首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
We aimed to assess the bioaccumulation of selected four trace metals (Cd, Ni, Zn and Co) in four tissues (muscles, skin, gills and liver) of a freshwater fish Wallago attu (lanchi) from three different sites (upstream, middle stream and downstream) of the Indus River in Mianwali district of Pakistan. Heavy metal contents in water samples and from different selected tissues of fish were examined by using flame atomic absorption spectrometry. The data were statistically compared to study the effects of the site and fish organs and their interaction on the bioaccumulation pattern of these metals at P < 0.05. In W. attu the level of cadmium ranged from 0.004 to 0.24; nickel 0.003–0.708; cobalt 0.002–0.768 and zinc 47.4–1147.5 μg/g wet weight. The magnitude of metal bioaccumulation in different organs of fish species had the following order gills > liver > skin > muscle. The order of bioaccumulation of these metals was Ni < Zn < Co < Cd. Heavy metal concentrations were increased during the dry season as compared to the wet season. The results of this study indicate that freshwater fish produced and marketed in Mianwali have concentrations below the standards of FEPA/WHO for these toxic metals.  相似文献   

2.
The bioaccumulation of chromium(VI), nickel(II), copper(II), and reactive dye by the yeast Rhodotorula mucilaginosa has been investigated in media containing molasses as a carbon and energy source. Optimal pH values for the yeast cells to remove the pollutants were pH 4 for copper(II) and dye, pH 6 for chromium(VI) and dye, and pH 5 for nickel(II) and dye in media containing 50 mg l?1 heavy metal and 50 mg l?1 Remazol Blue. The maximum dye bioaccumulation was observed within 4–6 days and uptake yields varied from 93% to 97%. The highest copper(II) removal yields measured were 30.6% for 45.4 mg l?1 and 32.4% for 95.9 mg l?1 initial copper(II) concentrations. The nickel(II) removal yield was 45.5% for 22.3 mg l?1, 38.0% for 34.7 mg l?1, and 30.3% for 62.2 mg l?1. Higher chromium(VI) removal yields were obtained, such as 94.5% for 49.2 mg l?1 and 87.7% for 129.2 mg l?1 initial chromium(VI) concentration. The maximum dye and heavy metal bioaccumulation yield was investigated in media with a constant dye (approximately 50 mg l?1) and increasing heavy metal concentration. In the medium with 48.9–98.8 mg l?1 copper(II) and constant dye concentration, the maximum copper(II) bioaccumulation was 27.7% and 27.9% whereas the maximum dye bioaccumulation was 96.1% and 95.3%. The maximum chromium(VI) bioaccumulation in the medium with dye was 95.2% and 80.3% at 48.2 and 102.2 mg l?1 chromium(VI) concentrations. In these media dye bioaccumulation was 76.1% and 35.1%, respectively. The highest nickel(II) removal was 6.1%, 20.3% and 16.0% in the medium with 23.8 mg l?1 nickel(II) + 37.8 mg l?1 dye, 38.1 mg l?1 nickel(II) + 33.4 mg l?1 dye and 59.0 mg l?1 nickel(II) + 39.2 mg l?1 dye, respectively. The maximum dye bioaccumulation yield in the media with nickel(II) was 94.1%, 78.0% and 58.7%, respectively.  相似文献   

3.
In this study, a quantitative real-time PCR (qPCR) assay targeting the second internal transcribed spacer (ITS2) of the nuclear-encoded ribosomal RNA gene (rDNA) was developed for Alexandrium tamiyavanichii, a harmful tropical marine dinoflagellate. This species is of concern because it produces toxins that cause paralytic shellfish poisoning (PSP). The qPCR assay employed hydrolysis probe technology and showed high specificity, with a detection limit of 102 gene copies (less than one cell equivalent). Using this assay, the spatial distribution of A. tamiyavanichii was assessed, for the first time, in the southeastern South China Sea and the Sulu Sea. Plankton samples were collected from 71 stations during a scientific cruise from the Research Vessel Sonne as part of the joint EU project on Stratosphere ozone: Halogens in a Varying Atmosphere (SHIVA), conducted in November 2011. The highest cell densities were detected offshore of Kuching, southern Borneo (150 cells l−1) and exceeded the threshold level of 20–40 cells l−1 where the bioaccumulation of PSP toxins by shellfish is of concern. The distribution of A. tamiyavanichii was patchy horizontally with the highest cell concentrations found mainly offshore of southern Borneo, and a heterogeneous vertical distribution was observed above the pycnocline. The A. tamiyavanichii qPCR assay proved its applicability, specificity and sensitivity, and provides an alternative implementation tool for harmful microalgae monitoring programs.  相似文献   

