首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Conidiation and lytic enzyme production by Trichoderma viride at different solids concentration of pre-treated municipal wastewater sludge was examined in a 15-L fermenter. The maximum conidia concentration (5.94 × 107 CFU mL−1 at 96 h) was obtained at 30 g L−1 suspended solids. The maximum lytic enzyme activities were achieved around 12–30 h of fermentation. Bioassay against a fungal phytopathogen, Fusarium sp. showed maximum activity in the sample drawn around 96 h of fermentation at 30 g L−1 suspended solids concentration. Entomotoxicity against spruce budworm larvae showed maximum value ≈17290 SBU μL−1 at 30 g L−1 suspended solids concentration at the end of fermentation (96 h). Plant bioassay showed dual action of T. viride, i.e., disease prevention and growth promotion. The rheological analyses of fermentation sludges showed the pseudoplastic behaviour. In order to maintain required dissolved oxygen concentration ≥30%, the agitation and aeration requirements significantly increased at 35 g L−1 compared to 30 and 25 g L−1. The oxygen uptake rate and volumetric oxygen mass transfer coefficient, kLa at 35 g L−1 did not increase in comparison to 30 g L−1 due to rheological complexity of the broth during fermentation. Thus, the successful fermentation operation of the biocontrol fungus T. viride is a rational indication of its potential for mass-scale production for agriculture and forest sector as a biocontrol agent.  相似文献   

2.
The effect of two commonly used fertilizers, DAP (diammonium phosphate) and urea was studied on the freshwater flagellate Euglena gracilis using the automatic biotest ECOTOX. NOEC and EC50 values for various parameters like motility, velocity, cell shape and gravitaxis were calculated. The NOEC and EC50 values obtained for DAP were much lower than those for urea; i.e. DAP showed a stronger inhibitory effect as compared to urea. The inhibition caused by DAP increased with increasing exposure time over 24 h but urea showed no augmentation with increasing exposure time. Application of DAP resulted in an increased pH and high concentrations of ammonia but urea did neither affect the pH nor affect the ammonia concentration. Recovery experiments in deionized water after urea application showed a reconstitution of motility after 72 h. After an application of 1.35 g L−1 (24 h EC50 for motility) DAP motility recovered after 72 h but motility did not recover when the concentration was doubled (2.7 g L−1). The EC50 values obtained were compared with the EC50/LC50 values reported for other aquatic organisms and were found to be comparable with the reported values.  相似文献   

3.
Continuous anaerobic fermentations were performed in a novel external-recycle, biofilm reactor using d-glucose and CO2 as carbon substrates. Succinic acid (SA) yields were found to be an increasing function of glucose consumption with the succinic acid to acetic acid ratio increasing from 2.4 g g−1 at a glucose consumption of 10 g L−1, to 5.7 g g−1 at a glucose consumption of 50 g L−1. The formic acid to acetic acid ratio decreased from an equimolar value (0.77 g g−1) at a glucose consumption of 10 g L−1 to a value close to zero at 50 g L−1. The highest SA yield on glucose and highest SA titre obtained were 0.91 g g−1 and 48.5 g L−1 respectively. Metabolic flux analysis based on the established C3 and C4 metabolic pathways of Actinobacillus succinogenes revealed that the increase in the succinate to acetate ratio could not be attributed to the decrease in formic acid and that an additional source of NADH was present. The fraction of unaccounted NADH increased with glucose consumption, suggesting that additional reducing power is present in the medium or is provided by the activation of an alternative metabolic pathway.  相似文献   

