首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 20 毫秒
1.
基于云模型的鄱阳湖秋季周边湿地水体富营养化评价   总被引:3,自引:0,他引:3  
针对水体富营养化评价过程中存在随机性和模糊性的特点,基于鄱阳湖周边湿地30个采样点的实测水质数据,选取叶绿素a(Chl-a)、总磷(TP)、总氮(TN)、高锰酸盐指数(CODMn)及透明度(SD)为水质评价因子,生成云模型对鄱阳湖周边湿地水体进行富营养化评价,并与综合营养状态指数评价结果进行比较。结果表明:两种方法的评价结果存在一定差异,但都反映了鄱阳湖周边湿地水体总体上处于轻度富营养化状态。该方法能为鄱阳湖湿地水体富营养化评价提供重要的方法和手段。  相似文献   

2.
北京四海浮游藻类叶绿素含量与水体营养水平的研究   总被引:21,自引:0,他引:21  
1987年1-12月对北京四海叶绿素含量进行了逐月测定,结果表明,各海叶绿素含量明显不同。四海叶绿素含量年均变化在0.0075-0.0259mg/L之间,其中以前海为最低,北海为最高。叶绿素含量有明显的季节变化,冬季最低,夏、秋季最高。四海叶绿素a的含量随水温、色度、悬浮物、BOD5、COD、总磷、总氮、藻类数量的增加而增加,随水体透明度的上升而下降。用叶绿素含量作为指标对四海富营养程度评价结果为:西海、后海、前海为中略偏富营养,北海为富营养水体。    相似文献   

3.
基于组合可拓综合分析法的鄱阳湖流域水质富营养化评价   总被引:1,自引:0,他引:1  
王志强  田娜  缪建群  王海伦  王海  黄国勤 《生态学报》2017,37(12):4227-4235
长期跟踪定位评价湖泊的水质营养化程度,对于实现地区水功能具有重要意义。针对评价方法中指标选取的可行性、单一性、权重赋值的主观随意性以及水质变化的模糊性、随机性、动态性和生物指示性等特点,采用了可拓综合评价法和浮游生物调查与室内测定法相结合,构建了组合可拓综合分析法,一方面利用可拓综合分析法对鄱阳湖流域5个代表性观测站点的10年的年均(每2年)观测数据进行评价;另一方面通过浮游生物指示法对该5个站点的水质进行富营养化评价,以生物指示评价法所得等级与可拓综合分析法评定等级吻合的最多次数所对应等级作为组合可拓综合评价法的评价等级。结果表明:(1)自2006年以来鄱阳湖流域水体富营养化水平较为平稳,总体呈好转势态。2010年有4个观测点的水体达到富营养化程度,而在2014年湖区的蛤蟆石和鄱阳水质略有所改善,达到轻富营养化程度,都昌、康山、星子站点的水体为中营养化,改善幅度较大,水质较好;(2)从湖区的地理区位看,鄱阳湖湖区的南部和西部的水质富营养化程度总体上要好于北部、东部和中部湖区,水质富营养化程度表现为区域的不均匀性。  相似文献   

4.
300年来鄱阳湖营养盐演化重建与模拟   总被引:1,自引:0,他引:1  
廖梦娜  于革  郭娅 《生态学报》2016,36(8):2393-2402
水体富营养化已经成为全球性的问题而受到广泛关注,然而其发生的过程和机制尚未完全明了。在湖泊营养演化过程中,水文和生态是两个最基本的制约因素。相对于短期的和试验性的研究,长时间尺度的营养盐变化过程能更全面地揭示营养盐的演化机制。以我国最大的淡水湖——鄱阳湖为例,采用湖泊水体交换周期模型和湖泊生态-营养盐动力耦合模型,重建鄱阳湖营养盐的长期变化,并利用沉积钻孔代用指标加以验证。在此基础上探讨其演化机制,模拟的时间序列中营养盐变化对气候水文与生态系统存在两种不同的响应模式。敏感因子分析显示:典型同步响应期中(1812—1828 AD),气候水文因子的贡献率达79.1%,生态因子为20.9%;典型异步响应期中(1844—1860 AD),两者贡献率分别为36.4%和63.6%。在模拟的营养盐变化时间序列中同步期占62.5%,说明气候因子在营养盐演化过程中起重要的作用;异步期虽只占12.5%,但对湖泊营养盐作用、营养盐反馈生物量同样至关重要。相关分析结果显示,生物量增长与TP含量基本呈线性关系,但存在一个阈值。在没有超过阈值前,生物量对TP具有较好的调节作用;当超过阈值之后,生物量的调节作用减弱。  相似文献   

