首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
基于GIS的上海市景观格局梯度分析   总被引:43,自引:0,他引:43       下载免费PDF全文
 定量分析景观格局及其变化对于监测和评价城市化的生态后果十分重要。该研究应用基于GIS的梯度分析与景观指数相结合的方法定量分析了上海市城市化的空间格局。沿一条自西向东64 km长6 km宽和另一条自南向北66 km长6 km宽的样带,应用移动窗口计算了一系列景观指数。结果表明,城市化的空间格局可以用梯度分析与景观指数来定量,不同的土地利用类型沿景观格局梯度确实表现出明显的“空间特征”。多项景观指数可准确地、定量地指示上海地区东西和南北发展轴线上城市化的前沿和城市景观梯度分异的特征。城市化的总体格局是随着城市化程度增加,景观在组分上更多样化,形状上更为复杂以及生态学上更破碎化。此外,该文显示的上海市城市化景观格局比较符合同心圆论的城市发展理论,研究结果支持斑块密度随城市化程度而增加,斑块大小和景观连接度则下降的假说,但与随人类干预程度增强,斑块形状变得更规则的假说不相符和,因此,需要进一步研究来证实该发现。  相似文献   

2.
虞文娟  任田  周伟奇  李伟峰 《生态学报》2020,40(23):8474-8481
森林生境丧失与景观破碎化是引起生物多样性下降,生态系统功能降低的重要原因。量化森林景观破碎化的时空特征及其与城市扩张格局的关系是开展区域生态修复与功能提升的重要基础。本文以快速城市化的典型区域——粤港澳大湾区为研究对象,基于遥感解译的1980年、1990年、2000年、2010年和2018年土地覆盖/利用专题图,通过多尺度的景观格局分析和统计分析,定量解析森林景观破碎化的时空演变特征及其与城市扩张格局间的关系。研究结果显示:1)1980—2018年,大湾区林地覆盖面积缩减1,274 km2,林地转变为建设用地的面积占林地丧失总面积的比例从1980—1990年的11%增长至2010—2018年的42%,表明城市扩张已成为林地丧失的主导因素;2)森林景观破碎化程度加剧,表现为林地斑块密度提高,平均斑块面积减小,但破碎类型与程度具有地域差异;3)城市扩张幅度与空间格局显著影响林地破碎化,其中,城市扩张幅度对林地破碎化的影响更为重要。基于森林景观破碎化与城市扩张的现状,落实城市增长边界划定、关键斑块-廊道识别与生态网络构建等措施,有助于保护与连通重要生态空间,保障和提升生...  相似文献   

3.
基于GIS的北京市城乡景观格局梯度时空变化研究   总被引:5,自引:0,他引:5  
全泉  田光进 《生态科学》2008,27(4):254-261
利用遥感和GIS的技术手段,对1990年和2000年北京市的土地利用数据进行了景观格局指数计算及景观梯度分析和时空变化分析,从而得出了北京市10年间城市化过程中土地利用景观结构变化特征和城乡景观的梯度变化的时空特点.结果表明,1990年和2000年北京市景观以林地和耕地为主,城镇用地总面积大量增加,2000年其总面积和农村居民点景观面积差别很小,北京的城市化水平已经达到较高程度.城镇用地景观沿样带分布呈典型的"凸"字形,城镇用地比例随距离市中心距离的增大而逐渐减小,城市化过程在10年间继续向郊区推进,向北扩张强度大于向南.城区范围不断扩大,中心城区聚集性大幅度增大,城乡交错带的景观斑块密度增大,景观破碎程度加剧,是景观格局变化最剧烈的区域.利用景观格局指数在样带上的梯度分布和其随时间的变化来分析城市发展特点、模式是一种研究城市化过程的重要手段.  相似文献   