4.
The importance of earthworms in metal pollution monitoring is widely recognized in terrestrial ecosystems. Metal bioaccumulation by soil-dwelling earthworms can be used as an ecological indicator of metal availability in soils. In this study, we quantify the level of DTPA extractable metals in casts and tissues of earthworms (endogeic: Metaphire posthuma (Vaillant) and anecic: Lampito mauritii Kinberg) and ingesting soils, collected form cultivated land, urban garden and sewage soils. Soil and worm casts collected from sewage and cultivated land showed the greater metal concentrations. The concentration of Zn, Fe, Pb and Mn in earthworm casts was in the order: sewage soil > cultivated land > urban garden, while for Cu and Cd the order was cultivated land > sewage soil > urban garden. Data suggested that the level of DTPA extractable metals was higher than that of surrounding soils. We got close relationships between metal concentration in worm tissues and surrounding soils: Zn (r2 = 0.94 and 0.89, P < 0.01 for both), Fe (r2 = 0.95 and 0.97, P < 0.01 for both), Cu (r2 = 0.93 and 0.96, P < 0.01), Pb (0.63, P < 0.01 and 0.57, P > 0.05), and Cd (r2 = 0.15, P > 0.01 and 0.75, P < 0.01), respectively, for M. posthuma and L. mauritii. The study clearly indicates that earthworms have efficient potentials for bioaccumulation of metals in their tissues which can be used as an ecological indicator of soil contaminations. A species-specific metal accumulation pattern was observed in studied earthworms. Comparatively, endogeic showed the higher metal contents in their tissues than anecic (t-test: P < 0.05); collected form different habitats studied. Data suggested that species-specific feeding behaviour, earthworm niche structure, ecological category of inhabiting earthworm and even horizontal distribution of contaminants in soil layers are some major determinant for metal accumulation patterns in soil dwelling earthworms. The difference in burrowing patterns can influence the patterns of metal bioaccumulations between endogeic and anecic, although other factors are also contributory. Further more detailed study is still required to elaborate the proposed hypothesis.  相似文献   

5.
Vicia faba L. seeds were grown in a pot experiment on soil, mine tailings, and a mixture of both to mimic field situations in cultivated contaminated areas near mining sites. Metals in the substrates and their translocation in root, stem and leaf tissues were investigated, including morphological responses of plants growing on mine tailings. Metal concentration – and generally bioaccumulation – was in the order: roots > leaves > stems, except Pb and Cd. Translocation was most significant for Zn and Cd, but limited for Pb. Metal concentration in root and leaf was not proportional to that in the substrates, unexpectedly the minimum being observed in the mixed substrate whilst plant growth was retarded by 20% (38% on tailings). Calcium, pH, organic matter and phosphorus were the main influencing factors for metal translocation. The ultrastructure of V. faba L. cells changed a lot in the mine tailings group: root cell walls were thickened with electron dense Pb, Zn and C particles; in chloroplasts, the number of plastoglobuli increased, whereas the thylakoids were swollen and their number decreased in grana. Finally, needle-shaped crystalline concretions made of Ca and P, with Zn content, were formed in the apoplast of the plants. The stratagems of V. faba L. undergoing high concentrations of toxic metals in carbonate substrate, suggest root cell wall thickening to decrease uptake of toxic metals, a possible control of metal transport from roots to leaves by synthesizing phytochelators–toxic metal complexes, and finally a control of exceeded Ca and metal concentration in leaves by crystal P formation as ultimate response to stress defense. The geochemical factors influencing metal availability, guaranty a reduction of metal content in plant growing on mixed tailing/soil substrate as far as carbonate are not completely dissolved.  相似文献   

