首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
ContextModerate-grained data may not always represent landscape structure in adequate detail which could cause misleading results. Certain metrics have been shown to be predictable with changes in scale; however, no studies have verified such predictions using independent fine-grained data.ObjectivesOur objective was to use independently derived land cover datasets to assess relationships between metrics based on fine- and moderate-grained data for a range of analysis extents. We focus on metrics that previous literature has shown to have predictable relationships across scales.MethodsThe study area was located in eastern Connecticut. We compared a 1 m land cover dataset to a 30 m resampled dataset, derived from the 1 m data, as well as two Landsat-based datasets. We examined 11 metrics which included cover areas and patch metrics. Metrics were analyzed using analysis extents ranging from 100 to 1400 m in radius.ResultsThe resampled data had very strong linear relationships to the 1 m data, from which it was derived, for all metrics regardless of the analysis extent size. Landsat-based data had strong correlations for most cover area metrics but had little or no correlation for patch metrics. Increasing analysis areas improved correlations.ConclusionsRelationships between coarse- and fine-grained data tend to be much weaker when comparing independent land cover datasets. Thus, trends across scales that are found by resampling land cover are likely to be unsuitable for predicting the effects of finer-scale elements in the landscape. Nevertheless, coarser data shows promise in predicting fine-grained for cover area metrics provided the analysis area used is sufficiently large.  相似文献   

2.
This review critically evaluates indicators of tidal wetland condition based on 36 indicator development studies and indicators developed as part of U.S. state tidal wetland monitoring programs. Individual metrics were evaluated based on relative scores on two sets of evaluation factors. A rigor score evaluated metric development based on conceptual relevance, indicator development method, degree of independent validation, and temporal and spatial extent tested. An applicability score evaluated metrics based on cost of data collection, probable spatial extent of applicability, technical complexity, and indicator responsiveness. The majority of indicators could be classified as biotic condition indicators (81%), with vegetation (37%) and macroinvertebrate (28%) metrics composing the largest proportion. Most metrics provided a conceptual model or scientific justification (97%), were developed by correlation to environmental gradients (46%), were tested over multiple seasons or years (49%) and at multiple sites (88%). Few were independently validated (18%). Average rigor score was 10 (on a scale of 0–25) and ranged between 1 and 21. Highest rigor scores were for trematode community metrics (community similarity index, species richness) and metrics of grass shrimp (Palaemonetes pugio) individuals (gene expression, relative fecundity, embryo hatching success, larval survival). Most metrics had a high cost of data collection (63%), required field and laboratory processing (84%), would be applicable across the U.S. (72%), and were responsive to the variable of interest (44%). Mean applicability score was 4.9 (range: 2–8). Highest scores were found for metrics that only required field collection of data using simple or no instrumentation. Lowest scoring metrics required expensive equipment, specialized taxonomic knowledge, complex laboratory analysis, and/or culturing of organisms. Scores for individual metrics were grouped by indicator, then averaged and rescaled between 0 and 100 to provide a composite evaluation of the indicator they measured. Among major indicator types, biotic indicators had the highest rigor scores (mean = 44, range 20–79), followed by indicators of chemical/physical characteristics (mean = 36, range 16–56), landscape condition (mean = 31, range 24–37), and hydrology/geomorphology indicators (mean = 21, range 4–52). In contrast, biotic indicators scored lowest for applicability (mean = 58, range 25–100) and indicators of landscape condition scored highest. The results of this review suggest that the development and selection of tidal wetland indicators could be vastly improved by employing a standardized development methodology that provides uniform information about each indicator. In addition, tidal wetland indicator research should focus on the development of indicators of ecological processes and disturbance regimes.  相似文献   

3.
《Ecological Indicators》2008,8(5):588-598
Indices developed for stream bioassessment are typically based on either fish or macroinvertebrate assemblages. These indices consist of metrics which subsume attributes of various species into aggregate measures reflecting community-level ecological responses to disturbance. However, little is known about the relationship between fish and macroinvertebrate metrics, or about how ecological health assessments are affected by assemblage-specific responses to disturbance. We used principal component analysis (PCA) and regression analysis of existing fish (n = 371) and macroinvertebrate (n = 442) stream bioassessment data from a multi-source dataset to determine broad scale, within-assemblage metric patterns, and to examine the intercorrelation of fish and macroinvertebrate metrics (n = 246) and their response to watershed area and land use/land cover gradients. Fish and macroinvertebrate metrics expressed as principal components (PCs) accounted for 72.4 and 85.4% of dataset variance, respectively, with PC-metric patterns reflecting aspects of stream impairment including water and habitat quality. Model components predicting fish metric response differed among fish PCs, with watershed area and macroinvertebrate metric response strongly correlated with the first fish PC, and remaining fish PC models consisting of watershed area, land use, and macroinvertebrate PCs. Correlation between fish and macroinvertebrate PCs, and models relating fish and macroinvertebrate PCs generally explained less variation (13–27%) than metric response models of fish (25–34%) and macroinvertebrates (8–38%) to watershed area and land use/land cover variables. Best-response models integrating fish and macroinvertebrate PCs, watershed area, and land use/land cover variables accounted for the greatest variation in fish PCs (32–50%) across sites. Because fish and macroinvertebrate metrics provide different information on ecological condition, integrated use of information from multiple groups may be appropriate when developing monitoring programs.  相似文献   