4.
In forest–grassland mosaics, patches can result from two processes: forest expansion over grassy ecosystems and forest fragmentation. We tested the hypothesis that patches produced by these processes differed in structure and spatial context in a forest–grassland mosaic in the southern Brazilian highlands. We compared a present‐day land cover map with a past vegetation map to identify natural forest patches and forest fragments. Patches were described according to structure (size, core area and shape metrics) and spatial context (distance from roads and urban areas, edge contrast). Principal component analyses were used to examine gradients of patch types, and differences were tested by analysis of variance with randomization test. We found 878 natural patches and 214 fragments. Natural forest patches, riparian forest patches and forest fragments differed in structure and spatial context. In comparison to natural forest patches, fragments tend to be larger, with larger core areas, and more irregular and complex in shape. Fragments are situated in a different spatial context, tending to be closer to roads and urban areas and to present higher edge contrast. Riparian natural forest patches are similar to natural forest patches, except for shape. The smaller area and regular shape of natural patches probably result from the mechanisms involved in nucleus formation in the grassland matrix and from current grassland management. Natural patches are less exposed to some anthropogenic stresses, since most of them remain in a native grassland matrix context. Our results show that inferring process from pattern is not trivial, because different processes – forest expansion and forest fragmentation – may lead to either distinct or similar patterns of patch shape and spatial context. Studying patch structure and spatial context may then provide further insight into understanding changes in vegetation pattern at landscape scale, and in disentangling the effects of concurrent processes.  相似文献   

5.
This study evaluated the effects of landscape on the distribution of Japanese hares Lepus brachyurus Temminck, 1845 hares along a rural-urban gradient. We surveyed the presence of hares in 62 forest patches in the Tama Hills, which spreads from forested mountains to the urban core, and found signs of hares in 23 patches. We evaluated the effects of habitat patch size, connectivity, and land cover of the surrounding area (forest, residential and few agricultural area) by logistic regression. To select the most appropriate spatial scale and time period, we conducted a variable selection for all combinations of buffer size (250-, 500-, 1000- and 2000-m radius), and year (1974, 1984 and 1994). We calculated Akaike weight for the best model to measure the importance of each variable. The model for the best combination of buffer size and year was 500 m in 1994. We conclude that recent landscape determines the occurrence of hares. Forest patch size and percentage of forest cover were important variables in the best model. To protect the wild hare population in suburban areas, it is important to conserve areas of forest that have at least 500 m radius. These areas must be continuously maintained, as hares respond rapidly to changes in landscape.  相似文献   

6.
济南城市森林景观生态格局   总被引:1,自引:0,他引:1  
城市森林景观生态格局研究不仅是城市森林系统规划与城市生态建设的基础和前提,而且是优化城市空间结构、充分发挥城市森林生态功能以及创建生态宜居环境的重要途径和手段.本研究以RS和GIS技术为支撑,通过总体景观生态格局定量分析和梯度分析等研究方法,采用10个景观指数从斑块水平和景观水平两方面,对济南市建成区城市森林景观生态格局进行定量分析,并提出优化对策.结果表明: 济南市建成区城市森林覆盖率为15.8%;城市森林总体景观生态格局在景观水平上表现为城市森林景观斑块类型较齐全、景观破碎化程度较大、各类型城市森林所占面积存在差异、以大斑块为主且同种斑块高度连接,在斑块类型水平上表现为生态公益林以大斑块为主且占优势地位、风景游憩林形状较规则且以大中型斑块为主、道路林及附属林形状复杂且以小斑块为主、生产经营林缺乏;在斑块类型水平上,以风景游憩林为主导类型、生态公益林斑块面积最大、道路林及附属林破碎度大,在景观水平上,城市中心森林景观破碎度大、人为干扰严重、景观形状复杂;在城市森林景观生态格局分析基础上,提出“一环二网、三片四轴、多点棋布”的济南市城市森林生态网络构建方案,从而加强各类型城市森林的连接度,发挥大尺度生态系统的整体生态效益.  相似文献   

