首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
2.
The algicidal effects of the thiazolidinedione derivative TD49 on Heterosigma akashiwo and Chattonella marina (Raphidophyceae) were assessed, and the response of the planktonic community and environment to the algicide was evaluated in a microcosm, quantifying 12 L. The abundance of over 80 % of H. akashiwo and C. marina declined in a day significantly in microcosms to which TD49 was added (final concentration 2 μM), and this was correlated with an abrupt decline in the culture pH. The number of protists (i.e., ciliates) other than H. akashiwo and C. marina gradually increased with time in the TD49 treatments, implying that the decline in numbers of H. akashiwo and C. marina cells resulting from TD49 treatment was a major factor in the growth of the other organisms. However, TD49 may be toxic to aquatic zooplankton communities, even though it is a highly selective algicide for harmful algae bloom species. The study indicates that TD49 is an effective agent for the control for H. akashiwo and C. marina blooms in enclosed and eutrophic water bodies.  相似文献   

3.
4.
5.
The aim of this study was to investigate whether the entrainment of light cue is affected or not in diabetic animals. We found that the individual light/dark (LD) reversal showed a tissue- and gene-specific effect on the circadian phases of peripheral clock genes, which was generally similar between the control and diabetic rats. In the liver and heart, the peak phases of examined clock genes (Bmal1, Rev-erbα, Per1, and Per2) were slightly shifted by 0~4 h in the liver and heart of control and diabetic rats. However, we found that the peak phases of these clock genes were greatly shifted by 8~12 h after the LD reversal for 7 days in the pineal gland of both control and diabetic rats. However, the activity rhythm was greatly different between two groups. After the individual LD reversal, the activity rhythm was completely shifted in the control rats but retained in the diabetic rats. These observations suggested that the behavioral rhythm of diabetic rats may be uncoupled from the master clock after the individual LD reversal. Moreover, we also found that the serum glucose levels of diabetic rats kept equally high throughout the whole day without any shift of peak phase after the individual reversal of LD cycle. While the serum glucose levels of control rats were tightly controlled during the normal and LD reversal conditions. Thus, the impaired insulin secretion induced uncontrollable serum glucose level may result in uncoupled activity rhythm in the diabetic rats after the individual LD reversal.  相似文献   

6.
7.
Under controlled laboratory conditions, the locomotor activity rhythms of four species of wrasses (Suezichthys gracilis, Thalassoma cupido, Labroides dimidiatus andCirrhilabrus temminckii) were individually examined using an actograph with infra-red photo-electric switches in a dark room at temperatures of 21.3–24.3°C, for 7 to 14 days. The locomotor activity ofS. gracilis occurred mostly during the light period under a light-dark cycle regimen (LD 12:12; 06:00-18:00 light, 18:00-06:00 dark). The locomotor activity commenced at the beginning of the light period and continued until a little before the beginning of dark period. The diel activity rhythm of this species synchronizes with LD. Under constant illumination (LL) this species shows distinct free-running activity rhythms varying in length from 23 hrs. 39 min. to 23 hrs. 47 min. Therefore,S. gracilis appears to have a circadian rhythm under LL. However, in constant darkness (DD), the activity of this species was greatly suppressed. All the fish showed no activity rhythms in DD conditions. After DD, the fish showed the diel activity rhythm with the resumption of LD, but this activity began shortly after the beginning of light period. The fish required several days to synchronize with the activity in the light period. Therefore,S. gracilis appeared to continue the circadian rhythm under DD. InT. cupido, the locomotor activity commenced somewhat earlier than the beginning of the light period and continued until the beginning of the dark period under LD. The diel activity rhythm of this species synchronizes with LD. Under LL, four of the five specimens of this species tested showed free-running activity rhythms for the first 5 days or longer varying in length from 22 hrs. 54 min. to 23 hrs. 39 min. Although the activity of this species was suppressed under DD, two of five fish showed free-running activity rhythms throughout the experimental period. The lengths of such free-running periods were from 23 hrs. 38 min. to 23 hrs. 50 min. under DD. Therefore, it was ascertained thatT. cupido has a circadian rhythm. InL. dimidiatus, the locomotor activity rhythm under LD resembled that observed inT. cupido. The diel activity rhythm of this species synchronizes with LD. Under LL, four of seven of this species showed free-running activity rhythms throughout the experimental period. The lengths of such free-running periods were from 23 hrs. 07 min. to 25 hrs. 48 min. Although the activity of this species was suppressed under DD, three of five fish showed free-running activity rhythms throughout the experimental period. The lengths of such free-running periods were from 23 hrs. 36 min. to 23 hrs. 41 min. under DD. Therefore, it was ascertained thatL. dimidiatus has a circadian rhythm. Almost all locomotor activity of C.temminckii occurred during the light period under LD. The diel activity rhythm of this species coincides with LD. Under LL, two of four of this species showed free-running activity rhythms throughout the experimental period. The lengths of such free-running periods were from 23 hrs. 32 min. to 23 hrs. 45 min. Although the activity of this species was suppressed under DD, one of the four fish showed free-running activity rhythms throughout the experimental period. The length of the free-running period was 23 hrs. 21 min. under DD. Therefore,C. temminckii appeared to have a circadian rhythm. According to field observations,S. gracilis burrows and lies in the sandy bottom whileT. cupido, L. dimidiatus, andC. temminckii hide and rest in spaces among piles of boulders or in crevices of rocks during the night. It seems that the differences in nocturnal behavior among the four species of wrasses mentioned above are closely related to the intensity of endogenous factors in their locomotor activity rhythms.  相似文献   