4.
A study was conducted to understand the potential of Landsat-8 in the estimation of gross primary production (GPP) and to quantify the productivity of maize crop cultivated under hyper-arid conditions of Saudi Arabia. The GPP of maize crop was estimated by using the Vegetation Photosynthesis Model (VPM) utilizing remote sensing data from Landsat-8 reflectance (GPPVPM) as well as the meteorological data provided by Eddy Covariance (EC) system (GPPEC), for the period from August to November 2015. Results revealed that the cumulative GPPEC for the entire growth period of maize crop was 1871 g C m−2. However, the cumulative GPP determined as a function of the enhanced vegetation index – EVI (GPPEVI) was 1979 g C m−2, and that determined as a function of the normalized difference vegetation index – NDVI (GPPNDVI) was 1754 g C m−2. These results indicated that the GPPEVI was significantly higher than the GPPEC (R2 = 0.96, P = 0.0241 and RMSE = 12.6%). While, the GPPNDVI was significantly lower than the GPPEC (R2 = 0.93, P = 0.0384 and RMSE = 19.7%). However, the recorded relative error between the GPPEC and both the GPPEVI and the GPPNDVI was −6.22% and 5.76%, respectively. These results demonstrated the potential of the landsat-8 driven VPM model for the estimation of GPP, which is relevant to the productivity and carbon fluxes.  相似文献   

5.
The solubilization and acidification of waste activated sludge (WAS) were apparently enhanced by external rhamnolipid (RL) addition. The maximum solute carbohydrate concentrations increased linearly from 48 ± 5 mg COD L−1 in the un-pretreated WAS (blank) to 566 ± 19 mg COD L−1, and protein increased from 1050 ± 8 to 3493 ± 16 mg COD L−1 at RL dosage of 0.10 g g−1 TSS. The highest VFAs concentration peaked at 3840 mg COD L−1 at RL dosage of 0.04 g g−1 TSS, which was 4.24-fold higher than the blank test. RL was generated in situ during WAS fermentation when external RL was added. It was detected that RL concentration was increased from initial 880 ± 92 mg L−1 to 1312 ± 7 mg L−1 at the end of 96 h with RL dosage of 0.04 g g−1 TSS, which was increased to 1.49-fold. Meanwhile, methane production was notably reduced to a quite low level of 2.0 mL CH4 g−1 VSS, showing effective inhibition of methanogens by RL (58.8 mL CH4 g−1 VSS in the blank). In addition, the activity of hydrolytic enzymes (protease and α-glucosidase) was enhanced accordingly. VFAs accumulation and RL generation in situ demonstrated that the additional RL substantially performed enhanced biological effects for waste activated sludge fermentation.  相似文献   

6.
《Aquatic Botany》2007,86(3):260-268
A study was conducted to determine the effect of the herbicide 2,4-dichlorophenoxyacetic acid (2,4-D) on nine submersed macrophyte species. The first objective of the study was to investigate the sensitivity of various endpoints in macrophyte toxicity tests. A second objective was to investigate the implications of hormesis in the risk assessment of 2,4-D. 2,4-D was applied in concentrations ranging from 10 to 3000 μg L−1. Endpoints determined 4 weeks after the start of the treatment were based on shoot and root growth in water. The EC50s were calculated using models excluding and including a parameter describing hormesis. Results indicated that the total length of the roots can be regarded as a sensitive endpoint for the response of a macrophyte to 2,4-D. For the tested rooted macrophyte species, the EC50 values for the length and number of the roots ranged from 92 to 997 and from 112 to 1807 μg L−1, respectively. At low concentrations (10 and 30 μg L−1), stimulation of some of the endpoints (hormesis) was found for several of the species. Although hormesis may have ecological implications, its importance for the ecological risk assessment of 2,4-D in this study was limited.  相似文献   