7.
This research has employed remotely sensed data and image classification techniques for the first time to track three decades (1989 to 2021) of forest cover change and forest fragmentation across the largest Rohingya refugee settlement in the Teknaf peninsula, in Bangladesh. Forest fragmentation was evaluated in terms of forest core, patch, perforated, and edge, to characterize forest morphological changes at the landscape level. The results revealed that the forest occupying the study area was 97,400 acres in 1989, which decreased to 92,400 acres by 2015 (5% change) due to firewood collection. However, a sharp decline in the forest was observed in 2017, when the Rohingya refugees settled in the region causing an additional loss of 600 acres of protected forest and 7500 acres of non-protected forests. Such a drastic forest cover change led by refugee settlements has altered forest morphological patterns. As a result, in 1989, the core forest area was 42% which declined to 25% in 2015, and 20% in 2017. This loss of core area greatly increased the patch, perforated and edge areas. Through the efforts of restoration activities, the area of the core forest increased to 28% in 2019 and further increased to 32% in 2021. By 2019, the 5500 acres of non-protected forest was regained, and the protected forest increased by 770 acres. Forest recovery was sustained through the end of 2021, and the total forest in the study area was estimated to be 93,300 acres by this period. This study provides detailed information on the spatial and temporal evaluation of forest change and forest fragmentation metrics intending to understand the historic and ongoing forest disturbance regime, particularly in the ecologically critical zone of the Teknaf wildlife sanctuary. This analysis should encourage managers to enact varying forest restoration and rehabilitation strategies in the region.  相似文献   

8.
长白山典型林区森林资源景观格局变化分析   总被引:10,自引:3,他引:10  
利用研究区1985年及1999年遥感影像作为数据源,在GIS支持下并结合地面资料对森林资源景观格局及其变化进行研究.从两期地物斑块面积标准偏差来看,成熟针叶林(1985年为279.3,1999年为98.64)、成熟阔叶林(1985年为162.94,1999年为68.54)、中龄阔叶林(1985年为113.14)、中龄针叶林(1999年为160.71)斑块面积分布均匀程度均较同期其它地物类型小,这也说明这些地物组成中景观类型多样性及物种多样性.从景观相似性指数分析来看,中龄阔叶林(1985年为0.118,1999年为0.116)、中龄针叶林(1985年为0.07,1999年为0.336)、成熟阔叶林(1985年为0.312,1999年为0.228)、成熟针叶林(1985年为0.237,1999年为0.174)4类植被在15年间较同期其它地物类型稳定,是研究区景观的主要组成部分.湿地在两期的孔隙度都较大,湿地的均质化程度很小,形成了更多的斑块镶嵌体,湿地破碎化程度较高.  相似文献   

9.
基于模拟景观的城市森林景观格局指数选取   总被引:4,自引:0,他引:4  
基于现实的沈阳城市森林景观,模拟了4个景观格局梯度,并选取了1个与之相应的现实景观格局梯度,分析了28个景观格局指数在各梯度对景观破碎化和景观斑块形状复杂性的反映,从而筛选出描述这两种景观格局特征的适宜景观格局指数.结果表明:斑块密度(PD)和平均斑块面积(AREA_MN)在城市森林景观破碎化方面表现出较规律的变化趋势,斑块密度随破碎化程度的增加而增加,平均斑块面积随破碎化程度的增加而减小;面积加权平均周长面积比(PARA_AM)在描述景观斑块形状复杂性方面与景观格局梯度相吻合,且随斑块形状复杂性的增加而增加,能够较为准确地描述景观斑块形状的复杂性.  相似文献   

