首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Environmental filtering and spatial structuring are important ecological processes for the generation and maintenance of biodiversity. However, the relative importance of these ecological drivers for multiple facets of diversity is still poorly understood in highland streams. Here, we examined the responses of three facets of stream macroinvertebrate alpha diversity to local environmental, landscape‐climate and spatial factors in a near‐pristine highland riverine ecosystem. Taxonomic (species richness, Shannon diversity, and evenness), functional (functional richness, evenness, divergence, and Rao's Quadratic entropy), and a proxy of phylogenetic alpha diversity (taxonomic distinctness and variation in taxonomic distinctness) were calculated for macroinvertebrate assemblages in 55 stream sites. Then Pearson correlation coefficient was used to explore congruence of indices within and across the three diversity facets. Finally, multiple linear regression models and variation partitioning were employed to identify the relative importance of different ecological drivers of biodiversity. We found most correlations between the diversity indices within the same facet, and between functional richness and species richness were relatively strong. The two phylogenetic diversity indices were quite independent from taxonomic diversity but correlated with functional diversity indices to some extent. Taxonomic and functional diversity were more strongly determined by environmental variables, while phylogenetic diversity was better explained by spatial factors. In terms of environmental variables, habitat‐scale variables describing habitat complexity and water physical features played the primary role in determining the diversity patterns of all three facets, whereas landscape factors appeared less influential. Our findings indicated that both environmental and spatial factors are important ecological drivers for biodiversity patterns of macroinvertebrates in Tibetan streams, although their relative importance was contingent on different facets of diversity. Such findings verified the complementary roles of taxonomic, functional and phylogenetic diversity, and highlighted the importance of comprehensively considering multiple ecological drivers for different facets of diversity in biodiversity assessment.  相似文献   

2.
Local biodiversity has traditionally been estimated with taxonomic diversity metrics such as species richness. Recently, the concept of biodiversity has been extended beyond species identity by ecological traits determining the functional role of a species in a community. This interspecific functional diversity typically responds more strongly to local environmental variation compared with taxonomic diversity, while taxonomic diversity may mirror more strongly dispersal processes compared with functional metrics. Several trait‐based indices have been developed to measure functional diversity for various organisms and habitat types, but studies of their applicability on aquatic microbial communities have been underrepresented. We examined the drivers and covariance of taxonomic and functional diversity among diatom rock pool communities on the Baltic Sea coast. We quantified three taxonomic (species richness, Shannon''s diversity, and Pielou''s evenness) and three functional (functional richness, evenness, and divergence) diversity indices and determined abiotic factors best explaining variation in these indices by generalized linear mixed models. The six diversity indices were highly collinear except functional evenness, which merely correlated significantly with taxonomic evenness. All diversity indices were always explained by water conductivity and temperature–sampling month interaction. Taxonomic diversity was further consistently explained by pool distance to the sea, and functional richness and divergence by pool location. The explained variance in regression models did not markedly differ between taxonomic and functional metrics. Our findings do not clearly support the superiority of neither set of diversity indices in explaining coastal microbial diversity, but rather highlight the general overlap among the indices. However, as individual metrics may be driven by different factors, the greatest advantage in assessing biodiversity is nevertheless probably achieved with a simultaneous application of the taxonomic and functional diversity metrics.  相似文献   