6.
Recent studies indicate that elasmobranch fish respond differently to metal exposure than marine teleosts. Accumulation rates can be high, which despite the fact that normal background levels for metals in the marine environment are low, is worrying due to the long life span and late fecundity of most shark. The goals of the present study were to examine differences in accumulation rates and toxicity of a range of metals at equimolar concentrations (10 µM) in the Mediterranean or spotted dogfish, Scyliorhinus canicula. For this purpose, we exposed the dogfish to Ni (587 µg/L), Cd (1124 µg/L), Pb (2072 µg/L), Cu (635 µg/L), and Ag (1079 µg/L and two additional exposures at 10 µg/L and 1 µg/L) for one week and measured total metal accumulation, metallothionein induction, and parameters related to osmoregulation. Our study confirms the high toxicity and accumulation rates of Ag for elasmobranch fish, even at levels 100 to 1000 times lower than exposure levels of other metals. Also Pb accumulated readily in all organs, but did not cause any osmoregulatory disturbance at the exposure levels used. Ni and Cd seem to accumulate primarily in the kidney while Cu mainly accumulated in liver. In contrast to Ni and Cd, the three other metals Ag, Cu and Pb accumulated in the rectal gland, an important organ for osmoregulation and possible target organ for metal toxicity. Only Cu succeeded in initiating a protective response by inducing MT synthesis in liver and gills.  相似文献   

7.
The cyanobacterial toxin cylindrospermopsin (CYN) has become a globally important secondary metabolite due to the negative effect it has on human and animal health. As a means of evaluating the risk of human exposure to CYN, the bioaccumulation and depuration of the toxin in lettuce (Lactuca sativa L.) and arugula (Eruca sativa Mill.) were investigated, after irrigation with contaminated water. The vegetables were irrigated for 7 days with CYN (3, 5 and 10 μg/L) contaminated water (bioaccumulation phase), and subsequently, irrigated for 7 days with uncontaminated distilled water (depuration phase). In general, the bioaccumulation of CYN in both vegetables decreased with increasing exposure concentration. Bioconcentration factor (BCF) of CYN increased with the progression of the experiment at 3.0 μg/L CYN, while the reverse occurred at 5 and 10 μg/L CYN. In arugula, BCF increased at all CYN exposure concentrations throughout the study. The depuration of CYN decreased with increasing exposure concentration but was highest in the plants of both species with the highest bioaccumulation of CYN. Specifically, in plants previously irrigated with water contaminated with 3, 5 and 10 μg/L CYN, the depuration of the toxin was 60.68, 27.67 and 18.52% for lettuce, and 47, 46.21 and 27.67% for arugula, respectively. Human health risks assessment revealed that the consumption of approximately 10 to 40 g of vegetables per meal will expose children and adults to 1.00-6.00 ng CYN/kg body mass for lettuce and 2.22-7.70 ng CYN/kg body mass for arugula. The irrigation of lettuce and arugula with contaminated water containing low CYN concentrations constitutes a potential human exposure route.  相似文献   

