首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 8 毫秒
1.
Diatom teratological forms and environmental alterations: a review   总被引:2,自引:1,他引:1  
The foremost feature of a diatom is the species-specific ornamentation of the silicon cell wall, which is preserved and faithfully reproduced through the generations. If exposed to different kinds of stress during reproductive processes, the diatom cell outline and striation pattern can change in different ways, producing teratological forms. These modifications can be slight, leading to difficulties in establishing a threshold between normal and teratological cells, or so marked that it is very difficult to recognize whether an unknown form is teratological or whether it belongs to a new species or variety. Teratological forms appear as an accidental effect of environmental stresses, which can be both physical and chemical. Artificial conditions also often lead to the development of teratological forms. Most frequently, diatoms present abnormal valve outline (lack of symmetry, bent, incised, swollen, or notched profile), unusual raphe system (fragmented, displaced, and bifurcated), abnormal striation pattern (irregular, altered, fragmented, and branched), and unusual raphe channel system (distorted, curved, and occasionally doubled back). In this review we analyzed 222 articles, published from 1890 up to 2008, with the aim to correlate the abnormal diatom cell morphology to environmental alterations, in a perspective which can greatly enhance the evaluation of river environmental quality for biomonitoring purposes.  相似文献   

2.
Soybean [Glycine max (Linn.) Merrill] and mung bean [Vigna radiate (Linn.) Wilczek] plants were challenged with 5 kinds of heavy metals [cadmium (Cd), chromium (Cr), copper (Cu), lead (Pb) and mercury (Hg)] in a hydroponic system. We applied 4 different metal treatments to study the effects of heavy metals on several physiological and biochemical parameters in these species, including root length, heavy metal concentrations and allocation in different organs, superoxide dismutase, catalase, and peroxidase activities, the content of malondialdehyde (MDA), protein and chlorophyll. The data showed that the growth of the roots of soybean and mung bean was equally sensitive to external Hg concentrations. Soybean was more sensitive to external Cd concentrations, and mung bean was more sensitive to external Cr, Cu and Pb concentrations. Normal concentrations of heavy metal would not cause visible toxic symptoms, and a low level of heavy metal even slightly stimulated the growth of plants. With the rise of heavy metal concentration, heavy metal stress induces an oxidative stress response in soybean and mung bean plants, characterized by an accumulation of MDA and the alternation pattern of antioxidative enzymes. Meanwhile, the growth of plants was suppressed, the content of chlorophyll decreased and leaves showed chlorosis symptoms at high metal concentrations.  相似文献   

3.
Transmission electron microscopy was used to study the ultrastructural changes induced by exposure to Cd or Zn in three species of ciliated protozoa: Colpoda steinii, Cyrtolophosis elongata and Drepanomonas revoluta. The main cytoplasmic alterations were partial mitochondrial degeneration, cytoplasmic vacuolisation, accumulation of membranous debris and autophagosome formation. At the nuclear level we detected nucleolar fusion in the macronucleus, and micronuclear membrane modifications. We compared these modifications with those coinciding with ciliate encystment (a differentiation process induced by environmental nutritional stress) and with changes in eukaryotic cells treated with staurosporine, a potent protein kinase inhibitor considered to be an apoptosis inducer. Exposure to heavy metals also coincided with the appearance of electron-dense accumulations in the cytoplasm, which might be related to metallothionein-mediated detoxification. The results are compared with previously reported data from ciliates and microalgae treated with heavy metals.  相似文献   

4.
重金属胁迫下内生菌对宿主植物的解毒机制   总被引:4,自引:0,他引:4  
采用内生菌联合植物修复是土壤重金属污染修复理论研究和应用实践的新思路。较之根际促生菌,内生菌因生存环境稳定且与植物联系更加紧密,在实际应用中具有更大价值。在重金属胁迫下,部分具有特定功能的细菌可进入植物体内成为内生菌,这些内生菌通常在重金属吸收、耐受和解毒方面具有优良的特性,而且可以协同宿主植物耐受重金属胁迫,表现在直接或间接降低植物体内重金属胁迫强度和提高植物本身对重金属的耐受性两方面。系统分析了内生菌对宿主植物的解毒机制,综述了近年来内生菌增强植物重金属耐受性的研究,展望了重金属胁迫下植物和内生菌互作机制的研究思路和方向。  相似文献   

