首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
As oil palm has been considered one of the most favorable oilseeds for biodiesel production in Brazil, it is important to understand how cultivation of this perennial crop will affect the dynamics of soil organic carbon (SOC) in the long term. The aim of this study was to evaluate the changes in soil C stocks after the conversion of forest and pasture into oil palm production in the Amazon Region. Soil samples were collected in March 2008 and September 2009 in five areas: native forest (NARF), pasture cultivated for 55 years (PAST), and oil palm cultivated for 4 (OP‐4), 8 (OP‐8) and 25 years (OP‐25), respectively. Soils were sampled in March 2008 to evaluate the spatial variability of SOC and nitrogen (N) contents in relation to the spacing between trees. In September 2009, soils were sampled to evaluate the soil C stocks in the avenues (inter rows) and frond piles, and to compare the total C stocks with natural forest and pasture system. Soil C contents were 22–38% higher in the area nearest the oil palm base (0.6 m) than the average across the inter row (0–4.5 m from the tree), indicating that the increment in soil organic matter (SOM) must have been largely derived from root material. The soil C stocks under palm frond piles were 9–26% higher than in the inter rows, due to inputs of SOM by pruned palm fronds. The soil carbon stocks in oil palm areas, after adjustments for differences in bulk density and clay content across treatments, were 35–46% lower than pasture soil C stocks, but were 0–18% higher than the native forest soil C content. The results found here may be used to improve the life cycle assessment of biodiesel derived from palm oil.  相似文献   

2.
Plant- and microbially derived carbon (C) are the two major sources of soil organic matter (SOM), and their ratio impacts SOM composition, accumulation, stability, and turnover. The contributions of and the key factors defining the plant and microbial C in SOM along the soil profile are not well known. By leveraging nuclear magnetic resonance spectroscopy and biomarker analysis, we analyzed the plant and microbial C in three soil types using regional-scale sampling and combined these results with a meta-analysis. Topsoil (0–40 cm) was rich in carbohydrates and lignin (38%–50%), whereas subsoil (40–100 cm) contained more proteins and lipids (26%–60%). The proportion of plant C increases, while microbial C decreases with SOM content. The decrease rate of the ratio of the microbially derived C to plant-derived C (CM:P) with SOM content was 23%–30% faster in the topsoil than in the subsoil in the regional study and meta-analysis. The topsoil had high potential to stabilize plant-derived C through intensive microbial transformations and microbial necromass formation. Plant C input and mean annual soil temperature were the main factors defining CM:P in topsoil, whereas the fungi-to-bacteria ratio and clay content were the main factors influencing subsoil CM:P. Combining a regional study and meta-analysis, we highlighted the contribution of plant litter to microbial necromass to organic matter up to 1-m soil depth and elucidated the main factors regulating their long-term preservation.  相似文献   

3.
Gong W  Hu T X  Wang J Y  Gong Y B  Ran H 《农业工程》2008,28(6):2536-2545
The measurement of total soil organic matter (SOM) is not sensitive enough to detect short and medium term changes, and thus meaningful fractions of SOM should be measured. The carbon management index (CMI) was shown to be a useful technique for describing soil fertility. Soil samples were collected from natural evergreen broadleaved forest and its artificial regeneration forests of Sassafras tzumu, Cryptomeria fortunei and Metasequoia glyptostroboides in southern Sichuan Province, China, to determine soil carbon fractions, available nutrients, enzyme activity and CMI. Regression analysis was used to determine the relationship between soil carbon fractions, CMI and fertility. The results showed that the contents of soil organic carbon, water-soluble carbon, microbial biomass carbon, labile carbon, non-labile carbon, hydrolysis-N, available-P and available-K, the activity of invertase, phosphatase and catalase, and CMI were ranked with different seasons and followed the order: natural evergreen broadleaved forest > Sassafras tzumu plantation > Metasequoia glyptostroboides plantation > Cryptomeria fortunei plantation. The soil carbon fractions and CMI were significantly positively (P < 0.05) correlated with available nutrients and enzyme activity. The results indicate that soil carbon fractions and CMI could be used to evaluate the soil fertility for natural evergreen broadleaved forest and its artificial regeneration forests.  相似文献   