7.
Benthic dinoflagellates of the genus Ostreopsis are found all over the world in temperate, subtropical, and tropical coastal regions. Our recent studies revealed that a putative “cryptic” species of Ostreopsis ovata is present widely along Japanese coasts. This organism, Ostreopsis sp. 1, possesses palytoxin analogs and thus its toxic blooms may be responsible for potential toxification of marine organisms. To evaluate the bloom dynamics of Ostreopsis sp. 1, the present study examined the growth responses of Ostreopsis sp. 1 strain s0716 to various light intensities (photon flux densities: μmol photons m−2 s−1) using a newly devised photoirradiation-culture system. This novel system has white light-emitting diodes (LEDs) capable of more closely simulating the wavelength spectrum of light entering the oceanic water column than do fluorescent tubes and halogen lamps. In this system, the light intensity of the white LEDs was reduced through two polarizing filters by varying the rotation angles of the filters. Thereby, the new system was capable of culturing microalgae under well-controlled light intensity conditions. Ostreopsis sp. 1 grew proportionally when light intensity was increased from 49.5 to 199 μmol photons m−2 s−1, but its growth appeared to be inhibited slightly at ≥263 μmol photons m−2 s−1. The relationship between observed growth rates and light intensity was calculated at R > 0.99 (P < 0.01) using a regression analysis with a modified equation of the photosynthesis-light intensity (P-L) model. The equation determined the critical light intensities for growth of Ostreopsis sp. 1 and the organism's growth potential as follows: (1) the threshold light intensity for growth: 29.8 μmol photons m−2 s−1; (2) the optimum light intensity (Lm) giving the maximum growth rate (μmax = 0.659 divisions day−1): 196 μmol photons m−2 s−1; (3) the optimum light intensity range (Lopt) giving ≥95% μmax: 130–330 μmol photons m−2 s−1; (4) the semi-optimum range (Lsopt) giving ≥80% μmax: 90 to over 460 μmol photons m−2 s−1. The Lsopt represents 4.5–23% ambient light intensity present in surface waters off of a temperate region of the Japanese coast, Tosa Bay; putatively, this semi-optimum range of light intensity appears at depth of 12.9–27.8 m. Considering these issues, our data indicate that Ostreopsis sp. 1 in coastal environments may form blooms at ca. ∼28 m depth in regions along Japanese coasts.  相似文献   

8.
The aim of this study was to develop a bioprocess for l- and d-lactic acid production from raw sweet potato through simultaneous saccharification and fermentation by Lactobacillus paracasei and Lactobacillus coryniformis, respectively. The effects of enzyme and nitrogen source concentrations as well as of the ratio of raw material to medium were investigated. At dried material concentrations of 136.36–219.51 g L−1, yields of 90.13–91.17% (w/w) and productivities of 3.41–3.83 g L−1 h−1 were obtained with lactic acid concentrations as high as 198.32 g L−1 for l-lactic acid production. In addition, d-lactic acid was produced with yields of 90.11–84.92% (w/w) and productivities of 2.55–3.11 g L−1 h−1 with a maximum concentration of 186.40 g L−1 at the same concentrations of dried material. The simple and efficient process described in this study will benefit the tuber and root-based lactic acid industries without requiring alterations in plant equipment.  相似文献   

9.
The entomogenous fungus Cordyceps taii, a traditional Chinese medicinal mushroom, exhibits potent important pharmacological effects and it has great potential for health foods and medicine. In this work, the effects of oxygen supply on production of biomass and bioactive helvolic acid were studied in shake-flask fermentation of C. taii mycelia. The value of initial volumetric oxygen transfer coefficient (KLa) within 10.1–33.8 h−1 affected the cell growth, helvolic acid production and expression levels of biosynthetic genes. The highest cell concentration of 17.2 g/L was obtained at 14.3 h−1 of initial KLa. The highest helvolic acid production was 9.6 mg/L at 10.1 h−1 of initial KLa. The expression levels of three genes encoding hydroxymethylglutaryl-CoA synthase, hydroxymethylglutaryl-CoA reductase and squalene synthase were down-regulated on day 2 and day 8 but up-regulated on day 14 at an initial KLa value of 10.1 h−1 vs. 33.8 h−1, which well corresponded to the helvolic acid biosynthesis in those conditions. The information obtained would be helpful for improving the biomass and helvolic acid production in large-scale fermentation of C. taii.  相似文献   