5.
Mosses, covering about 23,000 species of all land plants in the world, have been widely used as an indicator of heavy metal pollution in many studies. A crucial part in these researches is to regularize the adsorption capacities of different moss species obtained from different regions to objectively compare the pollution levels. In this study, we have first analyzed the lead adsorption capacities of six different moss species by means of using column filled with Amberlite XAD-2000 resin method. The adsorption capacities of the studied six mosses are found in descending order as Eurhynchium striatum, Hypnum cupressiforme, Pleurozium schreberi, Eurhynchium striatulum, Homalothecium sericeum and Thuidium tamariscinum. Then, we have regularized the Pb adsorption levels for the moss species obtained from different regions along one of the important coast highway in Turkey, namely Sarp-Samsun highway, with respect to the determined adsorption capacities.  相似文献   

6.
玉米在重金属污染条件下的生态分化与品种退化   总被引:12,自引:1,他引:12  
通过易地栽种实验,研究了经历不同重金属污染时期的玉米种群在正常条件下的平均相对生长率、不同时间的开花百分率及其整株重、株高、穗重、50 粒种子重、有效穗长和无效穗长等数量性状在不同玉米种群间的差异.结果表明,经历较长时期重金属污染适应的玉米种群在正常条件下栽种,具有较低的平均相对生长率,生活史缩短,植株矮化,产量降低.可以看出,玉米对重金属污染的适应导致了生态分化和品种退化,并讨论了玉米对重金属污染适应的耐性代价.  相似文献   

7.
BackgroundLead and cadmium are significant environmental pollutants that cause pathophysiological responses in many organs. Heavy metal absorption into many tissues is very fast due to a pronounced affinity for metallothioneins.MethodJapanese quail were exposed to different concentrations of metals (cadmium 0.20 mg/L and lead 0.25 and 0.50 mg/L) for 20 days. Erythrocytes (normal and hemolyzed) and lymphocytes (normal and altered) were monitored in this study. The analysis observed the percentage of normal and altered cells, as well as erythrocyte surface area. Cell counts were analyzed using light microscopy, while surface area and cytological changes in cells and nuclei were analyzed using licensed software.ResultsDifferent concentrations of metals have caused erythrocyte hemolysis as well as structural and morphological alterations in lymphocytes. Destruction of cell and nucleus membrane, changes in cell size, erythrocyte denucleation and reduced erythrocyte surface area were observed. Cadmium has caused erythrocyte hemolysis (29.30 %) and lymphocyte damage (92.10 %). Higher doses of lead resulted in greater damage to lymphocytes (63 %). Also, treatment with higher dose of lead produced a higher percentage of hemolyzed erythrocytes (19.20 %) in comparison to lower dose (9.90 %).ConclusionThe toxicity of heavy metals leads to reduced maturation of the blast, which causes the appearance of immature cells in peripheral circulation and severe destruction of blood cell membranes. Erythrocyte hemolysis can lead to anemia, while lymphocyte damage can lead to lymphocytopenia.  相似文献   

8.
重金属胁迫下土壤微生物和微生物过程研究进展   总被引:31,自引:6,他引:31  
通过对重金属胁迫下土壤微生物和微生物过程研究的进程和研究进展的归纳综述,分析了该研究尚存在的问题,并阐述了其可能原因.认为土壤微生物和微生物学过程的重金属胁迫研究存在如下问题:一是从实验室、田间试验和实地监测得到的结果间无法进行比较,从而使实验室和田间试验的研究丧失了其科学指导意义,并且在实地监测研究中缺乏相应的“精确”对照;二是在重金属的胁迫下土壤微生物不但数量有消长,而且区系结构上也发生了变化,但是用于校园微生物区系结构变化的手段(PLFA、BI-OLOG和DNA等方法)尚处在探索阶段并需要昂贵的设备,难以普及,需发展一些可广泛普及的新方法来代替传统的平板分离法分析土壤微生物结构;三是重金属对土壤微生物和微生物过程产生胁迫的形态、离子效应和根际效应尚未得到有效的研究和探讨;四是土壤微生物和微生物过程重金属胁迫的表征体系尚未建立.  相似文献   