4.
The measurement of total soil organic matter (SOM) is not sensitive enough to detect short and medium term changes, and thus meaningful fractions of SOM should be measured. The carbon management index (CMI) was shown to be a useful technique for describing soil fertility. Soil samples were collected from natural evergreen broadleaved forest and its artificial regeneration forests of Sassafras tzumu, Cryptomeria fortunei and Metasequoia glyptostroboides in southern Sichuan Province, China, to determine soil carbon fractions, available nutrients, enzyme activity and CMI. Regression analysis was used to determine the relationship between soil carbon fractions, CMI and fertility. The results showed that the contents of soil organic carbon, water-soluble carbon, microbial biomass carbon, labile carbon, non-labile carbon, hydrolysis-N, available-P and available-K, the activity of invertase, phosphatase and catalase, and CMI were ranked with different seasons and followed the order: natural evergreen broadleaved forest > Sassafras tzumu plantation > Metasequoia glyptostroboides plantation > Cryptomeria fortunei plantation. The soil carbon fractions and CMI were significantly positively (P < 0.05) correlated with available nutrients and enzyme activity. The results indicate that soil carbon fractions and CMI could be used to evaluate the soil fertility for natural evergreen broadleaved forest and its artificial regeneration forests.  相似文献   

5.
We used long-term laboratory incubations and chemical fractionation to characterize the mineralization dynamics of organic soils from tussock, shrub, and wet meadow tundra communities, to determine the relationship between soil organic matter (SOM) decomposition and chemistry, and to quantify the relative proportions of carbon (C) and nitrogen (N) in tundra SOM that are biologically available for decomposition. In all soils but shrub, we found little decline in respiration rates over 1 year, although soils respired approximately a tenth to a third of total soil C. The lack of decline in respiration rates despite large C losses indicates that the quantity of organic matter available was not controlling respiration and thus suggests that something else was limiting microbial activity. To determine the nature of the respired C, we analyzed soil chemistry before and after the incubation using a peat fractionation scheme. Despite the large losses of soil C, SOM chemistry was relatively unchanged after the incubation. The decomposition dynamics we observed suggest that tundra SOM, which is largely plant detritus, fits within existing concepts of the litter decay continuum. The lack of changes in organic matter chemistry indicates that this material had already decomposed to the point where the breakdown of labile constituents was tied to lignin decomposition. N mineralization was correlated with C mineralization in our study, but shrub soil mineralized more and tussock soil less N than would have been predicted by this correlation. Our results suggest that a large proportion of tundra SOM is potentially mineralizable, despite the fact that decomposition was dependent on lignin breakdown, and that the historical accumulation of organic matter in tundra soils is the result of field conditions unfavorable to decomposition and not the result of fundamental chemical limitations to decomposition. Our study also suggests that the anticipated increases in shrub dominance may substantially alter the dynamics of SOM decomposition in the tundra. Received 31 January 2002; accepted 16 July 2002.  相似文献   