5.
To improve lake water quality, two experimental water transfers were conducted in winter–spring 2002 and summer–fall 2003 in Lake Taihu, a large shallow lake in China. Both observed data and estimated nutrient concentration with the elimination of effect from natural factors were used in this research to assess the spatial and temporal variations of water quality improvement induced by the two transfers. Clear improvement of water quality associated with deduction of TN, TP, and chlorophyll a (Chl-a) concentration was observed in many areas of the lake during the two water transfers. The over all reduction in TP concentration was notable in Southwest Zone, Centre Zone, and Dongtaihu Bay during the 2002 transfer, and was more pronounced in Meiliang Bay and Southwest Zone during the 2003 transfer period. However, the reduction in TN and Chl-a concentration was relatively weak. Results indicate a less impressive improvement of water quality from water transfer in large lakes than in small ones as the effectiveness of water transfer in large lakes is generally limited by large size, complex boundaries, and the difficulty of finding proper water source to be transferred. The comparison of observed and estimated water transfer effectiveness suggests a greater improvement of water quality derived from water transfer than appeared from the observation.  相似文献   

6.
Current status and future tendency of lake eutrophication in China   总被引:8,自引:0,他引:8  
Current trophic status and trend of Chinese freshwater lakes were investigated in this study. The results showed that all lakes studied were commonly undergoing the eutrophica-tion process, water quality decreased and lake's ecosystem is being declined. Most of the urban lakes are facing serious eutrophication. Many medium-sized lakes are in metrophic or eutrophic status, some local water are even approaching the hypertrophic level. The famous five freshwater lakes in China have entered into eutrophication in the condition of higher nutrient load. Lake Taihu, Hongze and Caohu are already in eutrophic state. Eutrophic lakes are mainly distributed in the middle and lower reaches of Yangtze River and Yungui plateau. Lake eutrophication developed rapidly. Among the 34 lakes studied in 1970's, most of lakes were in the mesotrophic status, mesotrophic water area accounted for 91.8%. With the nine year of 1978-1987 the area percentage of oligotrophic lakes decreased from 3.2% to 0.53%, and that of eutrophic lakes increased from 5.0% to 55.01%. Recent data showed 57.5% lakes were in eutrophic and hyper trophic status of the 40 surveyed lakes. Eutrophic trend of Lake Taihu, Chaohu and Xuanwu in the region of the middle and lower reaches of Yangtze River was predicated using the ecological stress model. The results showed that in 2008 Lake Taihu, Chaohu and Xuanwu might be of eutrophication, eutrophication and hypertrophication, respectively if no control measurement is taken. Provided the pollution water treatment rate is 60% in 2030, approximately 30 billion ton pollution water would still be discharged directly in the lakes. Therefore, in 2030 the urban lakes in China might be eutrophication or hypertrophication, and most of the medium-sized lakes at the urban-rural fringe might be in eutrophication or hypertrophication. The famous five biggest freshwater lakes in China might be eutrophication if control countermeasures are taken as now. Lake eutrophication has become a serious environmental problem in China. Based on the domestic and foreign experiences of the eutrophic control technologies, both nutrient pollution control and lake ecological restoration should be carried out and this may be the guidance for the eutrophic control of lakes in China.  相似文献   

7.