10.
徐州城市景观格局对绿地植物多样性的多尺度影响   总被引:1,自引:0,他引:1  
城市地表景观的变化导致城市生物栖息地的损坏、破碎和丧失,致使城市生物多样性下降.为探讨城市景观格局变化对植物多样性的影响,本研究以徐州市绕城高速公路内的城区为对象,采用布朗布伦奎特(Braun-Blanquet)盖度等级法对36块城市绿地植物群落进行调查,并对不同绿地植物群落的物种多样性进行了分析.同时,以研究区2005和2015年的Landsat ETM遥感影像作为基础数据源,在Erdas、GIS、Fragstats软件的支持下,以每块调查样地为中心,分别建立9个不同半径的缓冲区,计算各缓冲区内表征斑块形状、破碎度和连通性共3类39个景观指数,在此基础上,运用冗余分析(RDA)筛选出不同幅度下对城市绿地植物多样性有显著影响的景观格局指数.结果表明: 植物多样性对景观整体格局和景观要素的响应具有明显的时间和空间尺度效应.2005年,未利用地和农田的破碎度、形状指数在800 m半径的缓冲区内能更好地解释植物多样性,建筑用地的破碎度和连通性指数在800~2000 m范围内对植物多样性有重要影响;2015年,草地和林地景观在800 m缓冲区内可更好地解释植物多样性,而建筑用地和未利用地在1000~2000 m范围内对植物多样性有显著影响;研究区当前植物多样性受2005年类型水平景观指数的影响更显著,说明研究区植物多样性对周边景观格局变化的响应存在一定的时间滞后;景观水平的格局指数与类型水平指数特征较为一致,说明物种与空间尺度的相互作用更多依赖于景观类型.  相似文献   

11.
Aim To examine the effects of forest fragmentation on the distribution of the entire wild giant panda (Ailuropoda melanoleuca) population, and to propose a modelling approach for monitoring the spatial distribution and habitat of pandas at the landscape scale using Moderate Resolution Imaging Spectro‐radiometer (MODIS) enhanced vegetation index (EVI) time‐series data. Location Five mountain ranges in south‐western China (Qinling, Minshan, Qionglai, Xiangling and Liangshan). Methods Giant panda pseudo‐absence data were generated from data on panda occurrences obtained from the third national giant panda survey. To quantify the fragmentation of forests, 26 fragmentation metrics were derived from 16‐day composite MODIS 250‐m EVI multi‐temporal data and eight of these metrics were selected following factor analysis. The differences between panda presence and panda absence were examined by applying significance testing. A forward stepwise logistic regression was then applied to explore the relationship between panda distribution and forest fragmentation. Results Forest patch size, edge density and patch aggregation were found to have significant roles in determining the distribution of pandas. Patches of dense forest occupied by giant pandas were significantly larger, closer together and more contiguous than patches where giant pandas were not recorded. Forest fragmentation is least in the Qinling Mountains, while the Xiangling and Liangshan regions have most fragmentation. Using the selected landscape metrics, the logistic regression model predicted the distribution of giant pandas with an overall accuracy of 72.5% (κ = 0.45). However, when a knowledge‐based control for elevation and slope was applied to the regression, the overall accuracy of the model improved to 77.6% (κ = 0.55). Main conclusions Giant pandas appear sensitive to patch size and isolation effects associated with fragmentation of dense forest, implying that the design of effective conservation areas for wild giant pandas must include large and dense forest patches that are adjacent to other similar patches. The approach developed here is applicable for analysing the spatial distribution of the giant panda from multi‐temporal MODIS 250‐m EVI data and landscape metrics at the landscape scale.  相似文献   

12.
Aim Madagascar's lowland forests are both rich in endemic taxa and considered to be seriously threatened by deforestation and habitat fragmentation. However, very little is known about how these processes affect biodiversity on the island. Herein, we examine how forest bird communities and functional groups have been affected by fragmentation at both patch and landscape scales, by determining relationships between species richness and individual species abundance and patch and landscape mosaic metrics. Location Littoral forest remnants within south‐eastern Madagascar. Methods We sampled 30 littoral forest remnants in south‐eastern Madagascar, within a landscape mosaic dominated by Erica spp. heathland. We quantified bird community composition within remnants of differing size, shape and isolation, by conducting point counts in November–December in 2001 and October–November 2002. Each remnant was characterized by measures of remnant area, remnant shape, isolation, and surrounding landscape complexity. We used step‐wise regression to test the relationship between bird species richness and landscape structural elements, after correcting for sampling effort. Relationships between bird species abundances and the landscape variables were investigated with Canonical Correspondence Analysis and binomial logistic regression modelling. Results Bird species richness and forest‐dependent bird species richness were significantly (P < 0.01) explained by remnant area but not by any measure of isolation or landscape complexity. The majority of forest‐dependent species had significant relationships with remnant area. Minimum area requirements for area‐sensitive species ranged from 15 to 150 ha, with the majority of species having area requirements > 30 ha. Surprisingly, there was no relationship between bird body size and minimum area requirement. Forest‐dependent canopy insectivorous species and large canopy frugivorous species were the most sensitive functional groups, with > 90% species sensitivity within each group. The distribution of four forest‐dependent species also appeared to be related to remnant shape where remnant area was < 100 ha. Main conclusions The majority of forest‐dependent species, including many that are considered widespread and common, were found to have significant relationships with fragment size, indicating that they are sensitive to processes associated with habitat loss and fragmentation. As deforestation and habitat fragmentation remain serious problems on the island, it follows that many forest‐dependent bird species will decline in abundance and become locally extinct. At the regional scale, we urge that large (> 200 ha) blocks of littoral forest are awarded protected status to preserve their unique bird community.  相似文献   