9.
Göhre V  Paszkowski U 《Planta》2006,223(6):1115-1122
High concentrations of heavy metals (HM) in the soil have detrimental effects on ecosystems and are a risk to human health as they can enter the food chain via agricultural products or contaminated drinking water. Phytoremediation, a sustainable and inexpensive technology based on the removal of pollutants from the environment by plants, is becoming an increasingly important objective in plant research. However, as phytoremediation is a slow process, improvement of efficiency and thus increased stabilization or removal of HMs from soils is an important goal. Arbuscular mycorrhizal (AM) fungi provide an attractive system to advance plant-based environmental clean-up. During symbiotic interaction the hyphal network functionally extends the root system of their hosts. Thus, plants in symbiosis with AM fungi have the potential to take up HM from an enlarged soil volume. In this review, we summarize current knowledge about the contribution of the AM symbiosis to phytoremediation of heavy metals.  相似文献   

10.
乳酸菌对重金属吸附作用的研究进展   总被引:1,自引:0,他引:1  
重金属污染是人们关注的食品安全问题热点之一,使用食品安全级乳酸菌吸附重金属成为了新的研究方向。本文在分析环境和食品中汞、镉、铅污染的来源及对人类危害的基础上,对微生物与重金属的相互作用进行介绍,重点归纳了乳酸菌作为重金属吸附剂的潜能,以及吸附重金属的作用机制和研究现状,为研发高效吸附重金属的乳酸菌吸附剂提供了可行性的思路。  相似文献   

11.
Abstract: Retromobilization of the nonconjugative (TraMob+) IncQ vector, pMOL155, and the non-mobilizable (TraMob) vector, pMOL149, by means of the IncP plasmids RP4 and pULB113 (RP4::Mu3A), was studied in plate matings and in soil microcosms, and compared with direct and triparental mobilization. Both vectors harbour the czc genes, originating from Alcaligenes eutrophus , which code for resistance to Co, Zn, and Cd. The donor of the czc genes was Escherichia coli which did not express these genes. The recipient, Alcaligenes eutrophus , expressed the czc genes very well. Retromobilization, direct and triparental mobilization of pMOL155 was observed in sterile soil. Both the addition of nutrients and heavy metals significantly enhanced the number of (retro)transconjugants. Retromobilization was also detected in nutrient amended nonsterile soil, but the presence of the autochthonous soil biota strongly reduced the number of retrotransconjugants and also prevented their increase upon application of heavy metals to the soil. Retromobilization of the czc genes, cloned in pMOL149, by using pULB113 was also observed, yet only in sterile, nutrient amended, heavy metal polluted soil.  相似文献   

12.
The aim of this study was to elucidate how the spatial scale and the set of variables included influence our ability to detect the effects of different types of pollution on the biota. Using variance partitioning analysis, we assessed the individual importance of a set of environmental factors (eutrophication and organic pollution) versus metal level pollution on the community structure of diatom assemblages at different spatial scales. At regional scale, environmental factors did not explain more of the variance compared to the watershed study. The results of the watershed scale field survey indicate that diatom community composition was influenced by low metal concentrations, but this pattern was only observed by the inclusion of biofilm metal concentration data. We recommend the analysis of metal traces in the water phase and the biota (fluvial biofilms) as well as the use of the Diffusive Gradient in Thin films (DGT) technique to characterize low metal level pollution in freshwater systems. Handling editor: Judit Padisák  相似文献   