Current trophic status and trend of Chinese freshwater lakes were investigated in this study. The results showed that all lakes studied were commonly undergoing the eutrophication process, water quality decreased and lake’s ecosystem is being declined. Most of the urban lakes are facing serious eutrophication. Many medium-sized lakes are in metrophic or eutrophic status, some local water are even approaching the hypertrophic level. The famous five freshwater lakes in China have entered into eutrophication in the condition of higher nutrient load. Lake Taihu, Hongze and Caohu are already in eutrophic state. Eutrophic lakes are mainly distributed in the middle and lower reaches of Yangtze River and Yungui plateau. Lake eutrophication developed rapidly. Among the 34 lakes studied in 1970’s, most of lakes were in the mesotrophic status, mesotrophic water area accounted for 91.8%. With the nine year of 1978–1987 the area percentage of oligotrophic lakes decreased from 3.2% to 0.53%, and that of eutrophic lakes increased from 5.0% to 55.01%. Recent data showed 57.5% lakes were in eutrophic and hypertrophic status of the 40 surveyed lakes.

Eutrophic trend of Lake Taihu, Chaohu and Xuanwu in the region of the middle and lower reaches of Yangtze River was predicated using the ecological stress model. The results showed that in 2008 Lake Taihu, Chaohu and Xuanwu might be of eutrophication, eutrophication and hypertrophication, respectively if no control measurement is taken. Provided the pollution water treatment rate is 60% in 2030, approximately 30 billion ton pollution water would still be discharged directly in the lakes. Therefore, in 2030 the urban lakes in China might be eutrophication or hypertrophication, and most of the medium-sized lakes at the urban-rural fringe might be in eutrophication or hypertrophication. The famous five biggest freshwater lakes in China might be eutrophication if control countermeasures are taken as now.

Lake eutrophication has become a serious environmental problem in China. Based on the domestic and foreign experiences of the eutrophic control technologies, both nutrient pollution control and lake ecological restoration should be carried out and this may be the guidance for the eutrophic control of lakes in China.

  相似文献   

8.
Lake eutrophication is influenced by both anthropogenic and natural factors. Few studies have examined relationships between eutrophication parameters and natural factors at a large spatial scale. This study explored these relationships using data from 103 lakes across China. Eutrophication parameters including total nitrogen (TN), total phosphorus (TP), TN:TP ratio, chemical oxygen demand (CODMn), chlorophyll-a (Chl-a), Secchi depth (SD), and trophic state index (TSI) were collected for the period 2001–2005. Sixteen natural factors included three of geographic location, five of lake morphology, and eight of climate variables. Pearson correlation analysis showed that TP and TSI were negatively related to elevation, lake depth, and lake volume, and positively related to longitude. All eutrophication parameters, except for CODMn and Chl-a, showed no significant correlation with climate variables. Multiple regression analyses indicated that natural factors together accounted for 13–58% of the variance in eutrophication parameters. When the 103 study lakes were classified into different groups based on longitude and elevation, regression analyses demonstrated that natural factors explained more variance in TN, TP, CODMn, Chl-a, and TSI in western lakes than in eastern lakes. Lake depth, volume, elevation, and mean annual precipitation were the main predictors of eutrophication parameters for different lake groups. Although anthropogenic impacts such as point- and nonpoint-source pollution are considered as the main determinants of lake eutrophication, our results suggest that some natural factors that reflect lake buffer capacity to nutrient inputs can also play important roles in explaining the eutrophication status of Chinese lakes.  相似文献   