13.
在北方森林中火干扰是森林景观变化的主导因素。林火烈度作为衡量林火动态的重要指标,较为直观地反映了火干扰对森林生态系统的破坏程度,其空间格局深刻地影响着森林景观中的多种生态过程(如树种组成、种子扩散以及植被的恢复)。解释林火烈度空间格局有助于揭示林火干扰后森林景观格局的形成机制,对预测未来林火烈度空间格局以及制定科学合理林火管理策略均有重要意义。基于LandsatTM/ETM遥感影像,将2000—2016年大兴安岭呼中林区的36场火的林火烈度划分为未过火、轻度、中度、重度4个等级。采用FRAGSTAT景观格局分析软件从类型水平上计算了斑块所占景观面积比、面积加权平均斑块面积、面积加权平均斑块分维数、面积加权边缘面积比、斑块密度5个景观指数,以对林火烈度空间格局进行了定量化描述。并且采用随机森林模型,分析了气候、地形、植被对林火烈度空间格局的影响及其边际效应。通过研究得出以下结果:(1)相对于未过火、轻度、以及中度火烧斑块,重度火烧斑块的面积更大、形状更简单;(2)海拔对重度火烧斑块的空间格局起着至关重要的作用,其次是坡向、坡度、植被覆盖度、相对湿度、温度等;(3)随着海拔的升高,面积加权...  相似文献   

14.
Land cover and vegetation change are among the most important aspects of environmental change. Vegetation change can be quantified by landscape pattern indices (LPI). Landscape indices are routinely calculated using planar land use/land cover (LU/LC) maps, obtained by the projection of a non-flat landscape surface into a two-dimensional Cartesian space. Especially in mountainous areas, quantification on planar maps can lead to underestimation of vegetation and land cover changes. Hoechstetter et al. (2008) developed a method to compute LPIs in a surface structure by calculating landscape patch surface area and surface perimeter from digital elevation models (DEM). As yet there have been no applications of these surface landscape indices on land use/land cover and vegetation change quantification. The objectives of this study are to (1) choose a LPI method (surface metrics pattern analysis or common planimetric metrics pattern analysis) for vegetation change quantification; and (2) employ the selected surface LPI method to assess vegetation pattern change in two mountainous areas of the Lancang watershed, Yunnan Province, China. The results show that the surface approach to estimate changes of class area (CA), mean patch area (MPA), and mean Euclidean Near-Neighbor distance (MENN) may obtain more accurate results for quantifying vegetation change in steep mountain areas. Forest fragmentation increased significantly over time in the two different mountainous study areas. The patches of two land cover classes, (i) agricultural land and (ii) low density forest and tall shrubs, became more aggregated in the northern (temperate) study area. In the southern (tropical) study area, rubber plantations increased considerably in size and became more aggregated.  相似文献   

15.
城市森林景观格局与过程研究进展   总被引:14,自引:1,他引:13  
大规模的城市化进程,改变了城市以及周边区域的景观格局,显著影响着城市森林生态系统的结构、过程与功能.景观尺度上的城市森林景观格局与生态过程研究已经成为当前城市森林学的研究热点.在阐明城市森林及其景观格局与过程概念的基础上,综述了国内外城市森林景观格局与过程的研究内容、研究方法的进展情况,指出了以下几个方面有望成为今后城市森林景观研究的发展方向:景观尺度上的城市森林系统能流、物质循环等生态学过程研究;城市森林景观格局演变的社会驱动力研究;基于生态服务功能的城市森林规划研究;半都市化地区的森林景观格局与过程研究;基于空间显式景观模型的城市森林景观格局与过程模块开发.  相似文献   