3.
山西五鹿山森林群落木本植物功能多样性   总被引:1,自引:9,他引:1  
薛倩妮  闫明  毕润成 《生态学报》2015,35(21):7023-7032
通过选取群落中木本植物种子的扩散方式、传粉方式、植株高度和盖度等13个功能性状,计算出群落的6个功能多样性指数:功能性状距离、功能性状平均距离、功能体积、功能均匀度、功能分散指数和Rao二次熵指数,结合群落物种丰富度指数、Shannon-Wiener指数和物种均匀度指数对山西五鹿山森林群落木本植物功能多样性进行研究。结果表明:(1)功能性状距离、功能性状平均距离、功能体积与物种丰富度、Shannon-Wiener指数显著正相关;功能均匀度与Shannon-Wiener指数、物种均匀度指数显著正相关;功能分散指数、Rao二次熵指数与物种均匀度指数、Shannon-Wiener指数显著正相关;(2)功能多样性的差异很大程度上是由于物种差异所引起的;(3)6个功能多样性指数可分为三类:功能性状距离、功能性状平均距离、功能体积为功能丰富度指数;功能均匀度为功能均匀度指数;功能分散指数和Rao二次熵指数为功能离散度指数。该分类结果符合指数的计算方法和生态学意义,以及相互独立的标准。  相似文献   

4.
5.

Aim

Modelling the response of β‐diversity (i.e., the turnover in species composition among sites) to environmental variation has wide‐ranging applications, including informing conservation planning, understanding community assembly and forecasting the impacts of climate change. However, modelling β‐diversity is challenging, especially for multiple diversity facets (i.e., taxonomic, functional and phylogenetic diversity), and current methods have important limitations. Here, we present a new approach for predicting the response of multifaceted β‐diversity to the environment, called Multifaceted Biodiversity Modelling (MBM). We illustrate the approach using both a plant diversity dataset from the French Alps and a set of simulated data. We also provide an implementation via an R package.

Location

French Alps.

Methods

For both the French Alps and the simulated communities, we compute β‐diversity indices (e.g., Sørensen dissimilarity, mean functional/phylogenetic pairwise distance) among site pairs. We then apply Gaussian process regression, a flexible nonlinear modelling technique, to predict β‐diversity in response to environmental distance among site pairs. For comparison, we also perform similar analyses using Generalized Dissimilarity Modelling (GDM), a well‐established method for modelling β‐diversity in response to environmental distance.

Results

In the Alps, we observed a general increase in taxonomic (TD) and functional (FD) β‐diversity (i.e., site pairs were more different from each other) as the climatic distance between site pairs increased. GDM performed better for TD and FD when fitting to calibration data, whereas MBM performed better for both when predicting to a validation dataset. For phylogenetic β‐diversity, MBM outperformed GDM in predicting the observed decrease in phylogenetic β‐diversity with increasing climatic distance.

Main conclusions

Multifaceted Biodiversity Modelling provides a flexible new approach that expands our capacity to model multiple facets of β‐diversity. Advantages of MBM over existing methods include simpler assumptions, more flexible modelling, potential to consider multiple facets of diversity across a range of diversity indices, and robust uncertainty estimation.
  相似文献   

6.
DNA sequencing has become an integrated part of microbial ecology, and taxonomic marker genes such as the SSU and LSU rRNA are frequently used to assess community structure. One solution for taxonomic community analysis based on shotgun metagenomic data is the Metaxa2 software, which can extract and classify sequence fragments belonging to the rRNA genes. This paper describes the Metaxa2 Diversity Tools, a set of new open-source software programs that extends the capabilities of the Metaxa2 software. These tools allow for better handling of data from multiple samples, improved species classifications, rarefaction analysis accounting for unclassified entries, and determination of significant differences in community composition of different samples. We demonstrate the performance of the software tools on rRNA data extracted from different shotgun metagenomes, and find the tools to streamline and improve the assessments of community diversity, particularly for samples from environments for which few reference genomes are available. Finally, we establish that our resampling algorithm for determining community dissimilarity is robust to differences in coverage depth, suggesting that it forms a complement to multidimensional visualization approaches for finding differences between communities. The Metaxa2 Diversity Tools are included in recent versions (2.1 and later) of Metaxa2 (http://microbiology.se/software/metaxa2/) and facilitate implementation of Metaxa2 within software pipelines for taxonomic analysis of environmental communities.  相似文献   