8.
Population density and biomass of bacteria and meiofauna were investigated seasonally in the sediments of the north-western bank of Red Sea. Samples of sediments were collected seasonally from three different stations to determine microphytobenthic biomass (chlorophyll a), protein, lipid, carbohydrate, and total organic matter concentrations. These investigations revealed that microbial components tended to increase their dominancy, whereas sensitive meiofauna were extremely reduced during the entire study period. Thus a very low density of the total meiofauna (with an annual average of 109 ± 26 ind./10 cm2) was recorded whilst the benthic microbial population densities exhibited higher values (ranging from 0.31 ± 0.02 × 108 to 43.67 ± 18.62 × 108/g dry sediment). These changes in the relative importance analysis of benthic microbial components versus meiofaunal ones seem to be based on the impact of organic matter accumulation on the function and structure of these benthic communities. Proteins, lipids and carbohydrates showed very low concentration values, and the organic matter mostly consisted of carbohydrates, reflecting lower nutritional values for benthic fauna in general and meiofauna in particular. The distribution of microbial and meiofaunal communities seems to be dependent on the quality of the organic matter rather than on its quantity. Total organic matter concentrations varied between 5.8 and 7.6 mg/g, with organic carbon accounting for only 32% of the total organic matter. Chlorophyll a attained very low values, fluctuating between 0.11 and 0.56 μg/g, indicating the oligotrophy of the studied area. The very low concentration of chlorophyll a in the Red Sea sediment suggests that the sedimentary organic matter, heterotrophic bacteria and/or protozoa constitute an alternative resource that is consumed by meiofauna when algae are less abundant. Protozoa, therefore, represent the “missing link in bacteria–meiofauna interaction in the Red Sea marine sediment ecosystem.  相似文献   

9.
Extant research has documented the effects of intranasal administration of oxytocin (OT), and to a lesser degree Arginine Vasopressin (AVP) – two structurally-related neuropeptides – on brain and behaviour, yet the effects of exogenous manipulation of one on circulating levels of the other remain unknown. Studies have shown that OT administration impacts the peripheral levels of numerous hormones; however, whether OT administration also increases AVP concentrations has not been explored. Utilizing a double-blind placebo-controlled within-subject design, ten male and female subjects provided ten saliva samples over four consecutive hours: at baseline and nine times following OT administration. Results indicate that salivary AVP increased in the first hour following OT manipulation (OT condition: mean AVP = 2.17 pg/ml, SE = 28, placebo condition: mean AVP = 1.42 pg/ml, SE = .18) but returned to baseline levels at the next assessment (80 min) and remained low for the remaining period. Similar to OT, AVP showed high degree of individual stability and baseline levels of AVP correlated with AVP concentrations at the first and second post-administration hours regardless of drug condition (Pearson r = .85–.93). Validity of salivary AVP ELISA measurement was verified by demonstrating individual stability of salivary AVP over a six-month period (r = .70, p < .000) as well correlation with plasma levels over the same period (r = .32, p = .037) in a sample of 45 young adults who did not participate in the current study. Overall, findings suggest a potential crosstalk between OT and AVP and indicate that baseline levels of the two neuropeptides may shape the degree to which these systems respond to exogenous manipulation.  相似文献   

10.
Aquatic invertebrates take up and accumulate essential and non-essential trace metals even when both are likely to be poisonous. In order to study the potential of the metallothioneins (MTs) as biomarkers of metal contamination in native shrimp Palaemonetes argentinus, organisms have been exposed at 0, 5, 50 and 500 μg L−1 of zinc for 96 h. Moreover, accumulation and subcellular distribution of this essential metal were evaluated. A significant Zn accumulation was observed in different body sections. Higher Zn levels occurred in cephalothorax compared to abdomen, especially at the highest exposure concentration (500 μg Zn L−1). A clear differential subcellular metal distribution between cephalothorax and abdomen was also observed. In cephalothorax Zn was similarly distributed between the soluble and insoluble fractions; while in abdomen, when total Zn increased, insoluble metal augmented more markedly than the soluble one. Cytosolic Zn levels increased more in cephalothorax than in abdomen of shrimps exposed to 500 μg Zn L−1 when compared to control. Finally, a significant induction of MTs was observed in cephalothorax at 500 μg Zn L−1. A potential role for MTs as biomarkers in P. argentinus should be further studied to enhance the sensitivity of the response, although it is likely that MTs play a key role in metal detoxification since the increase of these proteins is linked to metal challenge.  相似文献   