10.
《Process Biochemistry》2014,49(10):1606-1611
The filamentous fungus Paecilomyces lilacinus was grown on n-hexadecane in submerged (SmC) and solid-state (SSC) cultures. The maximum CO2 production rate in SmC (Vmax = 11.7 mg CO2 Lg−1 day−1) was three times lower than in SSC (Vmax = 40.4 mg CO2 Lg−1 day−1). The P. lilacinus hydrophobin (PLHYD) yield from the SSC was 1.3 mg PLHYD g protein−1, but in SmC, this protein was not detected. The PLHYD showed a critical micelle concentration of 0.45 mg mL−1. In addition, the PLHYD modified the hydrophobicity of Teflon from 130.1 ± 2° to 47 ± 2°, forming porous structures with some filaments <1 μm and globular aggregates <0.25 μm diameter. The interfacial studies of this PLHYD could be the basis for the use of the protein to modify surfaces and to stabilize compounds in emulsions.  相似文献   

11.
《Cryobiology》2009,58(3):286-291
The freeze tolerance and accumulation of cryoprotectants was investigated in three geographically different populations of the enchytraeid Enchytraeus albidus (Oligochaeta). E. albidus is widely distributed from the high Arctic to temperate Western Europe. Our results show that E. albidus is freeze tolerant, with freeze tolerance varying extensively between Greenlandic and European populations. Two populations from sub Arctic (Nuuk) and high Arctic Greenland (Zackenberg) survived freezing at −15 °C, whereas only 30% of a German population survived this temperature. When frozen, E. albidus responded by catabolising glycogen to glucose, which likely acted as a cryoprotectant. The average glucose concentrations were similar in the three populations when worms were frozen at −2 °C, approximately 50 μg glucose mg−1 tissue dry weight (DW). At −14 °C the glucose concentrations increased to between 110 and 170 μg mg−1 DW in worms from Greenland. The average glycogen content of worms from Zackenberg and Nuuk were about 300 μg mg−1 DW, but only 230 μg mg−1 DW in worms from Germany showing that not all glycogen was catabolised during the experiment. Nuclear magnetic resonance spectrometry (NMR) was used to screen for other putative cryoprotectants. Proline, glutamine and alanine were up regulated in frozen worms at −2 °C but only in relatively small concentrations suggesting that they were of little significance for freeze survival. The present study confirms earlier reports that freeze tolerant enchytraeids, like other freeze tolerant oligochaete earthworms, accumulate high concentrations of glucose as a primary cryoprotectant.  相似文献   

12.
Soil salinity is recognized worldwide as a major threat to agriculture, particularly in arid and semi-arid regions. Producers and decision makers need updated and accurate maps of salinity in agronomically and environmentally relevant ranges (i.e., <20 dS m−1, when salinity is measured as electrical conductivity of the saturation extract, ECe). State-of-the-art approaches for creating accurate ECe maps beyond field scale (i.e., 1 km2) include: (i) Analysis Of Covariance (ANOCOVA) of near-ground measurements of apparent soil electrical conductivity (ECa) and (ii) regression modeling of multi-year remote sensing canopy reflectance and other co-variates (e.g., crop type, annual rainfall). This study presents a comparison of the two approaches to establish their viability and utility. The approaches were tested using 22 fields (total 542 ha) located in California’s western San Joaquin Valley. In 2013 ECa-directed soil sampling resulted in the collection of 267 soil samples across the 22 fields, which were analyzed for ECe, ranging from 0 to 38.6 dS m−1. The ANOCOVA ECa-ECe model returned a coefficient of determination (R2) of 0.87 and root mean square prediction error (RMSPE) of 3.05 dS m−1. For the remote sensing approach seven years (2007–2013) of Landsat 7 reflectance were considered. The remote sensing salinity model had R2 = 0.73 and RMSPE = 3.63 dS m−1. The robustness of the models was tested with a leave-one-field-out (lofo) cross-validation to assure maximum independence between training and validation datasets. For the ANOCOVA model, lofo cross-validation provided a range of scenarios in terms of RMSPE. The worst, median, and best fit scenarios provided global cross-validation R2 of 0.52, 0.80, and 0.81, respectively. The lofo cross-validation for the remote sensing approach returned a R2 of 0.65. The ANOCOVA approach performs particularly well at ECe values <10 dS m−1, but requires extensive field work. Field work is reduced considerably with the remote sensing approach, but due to the larger errors at low ECe values, the methodology is less suitable for crop selection, and other practices that require accurate knowledge of salinity variation within a field, making it more useful for assessing trends in salinity across a regional scale. The two models proved to be viable solutions at large spatial scales, with the ANOCOVA approach more appropriate for multiple-field to landscape scales (1–10 km2) and the remote sensing approach best for landscape to regional scales (>10 km2).  相似文献   