7.
林窗环境异质性导致群落物种多样性与系统发育多样性(phylogenetic diversity, PD)存在差异, 研究不同大小的林窗中群落的物种多样性与系统发育多样性有助于揭示林下生物多样性的形成及维持机制。本文以格氏栲(Castanopsis kawakamii)天然林为研究对象, 通过Pearson相关性分析与广义线性模型探讨了林窗内物种多样性与系统发育多样性间的相互关系及其环境影响因素。结果表明: (1)大林窗(面积 > 200 m2)植物种类及多度均高于中林窗(50 m2 ≤ 面积 < 100 m2)、小林窗(30 m2 ≤ 面积 < 50 m2)和非林窗(面积 = 100 m2)。大林窗群落系统发育结构趋于发散, 中、小林窗和非林窗群落系统发育结构受到生境过滤和竞争排斥综合作用。(2)群落系统发育多样性指数与物种丰富度(species richness, SR)、Margalef丰富度指数和Shannon-Wiener指数均呈显著正相关, 这与林窗内稀有种种类组成多于优势种有关。(3)林窗面积对物种多样性存在显著正效应; 土壤全氮含量对系统发育多样性和系统发育结构存在显著正效应。林窗形成提高了格氏栲天然林群落物种多样性和系统发育多样性, 林窗面积与土壤全氮共同驱动了格氏栲天然林林窗物种多样性和系统发育多样性的变化。  相似文献   

8.
历山自然保护区猪尾沟森林群落植物多样性研究   总被引:35,自引:1,他引:34       下载免费PDF全文
采用丰富度指数、物种多样性指数和均匀度指数对山西历山自然保护区猪尾沟森林群落多样性进行研究。结果表明 :1 )同一群落内 ,多样性指数存在一定的波动范围 ;不同群落间 ,物种多样性也存在差异 ,但其并不一定具有统计学意义。由此表明 ,群落之间存在差异 ,同时也存在着连续性。 2 )海拔高度是决定本区多样性分布格局的主导因子 ,随着群落分布海拔高度的增加 ,多样性呈一致的上升趋势 ,即多样性与海拔呈正相关关系。 3)群落物种多样性对海拔的敏感性由大到小的次序为草本层 >乔木层 >灌木层 ,其中乔木层的丰富度指数、草本层均匀度指数与海拔有着极显著的正相关关系 ,而乔木层的多样性指数、草本层的丰富度指数与海拔有着极显著的负相关关系 ,灌木层的多样性与海拔没有显著的相关性。 4)群落中不同结构、不同层次对群落总体多样性的贡献是不同的 ,两种测定方法所产生的总体多样性之间呈显著相关关系 ,表明给定加权参数的测定方法没有影响客观生态意义的反映 ,同时也更好地反映出群落结构对于群落多样性的功能差异  相似文献   

9.
Measuring commonness and rarity is pivotal to ecology and conservation. Zeta diversity, the average number of species shared by multiple sets of assemblages, and Dark diversity, the number of species that could occur in an assemblage but are missing, have been recently proposed to capture two aspects of the commonness‐rarity spectrum. Despite a shared focus on commonness and rarity, thus far, Zeta and Dark diversities have been assessed separately. Here, we review these two frameworks and suggest their integration into a unified paradigm of the “rarity facets of biodiversity.” This can be achieved by partitioning Alpha and Beta diversities into five components (the Zeta, Eta, Theta, Iota, and Kappa rarity facets) defined based on the commonness and rarity of species. Each facet is assessed in traditional and multiassemblage fashions to bridge conceptual differences between Dark diversity and Zeta diversity. We discuss applications of the rarity facets including comparing the taxonomic, functional, and phylogenetic diversity of rare and common species, or measuring species'' prevalence in different facets as a metric of species rarity. The rarity facets integrate two emergent paradigms in biodiversity science to better understand the ecology of commonness and rarity, an important endeavor in a time of widespread changes in biodiversity across the Earth.  相似文献   