6.
程淑兰  方华军  徐梦  耿静  何舜  于光夏  曹子铖 《生态学报》2018,38(23):8285-8295
大气氮沉降增加倾向于促进受氮限制陆地生态系统地上生物量,但是对地下碳过程和土壤碳截存的影响结果迥异,导致陆地生态系统“氮促碳汇”的评估存在很大的不确定性。大气氮沉降输入直接影响微生物活性或间接影响底物质量,改变凋落物和土壤有机质(SOM)的分解速率和分解程度,进而影响土壤有机碳(SOC)的积累与损耗过程。过去相关研究主要集中在土壤碳转化过程和碳储量动态方面,缺乏植物-微生物-SOM交互作用的理解,对土壤碳截存调控的生物化学和微生物学机理尚不清楚。本文以地下碳循环过程为主线,分别综述了氮沉降增加对植物地下碳分配、SOC激发效应、微生物群落碳代谢过程的影响,深入分析SOM化学稳定性与微生物群落动态的关系。该领域研究的薄弱环节体现在:(1)增氮倾向于降低根系的生长和周转,对根际沉积碳分配(数量和格局)的影响及驱动因素不明确;(2)虽然认识到氮素有效性影响土壤激发效应的方向和强度,但是氧化态NO-3和还原态NH+4输入对有机质激发效应的差异性影响及潜在机理知之甚少;(3)微生物碳利用效率(CUE)是微生物群落碳代谢的关键表征,能够很好地解释土壤碳的积累与损耗过程;由于缺乏适宜的测定方法,难以准确量化土壤微生物的CUE及微生物生物量的周转时间;(4)增氮会抑制土壤真菌群落及其胞外酶活性,对细菌群落组成的影响尚未定论,有关SOM化学质量与土壤微生物群落活性、组成之间的耦合关系尚不清楚。未来研究应基于长期的氮添加控制实验平台,结合碳氧稳定性同位素示踪、有机质化学、分子生物学和宏基因组学等方法,深入分析植物同化碳的地下分配规律、微生物碳代谢和周转、有机质化学结构与功能微生物群落的耦合关系等关键环节。上述研究将有助于揭示植物-土壤-微生物交互作用对SOC动态的调控机制,完善陆地生态系统碳-氮耦合循环模型,有效降低区域陆地碳汇评估的不确定性,并可为陆地生态系统应对全球变化提供科学依据。  相似文献   

7.
The usefulness of the C/N ratio as an indicator of the decomposability of organic matter in forest soil was assessed. The assessment was based on the relationship between the C/N ratio and the contents of soil organic carbon (SOC), soil nitrogen (total N), dissolved total organic carbon (DTOC) and dissolved inorganic nitrogen (DIN). SOC, total N, DTOC and DIN were determined in soils sampled in coniferous and coniferous–deciduous forest sites from genetic horizons of 48 soil profiles. The variability of the above soil parameters was determined and the correlation between these parameters and the C/N values were calculated. It was found that the C/N ratio in soil was shaped by the difference in the mobility of both elements, whereas the decrease in the C content in subsequent horizons was mostly higher than the decrease in the N content, which means that the C/N value decreased with the depth of a soil profile. When the loss of SOC and total N contents occurs at a similar rate, the C/N ratio is maintained at a more or less stable level despite the advancing SOM mineralization. When the rate of the carbon release from SOM differs from that of nitrogen or when there is an N input from external sources, the C/N ratio does not adequately describe the process of SOM mineralization as well. The correlation coefficients between the C/N ratio and other parameters indicate that the relationships between them are not significant or that there is no correlation at all. It was found that the percentage of DTOC in SOC seemed to be a better indicator of SOM mineralization than the C/N ratio.  相似文献   

8.
The stability and turnover of soil organic matter (SOM) are a very important but poorly understood part of carbon (C) cycling. Conversion of C3 grassland to the C4 energy crop Miscanthus provides an ideal opportunity to quantify medium‐term SOM dynamics without disturbance (e.g., plowing), due to the natural shift in the δ13C signature of soil C. For the first time, we used a repeated 13C natural abundance approach to measure C turnover in a loamy Gleyic Cambisol after 9 and 21 years of Miscanthus cultivation. This is the longest C3–C4 vegetation change study on C turnover in soil under energy crops. SOM stocks under Miscanthus and reference grassland were similar down to 1 m depth. However, both increased between 9 and 21 years from 105 to 140 mg C ha?1 (< 0.05), indicating nonsteady state of SOM. This calls for caution when estimating SOM turnover based on a single sampling. The mean residence time (MRT) of old C (>9 years) increased with depth from 19 years (0–10 cm) to 30–152 years (10–50 cm), and remained stable below 50 cm. From 41 literature observations, the average SOM increase after conversion from cropland or grassland to Miscanthus was 6.4 and 0.4 mg C ha?1, respectively. The MRT of total C in topsoil under Miscanthus remained stable at ~60 years, independent of plantation age, corroborating the idea that C dynamics are dominated by recycling processes rather than by C stabilization. In conclusion, growing Miscanthus on C‐poor arable soils caused immediate C sequestration because of higher C input and decreased SOM decomposition. However, after replacing grasslands with Miscanthus, SOM stocks remained stable and the MRT of old C3‐C increased strongly with depth.  相似文献   