13.
Indiscriminate disposal of wastes on landfills has led to increase in heavy metal contamination in landfill soils. However, the ability of the indigenous microorganisms to remediate the polluted environment can be of great influence in reclamation of such soils. The objectives of this study were to assess the bioremediation potential of the screened indigenous bacteria and evaluate the effects of carbon source and pH in the enhancement of the bioremediation process. Bacterial isolates from landfill sites were screened for their capability to utilize heavy metal (Cd and Pb). Nutrient Agar was supplemented with five different concentrations of each metal (25 to 600 mgL-1). Viable counts of the isolates were taken four times at two days interval. Pseudomonas aeruginosa, Klebsiella edwardsii and Enterobacter cloacae were selected based on their tolerance to heavy metal for remediation process. Peptone broth was also supplemented using different concentrations of heavy metals. The remediation process was assessed by monitoring the growth of biomass using UV spectrophotometer at 600 nm and the residual heavy metal was evaluated after 8 days of incubation using AAS. Pseudomonas aeruginosa exhibited the highest bioremediation potential among the bacterial isolates with 58.80 and 33.67 remediation percentage in 50 mg Cd L-1 and 300 mg Pb L-1 . However, higher remediation percentage (79.87 and 92.41) was observed by Klebsiella edwardsii through addition of carbon source (5 g/L) and varying the pH (6) of the media in the heavy metal contaminated medium. The results of this study indicate that the effectiveness of the indigenous bacteria in remediation process can be enhanced through the addition of carbon source and increase pH for effective reclamation of contaminated soil.  相似文献   

14.
Cadmium (Cd) induces neurotoxicity owing to its highly deleterious capacity to cross the blood brain barrier (BBB). Recent studies have provided insights on antioxidant properties of bioflavonoids which have emerged as potential therapeutic and nutraceutical agents. The aim of our study was to examine the hypothesis that hesperidin (HP) ameliorates oxidative stress and may have mitigatory effects in the extent of heavy metal-induced neurotoxicity. Cd (3 mg/kg body weight) was administered subcutaneously for 21 days while HP (40 mg/kg body weight) was administered orally once every day. The results of the current investigation demonstrate significant elevated levels of oxidative stress markers such as lipid peroxidation (LPO) and protein carbonyl (PC) along with significant depletion in the activity of non-enzymatic antioxidants like glutathione (GSH) and non-protein thiol (NP-SH) and enzymatic antioxidants in the Cd treated rats’ brain. Activity of neurotoxicity biomarkers such as acetylcholinesterase (AchE), monoamine oxidase (MAO) and total ATPase were also altered significantly and HP treatment significantly attenuated the altered levels of oxidative stress and neurotoxicity biomarkers while salvaging the antioxidant sentinels of cells to near normal levels thus exhibiting potent antioxidant and neuroprotective effects on the brain tissue against oxidative damage in Cd treated rodent model.  相似文献   

15.
随着近代工业的发展,土壤重金属污染问题日益严重。重金属即使在极低浓度下仍然可以对人畜造成健康上的威胁,因此迫切需要有效的修复方法对土壤进行修复。生物修复,特别是植物修复目前已经成为重金属污染修复的重要手段之一,了解相关植物的重金属解毒和积累分子机制是提高修复效率、解决重金属污染问题的基础。文中以土壤修复方式为起点,结合植物吸收积累重金属以及解毒的相关分子机制研究,探讨了植物修复的发展现状以及趋势。  相似文献   

16.
某冶炼厂周围8种植物对重金属的吸收与富集作用   总被引:34,自引:3,他引:34  
采用野外采样系统分析法,研究了沈阳冶炼厂的8种植物对重金属(Pb、Zn、Cu和Cd)的吸收与富集作用以及可能的耐性机制.结果表明,植物对重金属的吸收和富集,因植物种类、部位及重金属种类而不同.茼麻(Abutilon theophrasti)对Pb的吸收和富集能力较强,小白酒花(Conyza canadensis)、三裂叶豚草(Ambrosia trifida)、酸模叶蓼(Polygonum lapathifolium)、茼麻、龙葵(Solanum nigrum)、绿珠藜(Chenopodium acuminatum)和菊芋(Helianthus tuberosus)对Zn的吸收和富集效果较好,绿珠藜和茼麻对Cu的吸收和富集能力较强,龙葵、绿珠藜、茼麻、酸模叶蓼和小白酒花对Cd的吸收和富集能力较强.这些植物向地上部转移某些重金属的能力很强,转移系数大于1,可用于植物提取方式的污染土壤修复.其他转移系数小于1的植物,适合于重金属污染土壤的植物稳定.  相似文献   