10.
运用TWINSPAN对山西七里峪茶条槭群落类型进行划分,并采用Patrick指数、Simpson指数、Shannon-Wiener指数、Alatalo指数研究群落的物种多样性。结果表明:TWINSPAN将茶条槭群落的73个样方划分为10个群丛;各群丛的物种丰富度指数、多样性指数和均匀度指数之间存在差异,群丛Ⅲ和Ⅶ的丰富度指数和多样性指数较高,群丛Ⅰ的多样性指数较低;各群丛乔木层、灌木层和草本层之间的物种多样性也存在差异,多样性指数大致表现为草本层高于灌木层高于乔木层。土壤中的有机质、速效钾、含水量是影响茶条槭群落物种多样性的主要因素。  相似文献   

11.
新薛河底栖动物物种多样性与功能多样性研究   总被引:1,自引:0,他引:1  
研究功能多样性与物种多样性关系及其随环境梯度的变化规律,有助于理解生物在群落中的共存机制;然而,二者间关系的研究在淡水生态学中尚鲜见报道。通过对新薛河典型河段(A缓流河段、B断流河段、C有机污染河段、D对照河段、E人为干扰河段)底栖动物季节性调查,就物种多样性和功能多样性时空动态及关系进行了研究。结果表明:在空间序列上,物种多样性指数在B河段均最低,表明间歇性断流对物种多样性影响重大。功能丰富度在D河段最高,A河段最低;功能均匀度在A河段高于其他河段;功能分离度在A、B河段最高,D河段最低。在时间序列上,物种丰富度和Shannon指数均值在10月份最低,4月份最高;均匀度指数在12月份最低,10月份最高。3个功能多样性指数于各季节间差异显著、相互独立,主要受水文条件和底栖动物生活史影响。相关分析表明,功能多样性指数间无显著相关性;功能丰富度同物种丰富度和Shannon指数相关显著,功能均匀度同物种均匀度相关显著。逐步回归分析发现,功能丰富度受物种丰富度和Shannon指数影响显著,功能均匀度受物种均匀度影响显著;功能多样性和物种多样性指数间拟合度总体不高。研究结果进一步表明:相对物种多样性,功能多样性对生境梯度变化响应更加全面。  相似文献   

12.
1. It is increasingly recognised that adequate measures of biodiversity should include information on the ‘relatedness’ of species within ecological assemblages, or the phylogenetic levels at which diversity is expressed. Taxonomic distinctness measures provide a series of indices to achieve this, which are independent of sample size. Taxonomic distinctness has been employed widely in marine systems, where it has been suggested that this index can provide a reliable measure of anthropogenic impact. 2. We tested the behaviour of three related taxonomic distinctiveness indices (Average Taxonomic Distinctness, Δ+; Variation in Taxonomic Distinctness, Λ+; and Total Taxonomic Distinctness, sΔ+) in relation to putative levels of anthropogenic impact in inland waters and their potential utility in environmental monitoring, using an extensive data set for aquatic beetles from the south‐east of the Iberian Peninsula. 3. Taxonomic distinctness measures were not able to identify human disturbance effects and there were no clear relationships between these new biodiversity measures and the disturbance level recorded at individual localities. Furthermore, the taxonomic distinctness measures used were apparently less sensitive to the effects of anthropogenic impact than other diversity metrics, such as species richness and rarity. 4. We conclude that taxonomic distinctness indices may not always perform as well as other metrics in the assessment of environmental quality. In addition, taxonomic distinctness measure should be interpreted with caution, as their performance and ability to detect anthropogenic disturbance may depend on the phylogenetic structure of sampled taxa within a region, and their evolutionary and ecological history.  相似文献   