9.
Knowledge of soil organic matter (SOM) dynamics following deforestation or reforestation is essential for evaluating carbon (C) budgets and cycle at regional or global scales. Worldwide land‐use changes involving conversion of vegetation with different photosynthetic pathways (e.g. C3 and C4) offer a unique opportunity to quantify SOM decomposition rate and its response to climatic conditions using stable isotope techniques. We synthesized the results from 131 sites (including 87 deforestation observations and 44 reforestation observations) which were compiled from 36 published papers in the literatures as well as our observations in China's Qinling Mountains. Based on the 13C natural abundance analysis, we evaluated the dynamics of new and old C in top soil (0–20 cm) following land‐use change and analyzed the relationships between soil organic C (SOC) decomposition rates and climatic factors. We found that SOC decomposition rates increased significantly with mean annual temperature and precipitation in the reforestation sites, and they were not related to any climatic factor in deforestation sites. The mean annual temperature explained 56% of variation in SOC decomposition rates by exponential model (y = 0.0014e0.1395x) in the reforestation sites. The proportion of new soil C increased following deforestation and reforestation, whereas the old soil C showed an opposite trend. The proportion of new soil C exceeded the proportion of old soil C after 45.4 years' reforestation and 43.4 years' deforestation, respectively. The rates of new soil C accumulation increased significantly with mean annual precipitation and temperature in the reforestation sites, yet only significantly increased with mean annual precipitation in the deforestation sites. Overall, our study provides evidence that SOC decomposition rates vary with temperature and precipitation, and thereby implies that global warming may accelerate SOM decomposition.  相似文献   

10.
通过对土壤总有机碳(SOC)、易氧化有机碳(ROC_(333)、ROC_(167)、ROC_(33))、颗粒有机碳(POC)、微生物量碳(SMBC)、溶解性有机碳(DOC)的测定,探讨模拟酸雨(pH 3.0、pH 3.5、pH 4.0、对照CK)对鼎湖山三个不同演替阶段森林(季风常绿阔叶林、针阔混交林、马尾松针叶林)土壤碳库稳定性及碳库管理指数的影响。结果表明:模拟酸雨增加了总有机碳的含量和各组分活性有机碳的含量(P0.05),但酸雨在一定程度上抑制了土壤中微生物量与活性。土壤中各组分活性有机碳与总有机碳呈显著相关,其中ROC_(333)和POC的含量与SOC关系最为密切,相关系数分别为0.853、0.846;碳库管理指数(CMI)结果表明,碳库活度(L)及碳库活度指数(LI)随森林的正向演替有下降的趋势,CPI与CMI呈现相反的趋势。在土壤有机碳及部分活性碳组分增加,碳库活性降低的前提下,土壤碳库稳定性增加。从各项指标的变化幅度可以得出:南亚热带森林土壤随森林群落正向演替而对模拟酸雨响应有更加敏感的趋势,各指标间的敏感性表现为CMIR_(333)POCSMBCR_(167)R_(33)LIDOCCPISOC。  相似文献   

11.
鼎湖山土壤有机质δ13C时空分异机制   总被引:5,自引:2,他引:3  
根据鼎湖山若干海拔部位土壤剖面薄层取样样品有机质含量、14C测年及δ13C结果,研究土壤有机质δ13C时空分异机制.结果表明,不同海拔土壤剖面有机质δ13C深度特征受控于剖面发育进程,与有机质组成及其分解过程密切相关.植被枯落物成为表土层有机质以及表土层被埋藏后的有机质更新过程,均存在碳同位素分馏效应,有机质δ13C显著增大.相对于地表植被枯落物δ13C,表土层有机质δ13C增幅取决于表土有机质更新速率.表土有机质δ13C与植被枯落物δ13C均随海拔升高而增大,说明植被构成随海拔升高呈规律性变化.这与鼎湖山植被的垂直分布一致.不同海拔土壤剖面有机质δ13C深度特征类似,有机质含量深度特征一致,有机质14C表观年龄自上向下增加.这是剖面发育过程中有机质不断更新的结果.土壤剖面有机质δ13C最大值深度与14C弹穿透深度的成因和大小不同,均反映地貌与地表植被对有机碳同位素深度分布的控制.  相似文献   

12.