9.
Current status and future tendency of lake eutrophication in China   总被引:3,自引:0,他引:3  
Current trophic status and trend of Chinese freshwater lakes were investigated in this study. The results showed that all lakes studied were commonly undergoing the eutrophication process, water quality decreased and lake's ecosystem is being declined. Most of the urban lakes are facing serious eutrophication. Many medium-sized lakes are in metrophic or eutrophic status, some local water are even approaching the hypertrophic level. The famous five freshwater lakes in China have entered into eutrophication in the condition of higher nutrient load. Lake Taihu, Hongze and Caohu are already in eutrophic state. Eutrophic lakes are mainly distributed in the middle and lower reaches of Yangtze River and Yungui plateau. Lake eutrophication developed rapidly. Among the 34 lakes studied in 1970's, most of lakes were in the mesotrophic status,mesotrophic water area accounted for 91.8%. With the nine year of 1978-1987 the area percentage of oligotrophic lakes decreased from 3.2% to 0.53%, and that of eutrophic lakes increased from 5.0% to 55.01%. Recent data showed 57.5% lakes were in eutrophic and hypertrophic status of the 40 surveyed lakes.Eutrophic trend of Lake Taihu, Chaohu and Xuanwu in the region of the middle and lower reaches of Yangtze River was predicated using the ecological stress model. The results showed that in 2008 Lake Taihu, Chaohu and Xuanwu might be of eutrophication, eutrophication and hypertrophication, respectively if no control measurement is taken. Provided the pollution water treatment rate is 60% in 2030, approximately 30 billion ton pollution water would still be discharged directly in the lakes. Therefore, in 2030 the urban lakes in China might be eutrophication or hypertrophication, and most of the medium-sized lakes at the urban-rural fringe might be in eutrophication or hypertrophication. The famous five biggest freshwater lakes in China might be eutrophication if control countermeasures are taken as now.Lake eutrophication has become a serious environmental problem in China. Based on the domestic and foreign experiences of the eutrophic control technologies, both nutrient pollution control and lake ecological restoration should be carried out and this may be the guidance for the eutrophic control of lakes in China.  相似文献   

10.
基于小波理论的干旱区内陆湖泊叶绿素a的TM影像遥感反演   总被引:3,自引:0,他引:3  
史锐  张红  岳荣  张霄羽  王美萍  石伟 《生态学报》2017,37(3):1043-1053
叶绿素a(Chl-a)是衡量湖泊富营养化的重要指标,利用遥感技术动态监测面积较大的湖区水体中Chl-a浓度对了解湖区水质具有重要意义。以内蒙古乌梁素海为例,提出利用TM影像中的水体实测光谱进行小波去噪和光谱信号重构,并结合水质采样实测数据进行神经网络拟合,建立光谱反射率比值与Chl-a浓度的反演模型的方法。结果显示:小波理论和神经网络相结合的模型可以适用于估算乌梁素海Chl-a浓度,去噪后Chl-a浓度与光谱信号的相关系数(-0.575)较去噪前(-0.417)明显增强,去噪后的采样点光谱信号与Chl-a浓度之间表现出比原始信号更强的负相关性,证明了去噪后的观测值可进一步减弱随机误差的干扰和去除噪声,使观测数据更加逼近Chl-a浓度的真实情况,图像去噪重构结果显示重构后的光谱范围较之前有所缩窄,部分信号点得到了增强,但基本剖面结构并没有产生较大变化,反演模型的平均相对误差为0.142,与其他研究相比差别不大。反演得出的乌梁素海Chl-a浓度分布反映了污染源的分布,同时说明了乌梁素海Chl-a浓度在时空分布上呈现一定的差异,表现为丰水期呈现浅水区Chl-a浓度值高于湖心区,来水区高于其他湖区的分布趋势,枯水期乌梁素海中部呈现由西向东Chl-a浓度逐步降低的分布规律,西部呈均一化分布。反演模型基本可以满足实际预测的需要。但模型在具体应用中在影像数据采集、数据量及算法方面还有很大的改进空间,该方法的提出为干旱区大型内陆水体富营养化的实时定量遥感监测提供了新的解决方案。  相似文献   

11.
The present study investigates the zooplankton community dynamics and the abiotic environment in the eutrophic Lake Lysimachia (western Greece). The lake is considered to be recovering from eutrophication after the termination of an urban sewage inflow in 2000, and its waters are replenished constantly from the nearby oligotrophic Lake Trichonis. The results show that, although a decrease in nutrient concentrations was observed compared to the past, the lake still has eutrophic characteristics. This was reflected in the zooplankton community which is typical of those found in eutrophic lakes where rotifers prevail. Similarities among this lake and other nearby lakes were found considering the zooplankton community composition and seasonal variation. However, Lake Lysimachia is inhabited also by a number of different and even unique species (e.g., Moina micrura), suggesting that this ecosystem may be an important biodiversity refuge. Most of the zooplankton species were correlated with water temperature and, to a lesser extent, eutrophication key-water quality variables. Although there are few available data on the zooplankton of the lake, the abundance and composition of the community presenting characteristics indicative of intermediate trophic conditions and suggesting that the lake is probably under a kind of “biological” recovery.  相似文献   

