod faecal pellets represent a small fraction of the sinking material in this area. Although it was not possible to measure the amount of toxins in the pellets, we concluded that copepod faecal pellets do not have an important role in the transport of DSP toxins through the food web in this area.  相似文献   

10.
The endoparasitic dinoflagellate Amoebophrya ceratii (Koeppen) Cachon uses a number of its free‐living relatives as hosts and may represent a species complex composed of several host‐specific parasites. Two thecate host–parasite systems [Amoebophrya spp. ex Alexandrium affine (Inoue and Fukuyo) Balech and ex Gonyaulax polygramma Stein], were used to test the hypothesis that two strains of Amoebophrya have a high degree of host specificity. To test this hypothesis, a series of cross‐infection experiments were conducted, with 10 thecate and three athecate dinoflagellate species as potential hosts. Surprisingly, the two strains of Amoebophrya lacked host specificity and had wider host ranges than previously recognized. Among the host species tested, Amoebophrya sp. ex Alexandrium affine was capable of infecting only species of genus Alexandrium (Alexandrium affine, Alexandrium catenella, and Alexandrium tamarense), while the parasite from Gonyaulax polygramma infected species covering five genera (Alexandrium, Gonyaulax, Prorocentrum, Heterocapsa, and Scripsiella). In the context of previous reports, these results suggest that host specificity of Amoebophrya strains varies from extremely species‐specific to rather unspecific, with specificity being stronger for strains isolated from athecate hosts. Information on host specificity of Amoebophrya strains provided here will be helpful in assessing the possibility of using these parasites as biological control agents for harmful algal blooms, as well as in defining species of Amoebophrya in the future.  相似文献   

11.
The occurrence of harmful algal blooms (HABs) throughout the world has increased and poses a large threat to human health, fishery resources and tourism industries. The genus Alexandrium includes a number of toxic species associated with HABs. Therefore, it is very important to rapidly detect and monitor the harmful algae, such as Alexandrium genus. In this study, a standard curve of plasmid containing 18S rDNA-28S rDNA region from Alexandrium catenella was constructed and 5.8S rDNA sequence served as the primer of the real-time PCR. Cultured A. catenella, Alexandrium affine, Alexandrium lusitanicum and Alexandrium minutum samples were analyzed by real-time PCR using the same set of primers simultaneously. Using microscopy cells counts, 5.8S rDNA copies per cell and total DNA per cell were estimated. This assay method is promising for rapid detection of large number of Alexandrium samples.  相似文献   

12.
Amoebophrya is a marine parasite recently found to infect and kill bloom-forming dinoflagellates in the California Current System (CCS). However, it is unknown whether parasitism by Amoebophrya can control dinoflagellate blooms in major eastern boundary upwelling systems, such as the CCS. We quantified the abundance of a common bloom-forming species Akashiwo sanguinea and prevalence of its parasite (i.e., % infected cells) in surface water samples collected weekly from August 2005 to December 2008 at the Santa Cruz Wharf (SCW), Monterey Bay, CA. Additionally, we measured physical and chemical properties at the SCW and examined regional patterns of wind forcing and sea surface temperature. Relative abundance of the net phytoplankton species was also analyzed to discern whether or not parasitism influences net phytoplankton community composition. Epidemic infection outbreaks (>20% parasite prevalence in the host species) may have contributed to the end or prevented the occurrence of A. sanguinea blooms, whereas low parasite prevalence was associated with short-term (≤2 weeks) A. sanguinea blooms. The complete absence of parasitism in 2007 was associated with an extreme A. sanguinea bloom. Anomalously strong upwelling conditions were detected in 2007, suggesting that A. sanguinea was able to outgrow Amoebophrya and ‘escape’ parasitism. We conclude that parasitism can strongly influence dinoflagellate bloom dynamics in upwelling systems. Moreover, Amoebophrya may indirectly influence net phytoplankton species composition, as species that dominated the net phytoplankton and developed algal blooms never appeared to be infected.  相似文献   

13.
The study region in Sagres, SW Portugal, is subject to natural eutrophication of coastal waters by wind-driven upwelling, which stimulates high primary productivity facilitating the recent economic expansion of bivalve aquaculture in the region. However, this economic activity is threatened by harmful algal blooms (HAB) caused by the diatoms Pseudo-nitzschia spp., Dinophysis spp. and other HAB dinoflagellates, all of which can produce toxins, that can induce Amnesic Shellfish Poisoning (ASP), Diarrhetic Shellfish Poisoning (DSP) and Paralytic Shellfish Poisoning (PSP). This study couples traditional microscopy with 18S/28S rRNA microarray to improve the detection of HAB species and investigates the relation between HAB and the specific oceanographic conditions in the region. Good agreement was obtained between microscopy and microarray data for diatoms of genus Pseudo-nitzschia and dinoflagellates Dinophysis spp., Gymnodinium catenatum and raphidophyte Heterosigma akashiwo, with less effective results for Prorocentrum. Microarray provided detection of flagellates Prymnesium spp., Pseudochattonella spp., Chloromorum toxicum and the important HAB dinoflagellates of the genera Alexandrium and Azadinium, with the latter being one of the first records from the study region. Seasonality and upwelling induced by northerly winds were found to be the driving forces of HAB development, with Pseudo-nitzschia spp. causing the risk of ASP during spring and summer upwelling season, and dinoflagellates causing the risk of DSP and PSP during upwelling relaxation, mainly in summer and autumn. The findings were in agreement with the results from toxicity monitoring of shellfish by the Portuguese Institute for Sea and Atmosphere and confirm the suitability of the RNA microarray method for HABs detection and aquaculture management applications.  相似文献   