11.
The recovery of historic community assemblages on reefs is a primary objective for the management of marine ecosystems. Working under the overall hypothesis that, as fishing pressure increases, the abundance in upper trophic levels decreases followed by intermediate levels, we develop an index that characterizes the comparative health of rocky reefs. Using underwater visual transects to sample rocky reefs in the Gulf of California, Mexico, we sampled 147 reefs across 1200 km to test this reef health index (IRH). Five-indicators described 88% of the variation among the reefs along this fishing-intensity gradient: the biomass of piscivores and carnivores were positively associated with reef health; while the relative abundances of zooplanktivores, sea stars, and sea urchins, were negatively correlated with degraded reefs health. The average size of commercial macro-invertebrates and the absolute fish biomass increased significantly with increasing values of the IRH. Higher total fish biomass was found on reefs with complex geomorphology compared to reefs with simple geomorphology (r2 = 0.14, F = 44.05, P < 0.0001) and the trophic biomass pyramid also changed, which supports the evidence of the inversion of biomass pyramids along the gradient of reefs’ health. Our findings introduce a novel approach to classify the health of rocky reefs under different fishing regimes and therefore resultant community structures. Additionally, our IRH provides insight regarding the potential gains in total fish biomass that may result from the conservation and protection of reefs with more complex geomorphology.  相似文献   

12.
Because of their vulnerable population status, assessing exposure levels and impacts of toxins on the health status of Gulf of Mexico marine turtle populations is critical. From 2011 to 2013, two large blooms of the red tide dinoflagellate, Karenia brevis, occurred along the west coast of Florida USA (from October 2011 to January 2012 and October 2012 to April 2013). Other than recovery of stranded individuals, it is unknown how harmful algal blooms affected the Kemp's ridley sea turtles (Lepidochelys kempii) inhabiting the affected coastal waters. It is essential to gather information regarding brevetoxin exposure in these turtles to determine if it poses a threat to marine turtle health and survival. From April 2012 to May 2013, we collected blood from 13 immature Kemp's ridley turtles captured in the Pine Island Sound region of the Charlotte Harbor estuary. Nine turtles were sampled immediately after or during the red tide events (bloom group) while four turtles were sampled between the events (non-bloom group). Plasma was analyzed for total brevetoxins (reported as ng PbTx-3 eq/mL), superoxide dismutase (SOD) activity, total protein concentration and protein electrophoretic profiles (albumin, alpha-, beta- and gamma-globulins). Brevetoxin concentrations ranged from 7.0 to 33.8 ng PbTx-3 eq/mL. Plasma brevetoxin concentrations in the nine turtles sampled during or immediately after the red tide events were significantly higher (by 59%, P = 0.04) than turtles sampled between events. No significant correlations were observed between plasma brevetoxin concentrations and plasma proteins or SOD activity, most likely due to the small sample size; however alpha-globulins tended to increase with increasing brevetoxin concentrations in the bloom group. Smaller (carapace length and mass) bloom turtles had higher plasma brevetoxin concentrations than larger bloom turtles, possibly due to a growth dilution effect with increasing size. The research presented here improves the current understanding of potential impacts of environmental brevetoxin exposure on marine turtle health and survival.  相似文献   

13.
The composition and distribution of the benthic meiofauna assemblages of the Egyptian coasts along the Red Sea are described in relation to abiotic variables. Sediment samples were collected seasonally from three stations chosen along the Red Sea to observe the meiofaunal community structure, its temporal distribution and vertical fluctuation in relation to environmental conditions of the Red Sea marine ecosystem. The temperature, salinity, pH, dissolved oxygen, and redox potential were measured at the time of collection. The water content of the sediments, total organic matters and chlorophyll a values were determined, and sediment samples were subjected to granulometric analysis. A total of 10 meiofauna taxa were identified, with the meiofauna being primarily represented by nematodes (on annual average from 42% to 84%), harpacticoids, polycheates and ostracodes; and the meiofauna abundances ranging from 41 to 167 ind./10 cm2. The meiofaunal population density fluctuated seasonally with a peak of 192.52 ind./10 cm2 during summer at station II. The vertical zonation in the distribution of meiofaunal community was significantly correlated with interstitial water, chlorophyll a and total organic matter values. The present study indicates the existence of the well diversified meiofaunal group which can serve as food for higher trophic levels in the Red Sea interstitial environment.  相似文献   