16.
采用1987、1999、2009和2017年四期Landsat TM/OLI数据,结合GIS和RS技术,从类型和景观层面计算安化县四个年度的3DLP指数,分析安化县近30年来景观格局的动态演变并利用CA-Markov模型对2025年景观格局演变进行模拟和预测,为推动该县今后生态环境的进一步恢复和改善提供指导。结果表明:(1)林地是安化县的优势景观,对安化县景观的主控作用强。(2)从不同景观类型来看,1987—2017年期间安化县各景观破碎化情况均有所缓解,其中建设用地、林地面积增加,草地、水域、农地面积减少;林地、水域边界形状趋于简单化,建设用地、草地边界形状趋向复杂化,农地边界形状受人类活动影响较小。(3)从整体景观来看,安化县景观格局的演变主要是受到人为因素的影响,1999年整体边界形状变得更为规则,同时破碎化程度、景观异构性以及多样性有所提高。1999—2017年各类景观类型的面积比例差异增大,破碎化程度以及景观异质程度降低,优势景观类型份额增加。(4)根据预测结果来看,安化县整体趋向均衡化发展,边界形状趋向规则化,景观异质性程度降低,各类景观类型的面积比例差异减小,林地出现被其他景观蚕食分割的趋势,因此需要进一步提高对林地的重视和保护,限制其他景观类型对林地的干扰。  相似文献   

17.
Understanding the associations between urbanization intensity and urban forest structural-taxonomic attributes is a central theme of urban ecology, biodiversity conservation and forest management for maximizing ecological services to design proper urban green infrastructure. By selecting a typical provincial capital city of Changchun as an example, the effects of urbanization intensity (low, medium and heavy urbanization as measured by impervious surface area, ISA) on landscape patterns and structural-taxonomic attributes of urban forests were investigated in this study. The results showed that the urban forest Patch Density (PD), Landscape Shape Index (LSI), Interspersion & Juxtaposition Index (IJI), Tree Density (TD), Canopy Density (CD), Species Richness (SR) and Species Diversity (H’ index) exhibited strictly monotonic increases with urbanization intensity, increasing by 162%, 60%, 44%, 37%, 50%, 85%, and 84% from low to heavy urbanization areas, respectively. In contrast, the forest Mean Euclidian Nearest Neighbor Distance (ENN-MN) and Health Condition grade (HC) monotonically decreased by 12% and 37%, respectively. Furthermore, regression analysis suggested that structural-taxonomic attributes were closely associated with forest-related landscape patterns, but urbanization intensity dramatically influenced these associations. Our findings highlight that the planning of urban green infrastructure, in particular, urban afforestation and associated management, should be different at different urbanization intensities. In low urbanization areas, low Total area (TA, forest area) requires construction of larger forest patches and the protection of large remnant trees, and TD and above ground biomass (AGB) could be increased by enhancing the Mean Fractal Dimension (FRAC-MN) and PD, respectively. In medium urbanization areas, the same increases in TD and AGB could be more effectively achieved by decreasing the IJI and Area-Weighted Mean Contiguity (CONTIG-MN). Moreover, in heavy urbanization areas, more attention should be paid to increasing forest patch aggregation and contiguity, and both tree diversity and evenness could be increased by enhancing the FRAC-MN index. Because these structural-taxonomic attributes are the basis of various forest ecological services, our findings indicate that regulation of some of these landscape metrics could improve urban forest services in Changchun.  相似文献   