13.
The relationship between plant diversity and ecosystem services is a controversial topic in ecology that may be due, at least in part, to the variety of methods used to define and quantify diversity. This study examined the relationship between plant diversity and 11 ecosystem properties of a restored wetland in northern China by considering four primary components of diversity (dominance, richness, evenness, and divergence). Each diversity component was expressed by eight taxonomic and functional diversity indices respectively. Results showed that trait-based functional diversity had a stronger correlation with ecosystem processes than non-trait taxonomic diversity did. Among the four components of diversity, dominance (in terms of mean trait value index) was the best in explaining the variation in ecosystem processing. Richness and divergence also had significant correlations with ecosystem properties in some instances. By contrast, evenness had no significant correlation with most of the studied ecosystem properties. Our results indicated that wetland ecosystem properties are significantly related to certain traits of the dominant species. Thus, the dominant species and functional traits should be considered before the number of species in managing diversity and enhancing certain ecosystem functions of wetlands, especially in the case of conservation.  相似文献   

14.
15.
生物多样性的海拔分布格局是生态学研究的热点。海拔作为综合性因子驱动着植物群落的物种、系统发育与功能多样性的空间分布。以戴云山南坡900-1600 m森林植物群落为研究对象,探讨物种多样性、系统发育指数与环境驱动因子的相互关系以及环境因子在群落构建与多样性维持中的重要意义。结果表明:(1)森林植物群落的系统发育多样性与物种多样性沿海拔均呈现中间高度膨胀格局。(2)物种多样性Margalef指数、Shannon-Wiener指数与系统发育多样性指数呈显著正相关,表明物种多样性越高,系统发育多样性也越高。Shannon-Wiener指数与物种多样性指数(Margalef、Pielou、Simpson指数)、系统发育多样性及系统发育结构都存在显著相关性,一定程度上Shannon-Wiener指数可以代替其他指数。Pielou指数、Simpson指数、Shannon-Wiener指数与系统发育结构NRI (Net relatedness index)指数、NTI (Net nearest taxa index)指数存在显著正相关,表明群落优势度、均匀度与系统发育结构相关性较强。(3)土壤全磷含量是影响系统发育多样性和物种多样性的主要驱动因子,土壤含水量是影响Shannon-Wiener、Pielou、Simpson指数的最显著因子,海拔是影响群落系统发育结构的主要因素。海拔是影响系统发育结构变化的主要环境因子,而土壤因子是影响物种多样性与系统发育多样性的主要因素,进一步验证了物种多样性与系统发育多样性的高度相关,结果旨在揭示物种群落空间分布规律。  相似文献   

16.
On the information-theoretical meaning of Hill's parametric evenness   总被引:3,自引:0,他引:3  
The degree to which abundances are divided equitably among community species or evenness is a basic property of any biological community. Several evenness indices have been proposed to summarize community structure. However, despite their potential applicability in ecological research, none seems to be generally preferred. In this paper we show that, unlike other evenness indices without any clear information-theoretical meaning, Hill's parametric diversity measure E ,0 has an immediate relation to Rényi's generalized information. Therefore, E ,0 might be adequate for summarizing community structure within the context of a general theoretical framework of diversity analysis based on information theory.  相似文献   

17.
夏迎  阳文静  钟洁  张琍  刘丹丹  游清徽 《生态学报》2024,44(8):3337-3347
理解生物多样性对生态系统功能及稳定性的影响对于制定有效的保护管理策略有重要意义。然而,目前生物多样性与群落生产力、稳定性的关系仍存在争议。在鄱阳湖湿地布设30个采样点,于2019年秋季开展大型底栖无脊椎动物群落野外调查。基于底栖动物群落数据,采用广义加性模型分析物种、谱系、功能多样性对鄱阳湖湿地底栖动物群落次级生产力与稳定性的影响。结果表明:底栖动物群落的次级生产力与反映物种多样性的指数(Simpson多样性指数、Shannon-Wiener多样性指数、Pielou均匀度指数)、分类多样性指数、平均分类差异指数、功能丰富度指数等呈显著的负相关,其中Pielou均匀度指数与次级生产力的相关度最高(r2=0.33)。功能多样性对群落次级生产力的空间分异有最高的解释度(r2=0.75)。P/B值(次级生产力与生物量之比代表群落稳定性)与物种、谱系、功能多样性指数均呈正相关,其中功能丰富度与P/B值的相关度最高(r2=0.22)。反映物种多样性的三个指数总体上对P/B值的空间分异解释度最高(r2=0.37)。谱系多样性与次级生产力、P/B值的相关性相对较弱。生物多样性指数总体分别解释了次级生产力和群落稳定性中81.9%、54.8%的变异。上述研究结果表明,生物多样性与群落生产力、稳定性的关系可能因具体的生物群落而异。研究结果对于鄱阳湖湿地的底栖生物多样性保护有参考价值。  相似文献   