12.
Eutrophication of landscape waters is drawing public concerns in China but few studies have been conducted on the problem associated with high water salinity as what happens at Sino-Singapore Tianjin Eco-city in Tianjin, a coastal metropolis of northern China. In order to find ways for eutrophication control, a comparative study was conducted on three landscape water bodies, namely Qingjing Lake, Jiyun River and Jiyun River Oxbow, which are under varied conditions of salinity, organic, and nutrients intrusion. The spatial and temporal variations of water quality were revealed by water sampling and analyses, and correlative relationships were obtained between water salinity and other parameters related to eutrophication. By utilizing a trophic level index (TLI), the eutrophication status of the three landscape water bodies in different seasons could further be evaluated. As a result, water temperature, as expected, showed the strongest effect on eutrophication because higher TLI together with higher Chl-a concentrations tended to occur in later spring and summer seasons, while nutrient concentration, especially TP, was also the determinative factor to the eutrophication status. Of the three water bodies, the Jiyun River Oxbow showed a salinity as high as 20 g/L or more in contrast with the other two water bodies with salinity as 4–5 g/L. Although its TP concentration was usually very low (about 0.1 mg/L), it was under a moderate eutrophication status almost in all seasons, indicating that high salinity tends to induce alga growth. Dilution of saline inflow and nutrients reduction could thus be proposed as the main measures for eutrophication control of landscape waters in the study area.  相似文献   

13.
沈玉莹  程俊翔  徐力刚  李仁英  游海林  杨海 《生态学报》2023,43(24):10399-10412
2022年鄱阳湖流域发生了特大干旱事件,对鄱阳湖生态环境产生了严重影响。为揭示极端水文干旱年的鄱阳湖浮游动物群落结构特征及其主要影响因素,于2022年1月(冬季)、4月(春季)、7月(夏季)和10月(秋季)对鄱阳湖浮游动物进行了综合调查。本次调查共鉴定出浮游动物70种(轮虫40种、桡足类17种和枝角类13种),丰度和生物量范围分别为0—152.67个/L和0—1.52 mg/L。浮游动物群落结构具有较大的时空差异:在季节上,物种数夏季最多,丰度和生物量呈现夏季最高、秋季最低的特征,干旱季节的Shannon-Wiener多样性指数和优势种组成明显不同于非干旱季节;在空间上,南部湖区的物种数、丰度、生物量高于北部湖区,多样性指数在中部湖区最高、北部湖区最低。极端水文干旱年的物种数、丰度和生物量均明显低于往年同期,但空间上的差异较小。相关性分析和冗余分析结果表明,浮游动物群落结构在干旱季节和非干旱季节的主要影响因素存在明显差异,其中干旱季节浮游动物群落结构主要受水温、水位、硝态氮、氨氮等的共同影响,非干旱季节受化学需氧量和水位的影响较大。总体上,极端水文干旱使得鄱阳湖浮游动物群落结构稳定性较...  相似文献   

14.
鄱阳湖采砂南移扩大影响范围——多源遥感的证据   总被引:2,自引:0,他引:2  
崔丽娟  翟彦放  邬国锋 《生态学报》2013,33(11):3520-3525
采砂是一项具有巨大生态影响的经济活动.利用多源遥感影像描述鄱阳湖中部的采砂分布,分析其对悬浮泥沙浓度的影响.2011年7月28日的Landsat Thematic Mapper (TM)5用于采砂相关船只的识别,2009-2011年7-8月的Terra卫星中分辨率成像光谱仪(MODIS)影像用于悬浮泥沙浓度的反演,(Before-after-control-impact,BACI)方法用于采砂影响评价.Landsat TM 5影像解译结果发现鄱阳湖中部的两个采砂区和90余艘船只,MODIS Terra反演结果显示在采砂区及其下游区域悬浮泥沙浓度剧增,BACI评价结果揭示采砂是导致此区域悬浮泥沙浓度增加的主要因素.平衡经济发展与生态保护之间的关系,将因采砂而造成的负面影响降到最低,使鄱阳湖的各种生态功能全面发挥是紧要的.  相似文献   