8.
Diel rhythms of oxygen uptake are described for P. brassicae and P. machaon. The rhythms are bimodal in both species at 10°C, with a main midday peak, a smaller peak in the afternoon or early evening and low nocturnal uptake rates under natural and artificial (LD 9:15) light regimes. In P. brassicae, the rhythm of oxygen uptake is linked with a diel rhythm of the incidence of short-term oxygen uptake cycles. Summated batch curves for both species contain significant elements of individual variation. In P. machaon, the timing of daily peaks in oxygen uptake is related directly to the level of metabolism.  相似文献   

9.
10.
11.
Qian H  Hu B  Yu S  Pan X  Wu T  Fu Z 《PloS one》2012,7(3):e33347
  相似文献   

12.
13.
《Harmful algae》2008,7(1):1-10
On 29 April 2003, a Heterosigma akashiwo bloom (9.5 × 104 cells mL−1) associated with a fish kill (>104 dead fishes estimated from aerial surveys) was observed offshore of Bulls Bay, McLellanville, South Carolina, USA. To assess a potential cause of this bloom event, we investigated the bacterial diversity and algal/bacterial interactions in the bloom microbial community. Thirty-five bacterial strains were isolated and screened for algicidal or algal growth-promoting activities. One strain (BBB25) had significant growth-promoting effects on all 7 algal species tested: three raphidophytes (Heterosigma akashiwo, Chattonella subsalsa, Fibrocapsa japonica), two diatoms (Chaetoceros neogracile, Nitzschia sp.), a cryptophyte (Cryptomonas sp.), and a chlorophyte, Ankistrodesmus sp. This strain (BBB25) is a Gram-positive, rod-shaped spore-forming bacterium. Partial 16S rDNA gene sequence and morphological characters indicated that BBB25 is related closely to the genus Bacillus. The general nature of the algal response indicates that the growth-promoting effects of BBB25 are not specific to H. akashiwo, and suggests potentially widespread effects. Since the presence or relative abundance of the other algal species was not assessed during the bloom initiation period, the selective stimulatory effect on H. akashiwo bloom formation in Bulls Bay is unknown. These results demonstrate, however, the potential for bacterial species to play a regulatory role in bloom formation.  相似文献   