4.
Nature conservation and ecological restoration crucially depends on the knowledge about spatial patterns of plant species that control habitat conversion and disturbance regimes. Especially, species abundances are capable of indicating early development tendencies for setting habitat management strategies. This study demonstrates the transfer of field spectroscopy to hyperspectral imagery to map multiple plant species abundances in an open dryland area using two imaging spectrometers in two different phenological phases. We show that species abundances can partially be described by multiple gradients forming different coordinates in a contour map. For this purpose, species abundances were projected into an ordination space using non-metric multidimensional scaling and subsequent spatial interpolation. It was demonstrated that different gradients can be modeled in a Partial Least Squares regression framework resulting in distinct spectral features for certain gradient directions. We combine both objectives in a multiobjective NSGA-II procedure to maximize the quantitative determination of species abundance in ordination and spectral predictability in related field spectra, simultaneously. NSGA-II was finally used to select optimal spectral models for n = 35 single species that were transferred to hyperspectral imagery for mapping purpose. We can show that abundance predictabilities can be evaluated on the basis of individual model performances that hold different spectral features for each species in a designated phenological phase. Finally, we present spatially explicit multi-species maps for the best n = 18 and abundance maps for n = 8 models that could be linked to patterns of species richness, coexistence, succession stages and habitat type conditions.  相似文献   

5.
Ecosystem goods and services in streams are impaired when their biotic communities are degraded by anthropogenic stressors. An index of biotic integrity (IBI) translates community structure into a standardized ecoregion-specific stream health score. Documenting stream health is especially important in the Northern Glaciated Plains (NGP) Ecoregion, which is undergoing rapid landscape alterations through increased agriculture production. Our objectives were to develop a fish IBI and validate candidate reference sites for NGP wadeable perennial streams. Fish were sampled from 54 sites (consisting of reference sites, known-condition least and most disturbed sites, and random sites) during summers 2006–2011. Candidate metrics were sorted into nine metric classes based on attributes of fish assemblage form and function. Metric values were screened using metric range, signal-to-noise ratios, responsiveness to disturbance, and redundancy tests until each metric class contained only those metrics most responsive to anthropogenic stressors. The final IBI consisted of six metrics that were reflective of prairie stream fish assemblages, and differentiated between known-condition least and most disturbed sites. The mean reference sampling site IBI scores were found to be similar to both least and most disturbed sites (Mann–Whitney U-test; P < 0.05). Twelve reference site scores were below the NGP's median (69), whereas the other 11 sites were above the median and were representative of least disturbed conditions. We now have developed a standardized bioassessment tool for evaluating stream health, as well as a baseline for long-term monitoring in a dynamic ecoregion.  相似文献   

6.
QuestionsUncertainty in detecting disturbance histories has long been ignored in dendrochronological studies in forest ecosystems. Our goal was to characterize this uncertainty in relation to the key parameters of forest ecosystems and sample size. In addition, we aimed to provide a method to define uncertainty bounds in specific forest ecosystems with known parameters, and to provide a required (conservative) minimal sample size to achieve a pre-defined level of uncertainty if no actual key forest parameters are known.LocationTraining data were collected from Žofínský Prales (48°40′N, 14°42′E, 735–830 m a.s.l., granite, Czech Republic).MethodsWe used probability theory and expressed uncertainty as the length (the difference between the upper and lower bounds) of the 95% confidence interval. We studied the uncertainty of (i) the initial growth of trees – if they originated under canopy or in a gap; and (ii) the responses to disturbance events during subsequent growth – on the basis of release detection in the radial growth of trees. These two variables provide different information, which together give a picture of the disturbance history. While initial growth date the existence of a gap in a given decade (recent as well as older gaps are included), release demonstrates the moment of a disturbance event.ResultsWith the help of general mathematical deduction, we have obtained results valid across vegetation types. The length of a confidence interval depends on the sample size, proportion of released trees in a population, as well as on the variability of tree layer features (e.g., crown area of suppressed and released trees).ConclusionsMost studies to date have evaluated the initial growth of trees with higher uncertainty than for canopy disturbed area. The length of the 95% confidence interval for detecting initial growth has been rarely shorter than 0.1 (error ± 5%) and has mostly been much longer. To reach 95% confidence interval length of 0.1 (error ± 5%) when detecting the canopy disturbed area, at least 485 tree cores should be evaluated in studied time period, while to reach a 0.05 interval length (error ± 2.5%) at least 1925 tree cores are required. Our approach can be used to find the required sample size in each specific forest ecosystem to achieve pre-defined levels of uncertainty while detecting disturbance history.  相似文献   