14.
Many freshwater phytoplankton species have the potential to form transient nuisance blooms that affect water quality and other aquatic biota. Heterotrophic bacteria can influence such blooms via nutrient regeneration but also via antagonism and other biotic interactions. We studied the composition of bacterial communities associated with three bloom-forming freshwater phytoplankton species, the diatom Aulacoseira granulata and the cyanobacteria Microcystis aeruginosa and Cylindrospermopsis raciborskii. Experimental cultures incubated with and without lake bacteria were sampled in three different growth phases and bacterial community composition was assessed by 454-Pyrosequencing of 16S rRNA gene amplicons. Betaproteobacteria were dominant in all cultures inoculated with lake bacteria, but decreased during the experiment. In contrast, Alphaproteobacteria, which made up the second most abundant class of bacteria, increased overall during the course of the experiment. Other bacterial classes responded in contrasting ways to the experimental incubations causing significantly different bacterial communities to develop in response to host phytoplankton species, growth phase and between attached and free-living fractions. Differences in bacterial community composition between cyanobacteria and diatom cultures were greater than between the two cyanobacteria. Despite the significance, major differences between phytoplankton cultures were in the proportion of the OTUs rather than in the absence or presence of specific taxa. Different phytoplankton species favoring different bacterial communities may have important consequences for the fate of organic matter in systems where these bloom forming species occur. The dynamics and development of transient blooms may also be affected as bacterial communities seem to influence phytoplankton species growth in contrasting ways.  相似文献   

15.
The past two decades have witnessed an expansion in the reported occurrences of harmful algal blooms (HABs) caused by the dinoflagellate Cochlodinium. Prior to 1990, blooms had been primarily reported in Southeast Asia, with South Korea alone reporting more than $100M USD in annual fisheries losses during the 1990s. Since then, time blooms have expanded across Asia, Europe, and North America, with recognition of multiple species and ribotypes that exhibit similar ecophysiological and harmful characteristics. Here, we summarize the current state of knowledge regarding taxonomy, phylogeny, detection, distribution, ecophysiology, life history, food web interactions, and mitigation of blooms formed by Cochlodinium. We review this recent expansion of Cochlodinium blooms and characterize the ecological strategies utilized by Cochlodinium populations to form HABs. Although Cochlodinium is comprised of more than 40 species, we focus primarily on the two HAB-forming species, C. polykrikoides and C. fulvescens, specifically describing their flexible nutrient acquisition strategies, inhibition of grazing by inducing rapid mortality in a diverse set of predators, and allelopathic inhibition of a broad range of competing phytoplankton. Finally, we summarize the available information on prevention, control, and mitigation strategies specific to this genus, and discuss pressing questions regarding this increasingly important HAB organism.  相似文献   

16.
As part of efforts to enhance the strategies employed to manage and mitigate algal blooms and their adverse effects, algicidal bacteria have shown promise as potential suppressors of these events. Nine strains of bacteria algicidal against the toxic dinoflagellate, Alexandrium tamarense, were isolated from the East Sea area, China. Sequence analysis of 16S rDNA showed that all the algicidal bacteria belonged to the γ-proteobacteria subclass and the genera Pseudoalteromonas (strain SP31 and SP44), Alteromonas (strain DH12 and DH46), Idiomarina (strain SP96), Vibrio (strain DH47 and DH51) and Halomonas (strain DH74 and DH77). To assess the algicidal mode of these algicidal bacteria, bacterial cells and the filtrate from bacterial cultures were inoculated into A. tamarense cultures, and fluorescein diacetate vital stain was applied to monitor the growth of the algal cells. The results showed that all the algicidal bacteria exhibited algicidal activity through an indirect attack since algicidal activity was only detected in cell free supernatants but not the bacterial cells. This is the first report of bacteria from the genus Idiomarina showing algicidal activity to the toxic dinoflagellate A. tamarense and these findings would increase our knowledge of bacterial–algal interactions and the role of bacteria during the population dynamics of HABs.  相似文献   