14.
《Reproductive biology》2014,14(3):218-223
Hair analysis has been proposed as a minimally invasive technique capable of furnishing information regarding the stress response during medium- and long-term periods. Bristle samples were collected from the rump region of sows at three key physiological phases (before delivery – BD; weaning time – WT; pregnancy diagnosis – PD) during consecutive reproductive cycles in order to test swine hair as a reliable matrix of cortisol evaluation. Cortisol was extracted from the bristles and assayed using radioimmunoassay. The highest mean hair cortisol concentrations were demonstrated (p < 0.001) at the PD time points (20.1 ± .95 and 16.29 ± 2.15 pg/mg). Moreover, cortisol was significantly higher (p < 0.001) at BD2 (10.48 ± 0.96 pg/mg) as compared to BD1 (5.17 ± 0.51 pg/mg) and WT1 (6.01 ± 0.47 pg/mg). The various physiological phases had a significant effect on cortisol concentration (p < 0.00001) with a higher cortisol concentration found during late pregnancy and lactation than in early-mid pregnancy. This could be due not only to the physiological hormonal status, but also to the different housing conditions (single crates vs. group housing). The season of the year was also observed to have an effect (p < 0.005), with the lowest cortisol concentration recorded during the hot season.  相似文献   

15.
Blooms of the toxic dinoflagellate Karenia mikimotoi (K. mikimotoi) have occurred frequently in the East China Sea in recent decades and were responsible for massive mortalities of abalones in Fujian coastal areas in 2012, however, little is known about the effects of these blooms on other marine organisms. In this study, the toxic effects and the possible mechanisms of toxicity of K. mikimotoi from Fujian coastal waters on typical marine organisms at different trophic levels, including zooplankton (Brachionus plicatilis, Artemia salina, Calanus sinicus, and Neomysis awatschensis) and aquaculture species (Penaeus vannamei and Scophthalmus maximus) were investigated. At a bloom density of 3 × 104 cells/mL, the Fujian strain of K. mikimotoi significantly affected the tested organisms, which had mortality rates at 96 h of 100, 23, 20, 97, 33, and 53%, respectively. Moreover, the intact cell suspension was toxic to all tested species, whereas cell-free culture and the ruptured cell suspension had no significant effects on the tested organisms. Possible mechanisms for this toxic effect, including reactive oxygen species (ROS) and hemolytic toxins, were evaluated. For K. mikimotoi, 0.014 ± 0.004 OD/(104 cells) superoxide (O2) and 3.00 ± 0.00 nmol/(104 cells) hydrogen peroxide (H2O2) were measured, but hydrogen peroxide did not affect rotifers at that concentration, and rotifers were not protected from the lethal effects of K. mikimotoi when the enzymes superoxide dismutase and catalase were added to counteract the ROS. The lipophilic extract of K. mikimotoi had a hemolytic effect on rabbit erythrocytes but exhibited no significant toxicity. These results suggest that this strain of K. mikimotoi can have detrimental effects on several typical marine organisms and that its toxicity may be associated with intact cells but is not related to ROS or hemolytic toxins.  相似文献   