18.
The possibility of calculating useful microbial community diversity indices from environmental polar lipid fatty acid and 16S rDNA PCR-DGGE data was investigated. First, the behavior of the species richness, Shannon's, and Simpson's diversity indices were determined on polar lipid fatty acid profiles of 115 pure cultures, communities constructed from those profiles with different numbers of species, and constructed communities with different distributions of species. Differences in the species richness of these artificial communities was detected by all three diversity indices, but they were insensitive to the evenness of the distribution of species. Second, data from a field experiment with substrate addition to soil was used to compare the methods developed for lipid- and DNA-based diversity indices. Very good agreement was found between indices calculated from environmental polar lipid fatty acid profiles and denaturing gradient gel electrophoresis profiles from matched samples (Pearson's correlation coefficient r=0.95-0.96). A method for data pre-treatment for diversity calculations is described.  相似文献   

19.
Tree species diversity of four tropical forest vegetation types was investigated in Xishuangbanna, southwestern China. These are: tropical seasonal rain forest, tropical montane rain forest, evergreen broad-leaved forest and monsoon forest over limestone. A total of 17 samples were taken and four species diversity indices were calculated: Shannon-Wiener's H, the complement of Simpson's index, d, Fisher's and evenness index E. The results reveal the long-tailed rank/abundance diagrams of these forests. However, this feature is greatly reduced in the samples of monsoon forest over limestone. Tropical seasonal rain forest shows the highest tree species diversity of all four vegetation types. Owing to the variation of microenvironment, diversity values within the same vegetation type vary between the samples from different patches. The tree species diversity of single-dominant rain forest is not significantly lower than that of mixed rain forest, because the dominant species of some single-dominant rain forests are principally in the emergent layer. This is composed of sparse and huge trees of one species and, consequently, creates a unique canopy architecture and more heterogeneous microenvironments for the more diversified species composition under the emergent layer. The occurrence of tree species with small population sizes, particularly of species represented by only one individual, is highly correlated with the tree species diversity of the local forest vegetation. They are crucial elements in the richness of local biodiversity.  相似文献   

20.
The diversity and composition of drift invertebrate assemblages were evaluated along a longitudinal gradient of an altitudinal stream in southeastern Brazil. The main goal of this study was to evaluate the influence of seasonality, stream order, and some abiotic factors on invertebrate drift and the use of drifting invertebrate assemblages to assess aquatic invertebrate diversity. Drift samples were collected over a 24 h period using nets (open area of 0.08 m2; mesh 0.250 mm), partially submerged (60%) in the water column. Taxonomic richness, Pielou evenness (J), Shannon–Wiener diversity (H), and total density of drift invertebrate assemblages were used in unpaired t-tests, Kruskal–Wallis and stepwise multiple regression analysis. The results showed a high taxonomic richness of aquatic invertebrates, with 91 taxa found. Chironomidae and Ephemeroptera represented together c. 80% of the total density of drift organisms. The drift approach allowed the collection of new and rare taxa, besides the knowledge of pupae stage of several chironomid genera. Significant differences in the taxonomic richness and diversity of drift invertebrate assemblages were found between the rainy and dry periods, indicating a significant influence of seasonality. An increase in water flow and electrical conductivity were associated with the increase in the taxonomic richness and diversity in the rainy period. No significant differences were found among the other abiotic variables among the stream orders.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号