Aims

Understanding the effects of long-term crop management on soil organic matter (SOM) is necessary to improve the soil quality and sustainability of agroecosystems.

Method

The present 7-year long-term field experiment was conducted to evaluate the effect of integrated management systems and N fertilization on SOM fractions and carbon management index (CMI). Two integrated soil-crop system management (ISSM-1 and ISSM-2, combined with improved cultivation pattern, water management and no-tillage) were compared with a traditional farming system at three nitrogen (N) fertilization rates (0, 150 and 225 kg N ha?1).

Results

Management systems had greater effects on SOM and its fractions than did N fertilization. Compared with traditional farming practice, the integrated management systems increased soil organic carbon (SOC) by 13 % and total nitrogen (TN) by 10 % (averaged over N levels) after 7 years. Integrated management systems were more effective in increasing labile SOM fractions and CMI as compared to traditional farming practice. SOC, TN and dissolved organic matter in nitrogen increased with N fertilization rates. Nonetheless, N addition decreased other labile fractions: particulate organic matter, dissolved organic matter in carbon, microbial biomass nitrogen and potassium permanganate-oxidizable carbon.

Conclusions

We conclude that integrated management systems increased total SOM, labile fractions and CMI, effectively improved soil quality in rice-rapeseed rotations. Appropriate N fertilization (N150) resulted in higher SOC and TN. Though N application increased dissolved organic matter in nitrogen, it was prone to decrease most of the other labile SOM fractions, especially under higher N rate (N250), implying the decline of SOM quality.  相似文献   

13.
In recent years, the increase in Brazilian ethanol production has been based on expansion of sugarcane‐cropped area, mainly by the land use change (LUC) pasture–sugarcane. However, second‐generation (2G) cellulosic‐derived ethanol supplies are likely to increase dramatically in the next years in Brazil. Both these management changes potentially affect soil C (SOC) changes and may have a significant impact on the greenhouse gases balance of Brazilian ethanol. To evaluate these impacts, we used the DayCent model to predict the influence of the LUC native vegetation (NV)–pasture (PA)–sugarcane (SG), as well as to evaluate the effect of different management practices (straw removal, no‐tillage, and application of organic amendments) on long‐term SOC changes in sugarcane areas in Brazil. The DayCent model estimated that the conversion of NV‐PA caused SOC losses of 0.34 ± 0.03 Mg ha?1 yr?1, while the conversion PA‐SG resulted in SOC gains of 0.16 ± 0.04 Mg ha?1 yr?1. Moreover, simulations showed SOC losses of 0.19 ± 0.04 Mg ha?1 yr?1 in SG areas in Brazil with straw removal. However, our analysis suggested that adoption of some best management practices can mitigate these losses, highlighting the application of organic amendments (+0.14 ± 0.03 Mg C ha?1 yr?1). Based on the commitments made by Brazilian government in the UNFCCC, we estimated the ethanol production needed to meet the domestic demand by 2030. If the increase in ethanol production was based on the expansion of sugarcane area on degraded pasture land, the model predicted a SOC accretion of 144 Tg from 2020 to 2050, while increased ethanol production based on straw removal as a cellulosic feedstock was predicted to decrease SOC by 50 Tg over the same 30‐year period.  相似文献   

14.
Soil organic matter (SOM) supports the Earth's ability to sustain terrestrial ecosystems, provide food and fiber, and retains the largest pool of actively cycling carbon. Over 75% of the soil organic carbon (SOC) in the top meter of soil is directly affected by human land use. Large land areas have lost SOC as a result of land use practices, yet there are compensatory opportunities to enhance productivity and SOC storage in degraded lands through improved management practices. Large areas with and without intentional management are also being subjected to rapid changes in climate, making many SOC stocks vulnerable to losses by decomposition or disturbance. In order to quantify potential SOC losses or sequestration at field, regional, and global scales, measurements for detecting changes in SOC are needed. Such measurements and soil‐management best practices should be based on well established and emerging scientific understanding of processes of C stabilization and destabilization over various timescales, soil types, and spatial scales. As newly engaged members of the International Soil Carbon Network, we have identified gaps in data, modeling, and communication that underscore the need for an open, shared network to frame and guide the study of SOM and SOC and their management for sustained production and climate regulation.  相似文献   