14.
15.
While roles of the clock genes period (per) and timeless (tim) are relatively well understood in relation to circadian clocks, their potential roles in insect photoperiodism remain enigmatic. In this study, the expression of per and tim genes under two contrasting photoperiods is described in the central nervous system of photoperiodically sensitive, newly hatched first instar larvae of the flesh fly, Sarcophaga crassipalpis. Using qPCR, diel oscillations were observed in the mRNA levels of both genes under long-day (15 h light:9 h dark, promotes direct development) and short-day conditions (11 h light:13 h dark, induces pupal diapause). Peak per and tim mRNA oscillations were closely associated with the light/dark transition. The conspicuous difference between the two photoperiodic conditions was that the sharp increase in per and tim mRNA abundance occurred during the light phase under long days but during the dark phase under short days. The diel oscillations were, at least in part, driven by an endogenous component, as demonstrated by transferring larvae to continuous darkness. The cells displaying Tim- and Per-like immunoreactivities (Tim- and Per-LIRs) were localized using anti-Drosophila-Per and anti-Chymomyza-Tim antibodies. Per-LIR and Tim-LIR co-localized in three groups of cells in each brain hemisphere. Two other groups, one in the brain hemispheres and the other in the fused ventral nerve ganglion, expressed only the Per-LIR.  相似文献   

16.
The diel pattern of cell division, cell carbon, adenine nucleotides and vertical migration was determined for laboratory cultures of the photosynthetic marine dinoflagellate, Ceratium furca (Ehr.) Clap. & Lachm., entrained on an alternating 12:12 LD schedule at 20 C. Cell division was initiated during the latter portion of the dark period with ca. 30% of the population undergoing division. Cell C increased during the light period and exhibited a linear decrease with a loss of 33% during the dark period. ATP · cell?1 increased during the light period and decreased by ca. 40–50% during the dark period. The diel patterns of cell C and ATP tended to “buffer” the magnitude of the change in C:ATP ratios around an overall mean value of 89. There was no obvious trend in the concentration of [GTP + UTP] · cell?1 over the cell cycle. The cellular adenylate energy charge was maintained at values between 0.8 to 0.9 throughout the 24 h LD cycle, despite a ca. 40% decrease in total adenylates (AT= ATP + ADP + AMP) during the dark period on 12:12 LD, and over a 68% decrease in ATP during 42 h of continuous darkness. These data lend experimental support to the theory of cellular metabolic control by the adenine nucleotides. With lateral illumination on 12:12 LD cycles, the cells began to concentrate at the surface of the experimental tubes shortly before the lights were turned on, and at the bottom of the tubes shortly before the lights were extinguished. This pattern continued for 6 days in continuous darkness, suggesting that the vertical migration pattern is independent of a phototactic response and may be under the control of an endogenous rhythm.  相似文献   

17.
The ability to change colour rapidly is widespread among ectotherms and has various functions including camouflage, communication and thermoregulation. The process of colour change can occur as an aperiodic event or be rhythmic, induced by cyclic environmental factors or regulated by internal oscillators. Despite the importance of colour change in reptile ecology, few studies have investigated the occurrence of a circadian rhythm in lizard pigmentation. Additionally, although colour change also entails changes in near-infrared reflectance, which may affect thermoregulation, little research has examined this part of the spectrum. We tested whether the bearded dragon lizard, Pogona vitticeps, displays an endogenous circadian rhythm in pigmentation changes that could be entrained by light/dark (LD) cycles and how light affected the relative change in reflectance in both ultraviolet-visible and near-infrared spectra. We subjected 11 lizards to four photoperiodic regimens: LD 12∶12; LD 6∶18; LD 18∶6 and DD; and measured their dorsal skin reflectance at 3-hour intervals for 72 hours after a habituation period. A proportion of lizards displayed a significant rhythm under constant darkness, with maximum reflectance occurring in the subjective night. This endogenous rhythm synchronised to the different artificial LD cycles, with maximum reflectance occurring during dark phases, but did not vary in amplitude. In addition, the total ultraviolet-visible reflectance in relation to the total near-infrared reflectance was significantly higher during dark phases than during light phases. We conclude that P. vitticeps exhibits a circadian pigmentation rhythm of constant amplitude, regulated by internal oscillators and that can be entrained by light/dark cycles.  相似文献   