17.
Dinoflagellates are a major cause of harmful algal blooms (HABs), with consequences for coastal marine ecosystem functioning and services. Alexandrium fundyense (previously Alexandrium tamarense) is one of the most abundant and widespread toxigenic species in the temperate Northern and Southern Hemisphere and produces paralytic shellfish poisoning toxins as well as lytic allelochemical substances. These bioactive compounds may support the success of A. fundyense and its ability to form blooms. Here we investigate the impact of grazing on monoclonal and mixed set-ups of highly (Alex2) and moderately (Alex4) allelochemically active A. fundyense strains and a non-allelochemically active conspecific (Alex5) by the heterotrophic dinoflagellate Polykrikos kofoidii. While Alex4 and particularly Alex5 were strongly grazed by P. kofoidii when offered alone, both strains grew well in the mixed assemblages (Alex4 + Alex5 and Alex2 + Alex5). Hence, the allelochemical active strains facilitated growth of the non-active strain by protecting the population as a whole against grazing. Based on our results, we argue that facilitation among clonal lineages within a species may partly explain the high genotypic and phenotypic diversity of Alexandrium populations. Populations of Alexandrium may comprise multiple cooperative traits that act in concert with intraspecific facilitation, and hence promote the success of this notorious HAB species.  相似文献   

18.
Toxic microalgae have their own pathogens, and understanding the way in which these microalgae respond to antagonistic attacks may provide information about their capacity to persist during harmful algal bloom events. Here, we compared the effects of the physical presence of the parasite Amoebophrya sp. and exposure to waterborne cues from cultures infected with this parasite, on gene expression by the toxic dinoflagellates, Alexandrium fundyense. Compared with control samples, a total of 14 882 Alexandrium genes were differentially expressed over the whole‐parasite infection cycle at three different time points (0, 6 and 96 h). RNA sequencing analyses indicated that exposure to the parasite and parasitic waterborne cues produced significant changes in the expression levels of Alexandrium genes associated with specific metabolic pathways. The observed upregulation of genes associated with glycolysis, the tricarboxylic acid cycle, fatty acid β‐oxidation, oxidative phosphorylation and photosynthesis suggests that parasite infection increases the energy demand of the host. The observed upregulation of genes correlated with signal transduction indicates that Alexandrium could be sensitized by parasite attacks. This response might prime the defence of the host, as indicated by the increased expression of several genes associated with defence and stress. Our findings provide a molecular overview of the response of a dinoflagellate to parasite infection.  相似文献   

19.
Filtrates from the bacterium Shewanella sp. IRI-160 (termed IRI-160AA) have been shown to inhibit population growth and kill a variety of dinoflagellates grown in culture. Here we test the immediate efficacy of IRI-160AA in laboratory microcosms initiated from three natural dinoflagellate blooms (Prorocentrum minimum, Karlodinium veneficum and Gyrodinium instriatum). We measured target dinoflagellate abundance, total chlorophyll-a, photosystem II (PSII) photochemistry, and changes to the prokaryotic and eukaryotic community composition over 2–3 days of IRI-160AA incubation. Naked dinoflagellates were impacted more, while abundance of the thecate P. minimum was not affected. However, dinoflagellate growth inhibition was generally lower than that observed in uni-algal cultures, and took longer to occur. Eukaryotic community composition in IRI-160AA treated microcosms was significantly different from control incubations, and was driven predominantly by increases in heterotrophic protists (e.g. Euplotes sp. and Paraphysomonas sp.). Similarly, significant changes to the prokaryotic community structure were evident. Microcosms of G. instriatum with higher algicide concentrations indicated that algicidal activity was enhanced in a dose dependent manner. Furthermore, total ciliate abundance as well as a bactivorous chyrsophyte (Paraphysomonas sp.) increased in a dose dependent manner. Total diatom abundance increased at lower IRI-160AA concentrations, but increased less with increasing dose. Overall, the bio-activity of IRI-160AA on naturally occurring dinoflagellates in mixed natural microbial communities is encouraging from the applied perspective of using the active compound(s) in IRI-160AA as natural agent(s) to manage harmful dinoflagellate blooms.  相似文献   

20.
浮游植物的化感作用   总被引:7,自引:0,他引:7  
生物化感作用研究是近年来兴起的交叉学科,是化学生态学研究的重要领域。研究水域浮游植物化感作用对了解浮游植物之间、浮游植物与其他生物之间的相互作用及作用机理具有重要意义,对了解赤潮和水华的发生机制及其生态控制等具有非常重要的作用。综述了海洋和湖泊浮游植物化感作用和化感物质的内涵,讨论了水体浮游植物化感作用的特点、研究化感作用的基本方法、化感物质的种类以及影响化感物质作用的生物和非生物因素,详细介绍了浮游植物化感物质的作用机理以及逃避和拈抗化感作用的方式,同时对目前研究的热点问题及未来研究的方向做了简要概述。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号