15.
The importance of aquatic vegetation to the ecologi-cal restoration has been recognized commonly bylimnolo-gists and lake managements[1—4].As to the ecologicalrestoration in eutrophicated lakes,it is of great signifi-cance to knowthe dynamic process of the ecosystemevo-lution in a macrophyte-dominated lake under the humanimpacts in historical period,to make it clear whether thecommunitystructure and ecological function would be af-fected bythe extension of the vegetation growth,tofind asolutionto remain ste...  相似文献   

16.
中国典型湖泊富营养化现状与区域性差异分析   总被引:4,自引:0,他引:4  
为全面科学地综合评估全国富营养化现状, 以全国五大湖区22个典型湖泊为研究对象, 科学评估了其富营养化状态, 分析了全国湖泊富营养化状态的区域性差异, 并探讨了富营养化状态与总磷的定量关系。结果表明, 2010—2011年, 59.1%的调研湖泊处于不同程度的富营养化状态, 其中云贵湖区的富营养化程度最为严重, 蒙新湖区的富营养化呈两极分化状态, 东北山地-平原湖区与东部湖区的湖泊基本均处于中营养-轻度富营养之间, 青藏高原湖区的富营养化程度最低。通过分析日照数、无霜期、气温、水深、海拔、降雨与湖泊营养状态的关系, 揭示了湖泊所处的地理位置是影响湖泊富营养化的基本因素, 具有区域性的分布规律。综合分析结果表明, 全国范围内湖泊中叶绿素a与总磷浓度存在显著相关性, 其中东部平原湖区、东北平原-山地湖区、青藏高原湖区和云贵高原湖区的叶绿素a与总磷浓度符合三次曲线方程, 蒙新湖区的叶绿素a与总磷浓度符合S型曲线方程; 东部平原湖区、东北平原-山地湖区、青藏高原湖区叶绿素浓度随着总磷浓度的增加, 首先出现1个极小值点, 然后出现1个极大值点, 其中3个湖区极小值点对应的总磷浓度分别为: 0.054、0.089和0.072 mg/L, 可为我国对应湖区的湖泊富营养化控制指标提供借鉴。  相似文献   

17.
Lake sediments are globally important carbon sinks. Although the fate of organic carbon in lake sediments depends significantly on microorganisms, only few studies have investigated controls on lake sedimentary microbial communities. Here we investigate the impact of anthropogenic eutrophication, which affects redox chemistry and organic matter (OM) sources in sediments, on microbial communities across five lakes in central Switzerland. Lipid biomarkers and distributions of microbial respiration reactions indicate strong increases in aquatic OM contributions and microbial activity with increasing trophic state. Across all lakes, 16S rRNA genes analyses indicate similar depth-dependent zonations at the phylum- and class-level that follow vertical distributions of OM sources and respiration reactions. Yet, there are notable differences, such as higher abundances of nitrifying Bacteria and Archaea in an oligotrophic lake. Furthermore, analyses at the order-level and below suggest that changes in OM sources due to eutrophication cause permanent changes in bacterial community structure. By contrast, archaeal communities are differentiated according to trophic state in recently deposited layers, but converge in older sediments deposited under different trophic regimes. Our study indicates an important role for trophic state in driving lacustrine sediment microbial communities and reveals fundamental differences in the temporal responses of sediment Bacteria and Archaea to eutrophication.  相似文献   