13.
This study was carried out to determine the median lethal concentrations (LC50) of Zinc nanoparticles (ZnNPs) on Oreochromis niloticus and Tilapia zillii. The biochemical and molecular potential effects of ZnNPs (500 and 2000 μg L−1) on the antioxidant system in the brain tissue of O. niloticus and T. zillii were investigated. Four hundred fish were used for acute and sub-acute studies. ZnNP LC50 concentrations were investigated in O. niloticus and T. zillii. The effect of 500 and 2000 μg L−1 ZnNPs on brain antioxidants of O. niloticus and T. zillii was investigated. The result indicated that 69 h LC50 was 5.5 ± 0.6 and 5.6 ± 0.4 for O. nilotica and T. zillii, respectively. Fish exposed to 500 μg L−1 ZnNPs showed a significant increase in reduced glutathione (GSH), total glutathione (tGSH) levels, superoxide dismutase (SOD), catalase (CAT), glutathione reductase (GR), glutathione peroxidase (GPx) and glutathione-S-transferase (GST) activity and gene expression. On the contrary, malondialdehyde (MDA) levels significantly decreased. Meanwhile, fish exposed to 2000 μg L−1 ZnNPs showed a significant decrease of GSH, tGSH levels, SOD, CAT, GR, GPx and GST activity and gene expression. On the contrary, MDA levels significantly increased. It was concluded that, the 96 h LC50 of ZnNPs was 5.5 ± 0.6 and 5.6 ± 0.4 for O. nilotica and T. zillii, respectively. ZnNPs in exposure concentrations of 2000 μg/L induced a deleterious effect on the brain antioxidant system of O. nilotica and T. zillii. In contrast, ZnNPs in exposure concentrations of 500 μg L−1 produced an inductive effect on the brain antioxidant system of O. nilotica and T. zillii.  相似文献   

14.
Aerobic granulation is a process in which suspended biomass aggregate and form discrete well-defined granules in aerobic systems. To investigate the properties and kinetics of aerobic granular sludge, aerobic granules were cultivated with glucose synthetic wastewater in a series of sequencing batch reactors (SBR). The spherical shaped granules were observed on 8th day with the mean diameter of 0.1 mm. With the organic loading rate (OLR) being increased to 4.0 g COD L−1 d−1, aerobic granules grew matured with spherical shape. The size of granules ranged from 1.2 to 1.8 mm, and the corresponding settling velocity of individual granule was 24.2–36.4 m h−1. The oxygen utilization rate (OUR) of mature granules was 41.90 g O2 kg MLSS−1 h−1, which was two times higher than that of activated sludge (18.32 g O2 kg MLSS−1 h−1). The experimental data indicated that the substrate utilization and biomass growth kinetics generally followed Monod's kinetics model. The corresponding kinetic coefficients of k (maximum specific substrate utilization rate), Ks (half velocity coefficient), Y (growth yield coefficient) and Kd (decay coefficient) were determined as follows, kc = 23.65 d−1, Kc = 3367.05 mg L−1, KN = 0.038 d−1, KN = 29.65 mg L−1, Y = 0.1927–0.2022 mg MMLS (mg COD)−1 and Kd = 0.00845–0.0135 d−1, respectively. Those properties of aerobic granules made aerobic granules system had a short setup period, high substrate utilization rate and low sludge production.  相似文献   