16.
The hypothesis tested in this study was if medicinal plants could be grown as alternative crops in heavy metal polluted soils without contamination of the final marketable produce. Furthermore, medicinal crops may offer a phytoremediation option for mildly heavy metal polluted agricultural soils. The effect of metal-enriched soils was evaluated in five medicinal species (Bidens tripartita L., Leonurus cardiaca L., Marrubium vulgare L., Melissa officinalis L. and Origanum heracleoticum L.). Soils were sampled in the vicinities of the Non-Ferrous Metals Combine (Pb–Zn smelter) near Plovdiv, Bulgaria, from plots at 0.5 km (soil 1), 3 km (soil 2), 6 km (soil 3) and 9 km (control soil) from the smelter. Cadmium, Pb and Zn concentration in soil 1 were above the critical total (HNO3-extractable) concentrations for these elements in soils. Generally, heavy metals in soil 1 decreased dry mater yields of the five species relative to the control. However, the essential oil content of M. vulgare, M. officinalis and O. heracleoticum was within the usual range for respective species and was not affected by the treatments. The overall metal uptake was in the order: B. tripartita > M. vulgare > O. heracleoticum > L. cardiaca > M. officinalis for Cd, L. cardiaca = M. vulgare > B. tripartita = M. officinalis = O. heracleoticum for Pb, L. cardiaca = M. vulgare > O. heracleoticum > B. tripartita = M. officinalis for Cu and B. tripartita > L. cardiaca = M. vulgare > M. officinalis = O. heracleoticum for Mn and Zn. Overall, metal concentration in plant parts was in the order: roots > leaves > flowers > stems for Cd, Pb and Cu, leaves > roots > flowers > stems for Mn and Zn. The concentration of Cd, Pb, Cu and Zn in plant tissue correlated to the exchangeable (EXCH) and the carbonate (CARB) bound fractions of metals in soil. Heavy metals caused disruptions of the plasma membrane of some root cortical cells and alterations in chloroplasts thylakoids in plants grown in soil 1. Metal content in teas prepared from the species was negligible, the essential oils were free of metals. Generally, the transfer factor (TF) was less than 1, indicating the tested species did not have a significant phytoextraction potential. This study demonstrated the three essential oil species M. vulgare, M. officinalis and O. heracleoticum can be grown as alternative high-value crops in metal polluted agricultural soils around the smelter and provide metal-free marketable produce.  相似文献   

17.
ObjectiveTo investigate possible alterations in cord blood levels of adipokine nesfatin-1 (secreted by adipose tissue and pancreatic β-cells and implicated in glucose metabolism and insulin resistance), as well as insulin, in large (LGA) and appropriate for gestational age (AGA) pregnancies, granted that these groups differ in body fat mass and metabolic/endocrine mechanisms.Materials and methodsCord blood nesfatin-1 and insulin concentrations were prospectively measured in 40 LGA (9 born from diabetic and 31 from non-diabetic mothers) and 20 AGA singleton full-term infants as well as their mothers.ResultsCord blood nesfatin-1 concentrations were significantly lower in LGA compared to AGA neonates (b = ?0.206, SE 0.07, p = 0.005). However, cord blood nesfatin-1 concentrations were elevated in infants born from mothers with gestational diabetes mellitus (GDM), compared to those born from non-diabetic mothers, after controlling for group (b = 0.190, SE 0.10, p = 0.05). Finally, cord blood nesfatin-1 concentrations were lower in cases of vaginal delivery (b = 0.11, SE 0.05, p = 0.042). Insulin levels were significantly elevated, as customized centiles increased (b = 0.004, SE = 0.002, p = 0.016). No significant correlation was found between insulin and nesfatin-1 in maternal and umbilical cord levels.ConclusionsIn this study nesfatin-1 levels are decreased in LGA compared to AGA fetuses. Fetal nesfatin-1 concentrations are higher in cases of GDM and cord blood nesfatin-1 concentrations are lower in cases of vaginal delivery.  相似文献   