18.
Analysis of aquatic ecosystem data collected from large water bodies must consider spatial variations. A suite of pelagic survey stations exists for the Laurentian Great Lakes, but little is known about their redundancy. We present a strategy to delineate the lakes into zones based on water quality and phytoplankton biovolume. Water samples were collected from 72 sites in two seasons (spring and summer) from 2007 to 2010 in all five lakes. Integrated samples were analyzed for phytoplankton biovolume and nine water quality parameters. We conducted cluster analysis, principal components analysis and non-metric multidimensional scaling methods for water quality and phytoplankton taxon-specific biovolume for the Great Lakes basin and for each lake separately. There were significant lake-to-lake differences, and based on lake-specific analyses, Lake Superior, Lake Michigan and Lake Erie were each divided into three zones; Lake Huron and Lake Ontario were each grouped into two zones. The zones identified by water quality and phytoplankton provide an understanding of spatial distributions for evaluating monitoring data.  相似文献   

19.
考虑气候因子变化的湖泊富营养化模型研究进展   总被引:1,自引:0,他引:1  
苏洁琼  王烜  杨志峰 《应用生态学报》2012,23(11):3197-3206
气候因子是影响湖泊营养状态和进程的主要自然因素.在全球气候变化的趋势下,将气候因子的变化纳入湖泊富营养化模型中,可以为湖泊演化趋势分析和环境管理决策提供技术支持.本文首先分析了气温、降水、光照和大气等气候因子对湖泊富营养化的影响,进而对考虑气候因子变化的数理统计与分析模型、生态动力学模型、系统生态学模型及智能算法等的研究进行了综述.在此基础上,对完善气候因子变化下湖泊营养状态变化的模型研究进行了展望:1)加强气候因子作用于湖泊营养状态的机理研究;2)选择合适的气候模拟模型,合理设置气候变化情景,在不同模型嵌套时保证时空尺度的匹配;3)以水动力学模型为基础,耦合生态模型及智能算法等,并结合良好的气候模拟模型,以精确模拟预测气候变化下湖泊富营养化的演化过程和趋势.  相似文献   

20.
1. In view of the paucity of data on the response of warm shallow lakes to reductions in nutrient loading, this paper presents a long‐term limnological data set to document changes in the food‐web of a shallow Mediterranean lake (Lake Albufera, Valencia, Spain) that has experienced reductions in phosphorus (P) (77%) and nitrogen (N) (24%) loading following sewage diversion. 2. Nine years after sewage diversion, P concentration in the lake was reduced by 30% but remained high (TP = 0.34 mg L?1), although the mean water retention time in the lake was only 0.1 years. Nitrate concentrations did not significantly change, probably because the lake continued to receive untreated effluents from ricefields. 3. Chlorophyll a concentration was reduced by half (annual mean of 180 μg L?1). Cyanobacteria abundance remained high but its composition changed towards smaller species, both filamentous and chroococcal forms. 4. Cladocera abundance increased and reached peaks twice a year (December to March and July to September). After nutrient reduction, short‐term clear‐water phases (up to 5 weeks) occurred during February to March in several years, concomitant with annual flushing of the lake and lower fish densities. The abundance of Cladocera in winter contrasted with the spring peaks observed in northern restored shallow lakes. The zooplankton to phytoplankton biomass ratio remained lower than in northern temperate shallow lakes, probably because of fish predation on zooplankton. 5. Improvement of the water quality of Lake Albufera remained insufficient to counteract littoral reed regression or improve underwater light allowing submerged plants re‐colonise the lake. 6. Sewage diversion from Lake Albufera impacted the food web through the plankton, but higher trophic levels, such as fish and waterfowl, were affected to a lesser degree. Although the fish species present in the lake are mainly omnivorous, long‐term data on commercial fish captures indicated that fish communities changed in response to nutrient level and trophic structure as has been observed in restored shallow lakes at northern latitudes. 7. Phosphorus concentrations produced similar phytoplankton biomass in Lake Albufera as in more northern shallow lakes with abundant planktivorous fish and small zooplankton. However, in Lake Albufera, high average concentrations were maintained throughout the year. Overall, results suggest that nutrient control may be a greater priority in eutrophicated warm shallow lakes than in similar lakes at higher latitudes.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号