15.
The objective of this study was to examine the chemical structure of the organic matter (SOM) of Oxisols soils in slash and burn agriculture, in relation to its biological properties and soil fertility. The CP/MAS 13C technique was used to identify the main structural groups in litter and fine roots as SOM precursors; to identify the changes on the nature of the SOM upon cultivation and the proportion of labile and stable components; and to identify the nature of the organics present in water extracts (DOC). Carbohydrates were the main structural components in litter whereas components such as carbonyl C, carboxyl C,O-alkyl C and alkyl C were more common in SOM. Phenolic C and the degree of aromaticity were similar in litter and SOM. Cultivation resulted in a small decrease in the relative proportion of carbohydrates in SOM, little change in the levels of O-alkyl C and carbonyl C, but an increase in carboxyl C, phenolic C and aromaticity of the SOM. The level of alkyl C in soil was higher than the level of O-alkyl C, indicating the importance of long-chain aliphatics along with lignins in the stabilization of the SOM in Oxisols. The SOM of Mollisols from the Canadian Prairies differed from the Oxisol, with a generally stronger expression of aromatic structures, particularly in a cultivated soil in relation to a native equivalent. Carbohydrate components were the predominant structures in the DOC, indicating their importance in nutrient cycling and vertical translocations in the Oxisol.  相似文献   

16.
Lignin is an aromatic plant compound that decomposes more slowly than other organic matter compounds; however, it was recently shown that lignin could decompose as fast as litter bulk carbon in minerals soils. In alpine Histosols, where organic matter dynamics is largely unaffected by mineral constituents, lignin may be an important part of soil organic matter (SOM). These soils are expected to experience alterations in temperature and/or physicochemical parameters as a result of global climate change. The effect of these changes on lignin dynamics remains to be examined and the importance of lignin as SOM compound in these soils evaluated. Here, we investigated the decomposition of individual lignin phenols of maize litter incubated for 2 years in‐situ in Histosols on an Alpine elevation gradient (900, 1300, and 1900 m above sea level); to this end, we used the cupric oxide oxidation method and determined the phenols’ 13C signature. Maize lignin decomposed faster than bulk maize carbon in the first year (86 vs. 78% decomposed); however, after the second year, lignin and bulk C decomposition did not differ significantly. Lignin mass loss did not correlate with soil temperature after the first year, and even correlated negatively at the end of the second year. Lignin mass loss also correlated negatively with the remaining maize N at the end of the second year, and we interpreted this result as a possible negative influence of nitrogen on lignin degradation, although other factors (notably the depletion of easily degradable carbon sources) may also have played a role at this stage of decomposition. Microbial community composition did not correlate with lignin mass loss, but it did so with the lignin degradation indicators (Ac/Al)s and S/V after 2 years of decomposition. Progressing substrate decomposition toward the final stages thus appears to be linked with microbial community differentiation.  相似文献   

17.
Productivity and carbon (C) storage in many mature tropical forests are considered phosphorus (P) limited because of advanced soil weathering. However, disturbance can shift limitation away from P and toward nitrogen (N) because of disproportionately large N losses associated with its mobility relative to P in ecosystems. This shift was illustrated by model analyses in which large disturbances including timber extraction and slash-burn were simulated in a P-limited tropical forest. Re-accumulation of ecosystem C during secondary forest growth was initially N-limited, but long term limitation reverted to P. Mechanisms controlling shifts between N and P limitation included: (1) N volatility during slash combustion produced ash that increased soil solution P more than N, (2) a wide N:P ratio in residual fuel and belowground necromass relative to soil organic matter (SOM) N:P produced a simultaneous P sink and N source during decomposition, (3) a supplemental (to aerosol deposition) external N source via biological N fixation. Redistribution of N and P from low C:nutrient SOM to high C:nutrient vegetation was the most important factor contributing to the resilience of ecosystem C accumulation during secondary growth. Resilience was diminished when multiple harvest and re-growth cycles depleted SOM. Phosphorus losses in particular resulted in long-term reductions of C storage capacity because of slow re-supply rates via deposition and the absence of other external sources. Sensitivity analyses limiting the depth of microbially active SOM in soil profiles further illustrated the importance of elements stored in SOM to ecosystem resilience, pointing to a need for better knowledge on the functioning of deeply buried SOM.  相似文献   