15.
《Process Biochemistry》2014,49(1):33-37
The ectoine-excreting bacterial strain of Halomonas salina was employed in the co-production of poly-β-hydroxybutyrate (PHB) and ectoine (Ect) during a fermentation process (PHB/Ect co-production). An efficient PHB/Ect co-production process was carried out at low NaCl concentration (30 g L−1). It was established using 1H Nuclear Magnetic Resonance spectroscopy that H. salina produces PHB. The effects of the NaCl concentration, the initial C/N ratio, the phosphate concentration and mixed carbon sources were investigated with respect to PHB/Ect co-production. The PHB/Ect co-production system comprised growing and non-growing cell phases and was developed with NaCl concentration of 30 g L−1. The optimal conditions for PHB/Ect co-production by the ectoine-excreting strain of H. salina were 30 g L−1 NaCl, with an initial C/N ratio of 15, an initial phosphate concentration of 12 g L−1 and mixed carbon sources of 55 g L−1 glucose and 25 g L−1 monosodium glutamate. Using a PHB/Ect co-production system with growing and non-growing cell phases prevents the inhibition of PHB synthesis by high concentration of NaCl and significantly reduces ectoine degradation. PHB and ectoine concentrations as high as 35.3 g L−1 and 8.6 g L−1, respectively, were achieved. The efficient co-production of PHB and ectoine at a low NaCl concentration has been realised.  相似文献   

16.
《Journal of Asia》2014,17(3):287-293
The efficacy of an essential oil obtained from Pimpinella anisum fruits and its major compound, trans-Anethole, was tested on the eggs, larvae and adults of Culex quinquefasciatus. While causing no significant mortality on eggs, other tested stages were very sensitive to the essential oil and trans-Anethole. LC50 for the 2nd to 4th instar larvae was estimated as 26–27 μL·L 1 and 15–19 μL·L 1 for the essential oil and trans-Anethole, respectively. As for the essential oil applied on adults, LC(LD)50 was estimated as 9.3 μL mL 1 (spray test), 1.9 μL L 1 (fumigation test) and 0.6 μg cm 2 (tarsal test), and for trans-Anethole as 8.1 μL mL 1 (spray test), 2.1 μL L 1 (fumigation test) and 0.4 μg cm 2 (tarsal test). The time needed to achieve 50% mortality after application of LC(LD)99 of the essential oil was significantly different; for example, in larvicidal assays it ranged from 15 to 235 min depending on the larval instar, and from 9 to 180 min when applied to adults, depending on the mode of application. It was also found that temperature had an important effect on the larvicidal efficacy of the essential oil, and oviposition deterrent activity was studied.The essential oil and trans-Anethole were toxic for Daphnia magna (62–92% mortality) and significantly reduced its fertility at high concentrations (35–50 μL mL 1) and long exposure (48 h). However, no negative effect on Daphnia mortality or fertility was found at shorter exposure times (6 h) and/or lower concentrations (20 μL mL 1).Based on the results of this study, we can recommend the essential oil from P. anisum as a suitable active substance for potential botanical insecticides.  相似文献   

17.
In wild-type Escherichia coli, 1 mol of CO2 was fixated in 1 mol of succinic acid generation anaerobically. The key reaction in this sequence, catalyzed by phosphoenolpyruvate carboxylase (PPC), is carboxylation of phosphoenolpyruvate to oxaloacetate. Although inactivation of pyruvate formate-lyase and lactate dehydrogenase is found to enhance the PPC pathway for succinic acid production, it results in excessive pyruvic acid accumulation and limits regeneration of NAD+ from NADH formed in glycolysis. In other organisms, oxaloacetate is synthesized by carboxylation of pyruvic acid by pyruvate carboxylase (PYC) during glucose metabolism, and in E. coli, nicotinic acid phosphoribosyltransferase (NAPRTase) is a rate-limiting enzyme of the NAD(H) synthesis system. To achieve the NADH/NAD+ ratio decrease as well as carbon flux redistribution, co-expression of NAPRTase and PYC in a pflB, ldhA, and ppc deletion strain resulted in a significant increase in cell mass and succinic acid production under anaerobic conditions. After 72 h, 14.5 g L−1 of glucose was consumed to generate 12.08 g L−1 of succinic acid. Furthermore, under optimized condition of CO2 supply, the succinic acid productivity and the CO2 fixation rate reached 223.88 mg L−1 h−1 and 83.48 mg L−1 h−1, respectively.  相似文献   