18.
The hypothesis tested in this study was if medicinal plants could be grown as alternative crops in heavy metal polluted soils without contamination of the final marketable produce. Furthermore, medicinal crops may offer a phytoremediation option for mildly heavy metal polluted agricultural soils. The effect of metal-enriched soils was evaluated in five medicinal species (Bidens tripartita L., Leonurus cardiaca L., Marrubium vulgare L., Melissa officinalis L. and Origanum heracleoticum L.). Soils were sampled in the vicinities of the Non-Ferrous Metals Combine (Pb–Zn smelter) near Plovdiv, Bulgaria, from plots at 0.5 km (soil 1), 3 km (soil 2), 6 km (soil 3) and 9 km (control soil) from the smelter. Cadmium, Pb and Zn concentration in soil 1 were above the critical total (HNO3-extractable) concentrations for these elements in soils. Generally, heavy metals in soil 1 decreased dry mater yields of the five species relative to the control. However, the essential oil content of M. vulgare, M. officinalis and O. heracleoticum was within the usual range for respective species and was not affected by the treatments. The overall metal uptake was in the order: B. tripartita > M. vulgare > O. heracleoticum > L. cardiaca > M. officinalis for Cd, L. cardiaca = M. vulgare > B. tripartita = M. officinalis = O. heracleoticum for Pb, L. cardiaca = M. vulgare > O. heracleoticum > B. tripartita = M. officinalis for Cu and B. tripartita > L. cardiaca = M. vulgare > M. officinalis = O. heracleoticum for Mn and Zn. Overall, metal concentration in plant parts was in the order: roots > leaves > flowers > stems for Cd, Pb and Cu, leaves > roots > flowers > stems for Mn and Zn. The concentration of Cd, Pb, Cu and Zn in plant tissue correlated to the exchangeable (EXCH) and the carbonate (CARB) bound fractions of metals in soil. Heavy metals caused disruptions of the plasma membrane of some root cortical cells and alterations in chloroplasts thylakoids in plants grown in soil 1. Metal content in teas prepared from the species was negligible, the essential oils were free of metals. Generally, the transfer factor (TF) was less than 1, indicating the tested species did not have a significant phytoextraction potential. This study demonstrated the three essential oil species M. vulgare, M. officinalis and O. heracleoticum can be grown as alternative high-value crops in metal polluted agricultural soils around the smelter and provide metal-free marketable produce.  相似文献   

19.
The concentrations of heavy metals in the roots, rhizomes, stems and leaves of the aquatic macrophyte Phragmites australis (common reed), and in the corresponding water and sediment samples from the mouth area of the Imera Meridionale River (Sicily, Italy), were investigated to ascertain whether plant organs are characterized by differential accumulation, and to test the suitability of the various organs for heavy metal biomonitoring of water and soil. Heavy metals considered were Cd, Cr, Cu, Hg, Mn, Ni, Pb, Zn. Results showed that belowground organs were the primary areas of metal accumulation. In particular, metal concentrations in plant organs decreased in the order of root > rhizome  leaf > stem. All four organs showed significant differences in concentration for Cr, Hg, Mn, Zn, thus suggesting low mobility from roots to rhizomes and to aboveground organs. Although the organs followed different decreasing trends of metal concentration, the trend Mn > Zn > Pb > Cu was found in each plant organ. Mn showed the highest concentrations in all organs whereas the lowest concentrations regarded Cd and Cr in the belowground and aboveground organs, respectively. The toxic threshold was exceeded by Cr in roots, rhizomes and leaves, Mn in roots and leaves, Ni in roots. The highest average concentrations were found as follows: Cd, Hg, Pb, Zn in root, Cr, Mn, Ni in sediment, Cu in water. Positive linear relationships were found between heavy metal concentrations in all plant organs and those in water and sediment, thus indicating the potential use of such organs for pollution monitoring of water and sediment. Advantages of using plant species as biomonitors, especially Phragmites australis, were also discussed.  相似文献   

20.
We measured the concentrations of selected persistent organic pollutants (POPs) such as parent and halogenated polycyclic aromatic hydrocarbons (PAHs and HPAHs) and polybrominated diphenyl ethers (PBDEs) in indoor dust (ID) and indoor cockroach samples collected from Shenzhen, South China. Biota-dust accumulation factors (BDAFs) were computed and utilized to quantify targeted pollutant bioaccumulation in ID and cockroaches. Generally, halogenated compounds have higher BDAFs when compared to non-halogenated compounds. There are significant differences (p < 0.05) between the BDAFs of non-halogenated POPs (PAHs) and halogenated POPs (HPAHs and PBDEs). Correlation analysis of target pollutants’ levels in ID and cockroaches were also conducted. The correlation coefficients for PAHs are less than 0.2 (p > 0.5) suggesting no significant relationship exists for PAHs between ID and cockroaches. In contrast, significant correlations exist for halogenated POPs (HPAH and PBDE) between ID and cockroaches (correlation coefficients >0.94, p < 0.0001). Based on this, the potential of cockroaches to be used as reliable bioindicators of POPs contamination of indoor environments was preliminarily evaluated. Our results indicate that indoor cockroaches may be useful bioindicator of indoor pollution for HPAHs and PBDEs contaminations.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号