18.
Soil organic matter turnover is governed by accessibility not recalcitrance   总被引:16,自引:0,他引:16  
Mechanisms to mitigate global climate change by sequestering carbon (C) in different ‘sinks' have been proposed as at least temporary measures. Of the major global C pools, terrestrial ecosystems hold the potential to capture and store substantially increased volumes of C in soil organic matter (SOM) through changes in management that are also of benefit to the multitude of ecosystem services that soils provide. This potential can only be realized by determining the amount of SOM stored in soils now, with subsequent quantification of how this is affected by management strategies intended to increase SOM concentrations, and used in soil C models for the prediction of the roles of soils in future climate change. An apparently obvious method to increase C stocks in soils is to augment the soil C pools with the longest mean residence times (MRT). Computer simulation models of soil C dynamics, e.g. RothC and Century, partition these refractory constituents into slow and passive pools with MRTs of centuries to millennia. This partitioning is assumed to reflect: (i) the average biomolecular properties of SOM in the pools with reference to their source in plant litter, (ii) the accessibility of the SOM to decomposer organisms or catalytic enzymes, or (iii) constraints imposed on decomposition by environmental conditions, including soil moisture and temperature. However, contemporary analytical approaches suggest that the chemical composition of these pools is not necessarily predictable because, despite considerable progress with understanding decomposition processes and the role of decomposer organisms, along with refinements in simulation models, little progress has been made in reconciling biochemical properties with the kinetically defined pools. In this review, we will explore how advances in quantitative analytical techniques have redefined the new understanding of SOM dynamics and how this is affecting the development and application of new modelling approaches to soil C.  相似文献   

19.
The stability of soil organic matter (SOM) pools exposed to elevated CO2 and warming has not been evaluated adequately in long‐term experiments and represents a substantial source of uncertainty in predicting ecosystem feedbacks to climate change. We conducted a 6‐year experiment combining free‐air CO2 enrichment (FACE, 550 ppm) and warming (+2 °C) to evaluate changes in SOM accumulation in native Australian grassland. In this system, competitive interactions appear to favor C4 over C3 species under FACE and warming. We therefore investigated the role of plant functional type (FT) on biomass and SOM responses to the long‐term treatments by carefully sampling soil under patches of C3‐ and C4‐dominated vegetation. We used physical fractionation to quantify particulate organic matter (POM) and long‐term incubation to assess potential decomposition rates. Aboveground production of C4 grasses increased in response to FACE, but total root biomass declined. Across treatments, C : N ratios were higher in leaves, roots and POM of C4 vegetation. CO2 and temperature treatments interacted with FT to influence SOM, and especially POM, such that soil carbon was increased by warming under C4 vegetation, but not in combination with elevated CO2. Potential decomposition rates increased in response to FACE and decreased with warming, possibly owing to treatment effects on soil moisture and microbial community composition. Decomposition was also inversely correlated with root N concentration, suggesting increased microbial demand for older, N‐rich SOM in treatments with low root N inputs. This research suggests that C3–C4 vegetation responses to future climate conditions will strongly influence SOM storage in temperate grasslands.  相似文献   

20.
颗粒有机质的来源、测定及其影响因素   总被引:4,自引:1,他引:4  
土壤活性有机质及其组分作为土壤质量的重要指标在土壤化学、物理和生物性质方面起着重要作用。颗粒有机质能够有效地反映有机质的特性,与微生物生长、营养供给及C、N的生物学调节密切相关。作为活性有机质的一个量度指标,颗粒有机质越来越受到人们的重视。本文综述了土壤颗粒有机质的来源及其在土壤有机质转化过程中的作用,对其测定方法作了系统的描述,阐明了土壤理化性质、农业措施(施肥与耕作)及土地利用类型对土壤颗粒有机质在土壤形成及维持其稳定性方面的影响。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号