18.
Brazilian filamentous fungi Rhizopus sp. (SIS-31), Aspergillus sp. (SIS-18) and Penicillium sp. (SIS-21), sources of oxidases were isolated from Caatinga's soils and applied during the in situ cathodic oxygen reduction in fuel cells. All strains were cultivated in submerged cultures using an optimized saline medium enriched with 10 g L−1 of glucose, 3.0 g L−1 of peptone and 0.0005 g L−1 of CuSO4 as enzyme inducer. Parameters of oxidase activity, glucose consumption and microbial growth were evaluated. In-cell experiments evaluated by chronoamperometry were performed and two different electrode compositions were also compared. Maximum current densities of 125.7, 98.7 and 11.5 μA cm−2 were observed before 24 h and coulombic efficiencies of 56.5, 46.5 and 23.8% were obtained for SIS-31, SIS-21 and SIS-18, respectively. Conversely, maximum power outputs of 328.73, 288.80 and 197.77 mW m−3 were observed for SIS-18, SIS-21 and SIS-31, respectively. This work provides the primary experimental evidences that fungi isolated from the Caatinga region in Brazil can serve as efficient biocatalysts during the oxygen reduction in air-cathodes to improve electricity generation in MFCs.  相似文献   

19.
A series of bis-indolone-N-oxides, 1a–f, was prepared from bis(ethynyl)benzenes and o-halonitroaryls and studied for their in vitro antiplasmodial activities against Plasmodium falciparum and representative strains of bacteria and candida as well as for their cytotoxicity against a human tumor cell line (MCF7). They did not cause any haemolysis (300 μg mL−1). Of the synthesized bis-indolones, compound 1a had the most potent antiplasmodial activity (IC50 = 0.763 μmol L−1 on the FcB1 strain) with a selectivity index (CC50 MCF7/IC50 FcB1) of 35.6. No potency against the tested microbial strains was observed.  相似文献   

20.
α-Glucuronidase (EC 3.2.1.139) of family GH 115 from Scheffersomyces stipitis is a valuable enzyme for the modification of water-soluble xylan into insoluble biopolymers, due to its unique ability to act on polymeric xylans. The influence of growth rate on the production of α-glucuronidase by recombinant Saccharomyces cerevisiae MH1000pbk10D-glu in glucose-limited fed-batch culture was studied at 14 and 100 L scale. At and below the critical specific growth rate (μcrit) of 0.12 h−1 at 14 L scale, the biomass yield coefficient (Yx/s) remained constant at 0.4 g g−1 with no ethanol production, whereas ethanol yields relative to biomass (keth/x) of up to 0.54 g g−1 and a steady decrease in Yx/s were observed at μ > 0.12 h−1. Production of α-glucuronidase was growth associated at a product yield (kα-glu/x) of 0.45 mg g−1, with the highest biomass (37.35 g/L) and α-glucuronidase (14.03 mg/L) concentrations, were recorded during fed-batch culture at or near to μcrit. Scale-up with constant kLa from 14 to 100 L resulted in ethanol concentrations of up to 2.5 g/L at μ = 0.12 h−1. At this scale, α-glucuronidase yield could be maximised at growth rates below μcrit, to prevent localised high glucose concentration pockets at the feed entry zone that would induce oxido-reductive metabolism. This is the first report where recombinant production of α-glucuronidase (EC 3.2.1.139) by S. cerevisiae was optimised for application at pilot scale.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号