18.
Recent observations that viruses are very abundant and biologically active components in marine ecosystems suggest that they probably influence various biogeochemical and ecological processes. In this study, the population dynamics of the harmful bloom-forming phytoplankton Heterosigma akashiwo (Raphidophyceae) and the infectious H. akashiwo viruses (HaV) were monitored in Hiroshima Bay, Japan, from May to July 1998. Concurrently, a number of H. akashiwo and HaV clones were isolated, and their virus susceptibilities and host ranges were determined through laboratory cross-reactivity tests. A sudden decrease in cell density of H. akashiwo was accompanied by a drastic increase in the abundance of HaV, suggesting that viruses contributed greatly to the disintegration of the H. akashiwo bloom as mortality agents. Despite the large quantity of infectious HaV, however, a significant proportion of H. akashiwo cells survived after the bloom disintegration. The viral susceptibility of H. akashiwo isolates demonstrated that the majority of these surviving cells were resistant to most of the HaV clones, whereas resistant cells were a minor component during the bloom period. Moreover, these resistant cells were displaced by susceptible cells, presumably due to viral infection. These results demonstrated that the properties of dominant cells within the H. akashiwo population change during the period when a bloom is terminated by viral infection, suggesting that viruses also play an important role in determining the clonal composition and maintaining the clonal diversity of H. akashiwo populations. Therefore, our data indicate that viral infection influences the total abundance and the clonal composition of one host algal species, suggesting that viruses are an important component in quantitatively and qualitatively controlling phytoplankton populations in natural marine environments.  相似文献   

19.
Mosquitoes exhibit ∼24 h rhythms in physiology and behavior, regulated by the cooperative action of an endogenous circadian clock and the environmental light:dark cycle. Here, we characterize diel (observed under light:dark conditions) time-of-day changes in metabolic detoxification and resistance to insecticide challenge in Anopheles gambiae mosquitoes. A better understanding of mosquito chronobiology will yield insights into developing novel control strategies for this important disease vector. We have previously identified >2000 rhythmically expressed An. gambiae genes. These include metabolic detoxification enzymes peaking at various times throughout the day. Especially interesting was the identification of rhythmic genes encoding enzymes capable of pyrethroid and/or DDT metabolism (CYP6M2, CYP6P3, CYP6Z1, and GSTE2). We hypothesized that these temporal changes in gene expression would confer time-of-day specific changes in metabolic detoxification and responses to insecticide challenge. An. gambiae mosquitoes (adult female Pimperena and Mali-NIH strains) were tested by gene expression analysis for diel rhythms in key genes associated with insecticidal resistance. Biochemical assays for total GST, esterase, and oxidase enzymatic activities were undertaken on time-specific mosquito head and body protein lysates. To determine for rhythmic susceptibility to insecticides by survivorship, mosquitoes were exposed to DDT or deltamethrin across the diel cycle. We report the occurrence of temporal changes in GST activity in samples extracted from the body and head with a single peak at late-night to dawn, but no rhythms were detected in oxidase or esterase activity. The Pimperena strain was found to be resistant to insecticidal challenge, and subsequent genomic analysis revealed the presence of the resistance-conferring kdr mutation. We observed diel rhythmicity in key insecticide detoxification genes in the Mali-NIH strain, with peak phases as previously reported in the Pimperena strain. The insecticide sensitive Mali-NIH strain mosquitoes exhibited a diel rhythm in survivorship to DDT exposure and a bimodal variation to deltamethrin challenge. Our results demonstrate rhythms in detoxification and pesticide susceptibility in An. gambiae mosquitoes; this knowledge could be incorporated into mosquito control and experimental design strategies, and contributes to our basic understanding of mosquito biology.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号