18.
Aim Few studies have attempted to assess the overall impact of fragmentation at the landscape scale. We quantify the impacts of fragmentation on plant diversity by assessing patterns of community composition in relation to a range of fragmentation measures. Location The investigation was undertaken in two regions of New Zealand – a relatively unfragmented area of lowland rain forest in south Westland and a highly fragmented montane forest on the eastern slopes of the Southern Alps. Methods We calculated an index of community similarity (Bray–Curtis) between forest plots we regarded as potentially affected by fragmentation and control forest plots located deep inside continuous forest areas. Using a multiple nonlinear regression technique that incorporates spatial autocorrelation effects, we analysed plant community composition in relation to measures of fragmentation at the patch and landscape levels. From the resulting regression equation, we predicted community composition for every forest pixel on land‐cover maps of the study areas and used these maps to calculate a landscape‐level estimate of compositional change, which we term ‘BioFrag’. BioFrag has a value of one if fragmentation has no detectable effect on communities within a landscape, and tends towards zero if fragmentation has a strong effect. Results We detected a weak, but significant, impact of fragmentation metrics operating at both the patch and landscape levels. Observed values of BioFrag ranged from 0.68 to 0.90, suggesting that patterns of fragmentation have medium to weak impacts on forest plant communities in New Zealand. BioFrag values varied in meaningful ways among landscapes and between the ground‐cover and tree and shrub communities. Main conclusions BioFrag advances methods that describe spatial patterns of forest cover by incorporating the exact spatial patterns of observed species responses to fragmentation operating at multiple spatial scales. BioFrag can be applied to any landscape and ecological community across the globe and represents a significant step towards developing a biologically relevant, landscape‐scale index of habitat fragmentation.  相似文献   

19.
传统景观格局指数在城市热岛效应评价中的适用性   总被引:5,自引:0,他引:5  
以北京部分城区为研究对象,以QuickBird影像制作景观类型图,基于同年4个季节的Landsat ETM+数据反演地表温度;将120 m×120 m作为固定窗口,计算其中的景观格局指数,探寻传统景观格局指数解释地表温度的适用性.结果表明:在景观水平计算的24个景观格局指数中,只有景观组成百分比(PLAND)、斑块密度(PD)、最大斑块指数(LPI)、欧氏距离变异系数(ENN_CV)和分离度(DIVISION)与3月、5月、11月的地表温度具有稳定的显著相关.在类型水平计算的24个景观格局指数中,PLAND、LPI、DIVISION、相似邻接百分比、分散与并列指数与4个时相(3月、5月、7月和12月)的温度显著相关,且与7月温度的相关性最强;斑块密度、边界密度、聚簇度、凝聚度、有效MESH大小、分裂度、聚合度、归一化景观形状指数依据不同景观类型而与地表温度呈现相关性.传统景观格局指数可能并不适合评估河流对地表温度的影响.一些景观格局指数可以用来表征城市地表温度,辅助分析城市地表热岛效应,但需要对其进行筛选和甄别.  相似文献   

20.
Numerous metrics describing landscape patterns have been used to explain landscape-scale habitat selection by birds. The myriad metrics, their complexity, and inconsistent responses to them by birds have led to a lack of clear recommendations for managing land for desired species. The amount of a target land cover type in the landscape (percentage cover) often has been a useful indicator of the likelihood of species occurrence or of habitat selection; is it also a more adequate and parsimonious measure for explaining species distributions than patch size or more complex measures of landscape configuration? We examined responses of 6 woodland-interior bird species to the percentage tree cover within prescribed areas and to patch size, edge density, and other metrics. We examined responses in 2 landscapes: a mixed woodland-savanna and an eastern deciduous forest. For these 6 species, percentage tree cover explained bird occurrence as well as or better than other measures in both study areas. We then repeated the analysis on a larger group of woodland species, including those associated with woodland edges. The bird species we studied had varied responses to landscape metrics, but percentage tree cover was the strongest explanatory variable overall. Although percentage cover estimated from remotely sensed data is an inexact representation of habitat in the landscape, it does appear to be reliable and easy to conceptualize, relative to other measures. We suggest that, at least for woodland habitat, percentage cover is a broadly useful measure that can be helpful in pragmatic questions of explaining responses to landscapes or in anticipating responses to landscape change. © 2011 The Wildlife Society.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号