17.
【背景】电子废弃物拆解造成的土壤重金属污染引发的环境问题日益突出,丛枝菌根(arbuscular mycorrhizal,AM)真菌能侵染植物根系并增强植物抵御环境胁迫的能力,具有重要的生态功能和应用潜力。【目的】探究电子废弃物拆解区土壤重金属污染对AM真菌群落结构与多样性的影响,甄别可耐受重金属污染的AM真菌类群。【方法】从浙江台州某典型电子废弃物拆解场地及其周边区域共采集土壤样品12份,针对土壤中AM真菌的18S rRNA基因进行高通量测序以及可操作分类单元(operational taxonomic unit,OTU)相对丰度和多样性指数计算。【结果】该区土壤中AM真菌由原囊霉目(Archaeosporales)、球囊霉目(Glomerales)和多孢囊霉目(Diversisporales)组成,其中球囊霉目占据优势地位。土壤AM真菌多样性指数与重金属的浓度、综合污染指数和潜在生态风险指数间均无显著相关性,但疑似泡囊根生囊霉(Rhizophagus vesiculiferus)的OTU相对丰度与上述重金属污染指标之间均呈显著正相关关系。【结论】R. vesiculiferus可能对重金属污染有极强耐受性,可为今后电子废弃物拆解污染土壤治理提供技术基础。  相似文献   

18.
微生物的代谢活动易受到环境变化的影响,当环境中存在重金属污染时微生物会通过调节代谢降低自身所受的重金属的毒害。本文通过微生物代谢组学研究探讨重金属胁迫下微生物代谢活动的响应情况,介绍了微生物代谢组学的相关技术和方法,对其应用进行说明;基于重金属对微生物细胞的毒害作用,对重金属胁迫下微生物代谢组学的相关内容进行综述,发现在重金属胁迫下,微生物可以通过增加代谢活动进而产生更多的代谢物质来响应重金属的胁迫,其中微生物产生的胞外聚合物、草酸和柠檬酸等代谢物在微生物响应重金属胁迫中具有重要作用。微生物通过产生相应代谢物不仅使自身可以在重金属胁迫下生存,这些代谢物还可以使环境中重金属有所减少,这对于利用微生物资源修复重金属污染具有重要意义。  相似文献   

19.
Plants experience oxidative stress upon exposure to heavy metals that leads to cellular damage. In addition, plants accumulate metal ions that disturb cellular ionic homeostasis. To minimize the detrimental effects of heavy metal exposure and their accumulation, plants have evolved detoxification mechanisms. Such mechanisms are mainly based on chelation and subcellular compartmentalization. Chelation of heavy metals is a ubiquitous detoxification strategy described in wide variety of plants. A principal class of heavy metal chelator known in plants is phytochelatins (PCs), a family of Cys-rich peptides. PCs are synthesized non-translationally from reduced glutathione (GSH) in a transpeptidation reaction catalyzed by the enzyme phytochelatin synthase (PCS). Therefore, availability of glutathione is very essential for PCs synthesis in plants at least during their exposure to heavy metals. Here, I reviewed on effect of heavy metals exposure to plants and role of GSH and PCs in heavy metal stress tolerance. Further, genetic manipulations of GSH and PCs levels that help plants to ameliorate toxic effects of heavy metals have been presented.  相似文献   

20.
有机修复剂在重金属污染土壤修复中的应用   总被引:18,自引:0,他引:18  
有机修复剂在重金属污染土壤修复中具有举足轻重的作用.本文结合国内外的研究成果和最新研究进展,从土壤重金属污染修复中有机修复剂应用的发展状况、应用机理、优缺点、影响因素以及成功实例等几个方面论述了国内外有机修复剂的研究现状,列举了几种应用较为广泛的有机修复剂(如氨基多羧基酸、有机酸、有机质、生物乳化剂等)的最新研究进展,总结了影响有机修复剂使用的主要因素,指出目前有机修复剂在实际应用中可能出现的问题,同时对今后的发展方向进行了展望.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号