7.
Biological indicators based on fish assemblage characteristics are used to assess stream condition worldwide. Fish-based bioassessment poses challenges in Southern New England, the USA, due to the effects of within-watershed thermal gradients on fish assemblage types, low regional species richness, and lack of minimally disturbed sites. Dual multi-metric indices (MMI) of biological condition were developed for wadeable streams based on fish assemblage characteristics sampled across watershed landscapes with varying levels of human disturbance. A coldwater MMI was developed using streams with drainage area of ≤15 km2, and a mixed-water MMI for streams with drainage areas of >15 km2. For each MMI development, candidate metrics represented by ecological classes were sequentially tested by metric range, within-year precision, correlation with stream size, responsiveness to landscape-level human disturbances, and redundancy. Resultant coldwater and mixed-water MMI were composed of 5 and 7 metrics, respectively. Stream sites tended to score similarly when the two MMI were applied to transitional sites, i.e., drainage areas of 5–40 km2. However, some sites received high scores from the mixed-water MMI and intermediate scores from the coldwater MMI. It was thus difficult to ascertain high-quality mixed-water streams from potential coldwater streams which currently support mixed-water assemblages due to ecological degradation. High-quality coldwater streams were restricted to stream sites with drainage areas ≤15 km2. The newly developed fish-based MMI will serve as a useful management tool and the dual-MMI development approach may be applicable to other regions with thermal gradients that transition from coldwater to warmwater within watersheds.  相似文献   

8.
《Ecological Indicators》2007,7(3):521-540
Benthic, epiphytic, and phytoplanktonic diatoms, as well as soil and water physical–chemical parameters, were sampled from 70 small (average 0.86 ha) isolated depressional herbaceous wetlands located along a gradient of human disturbance in peninsular Florida to (1) compare diatom assemblage structure between algal types; (2) develop biological indicators of wetland condition; (3) examine synecological relationships between diatom structure and environmental variables, with the ultimate goal of developing an index of biological integrity using a single assemblage. Collected diatom samples were enumerated to 250 valves and identified to species or subspecies. An assessment of wetland condition was made using a landscape-scale human disturbance score (Landscape Development Intensity index, LDI), calculated for each site using land use maps and GIS.Assemblages from both impaired and reference sites were compared using blocked multi-response permutation procedures, the percent similarity index, and visually examined using non-metric multidimensional scaling (NMDS). No ecologically significant compositional differences were found within sites. Mantel's test (Mantel's r = 0.29, p < 0.0001) and NMDS (stress: 14.52, variance: 78.5%) identified epiphytic diatoms as the most responsive to human disturbance. Strong significant correlations (|rs| > 0.50, p < 0.05) were found between epiphytic NMDS site scores and soil pH, specific conductivity, water total phosphorous, and LDI, while soil pH, water color, soil TP, and turbidity were also significantly correlated (p < 0.05).Metrics to assess wetland condition were developed using epiphytic abundance data. Epiphytic taxa sensitive or tolerant to human landscape modification were identified using Indicator Species Analysis, and autecological indices relating diatom sensitivity to nutrients, pH, dissolved oxygen levels, saprobity, salinity, and trophic status were calculated. Fourteen final metrics were identified, scored on an ordinal scale, and combined into the Diatom Index of Wetland Condition (DIWC). The DIWC was highly correlated with the disturbance score (Spearman's rs = −0.71, p < 0.0001), although the results need to be validated.  相似文献   

9.
Most studies dealing with the use of ecological indicators and other applied ecological research rely on some definition or concept of what constitutes least-, intermediate- and most-disturbed condition. Currently, most rigorous methodologies designed to define those conditions are suited to large spatial extents (nations, ecoregions) and many sites (hundreds to thousands). The objective of this study was to describe a methodology to quantitatively define a disturbance gradient for 40 sites in each of two small southeastern Brazil river basins. The assessment of anthropogenic disturbance experienced by each site was based solely on measurements strictly related to the intensity and extent of anthropogenic pressures. We calculated two indices: one concerned site-scale pressures and the other catchment-scale pressures. We combined those two indices into a single integrated disturbance index (IDI) because disturbances operating at both scales affect stream biota. The local- and catchment-scale disturbance indices were weakly correlated in the two basins (r = 0.21 and 0.35) and both significantly (p < 0.05) reduced site EPT (insect orders Ephemeroptera, Plecoptera, Trichoptera) richness. The IDI also performed well in explaining EPT richness in the basin that presented the stronger disturbance gradient (R2 = 0.39, p < 0.001). Natural habitat variability was assessed as a second source of variation in EPT richness. Stream size and microhabitats were the key habitat characteristics not related to disturbances that enhanced the explanation of EPT richness over that attributed to the IDI. In both basins the IDI plus habitat metrics together explained around 50% of EPT richness variation. In the basin with the weaker disturbance gradient, natural habitat explained more variation in EPT richness than did the IDI, a result that has implications for biomonitoring studies. We conclude that quantitatively defined disturbance gradients offer a reliable and comprehensive characterization of anthropogenic pressure that integrates data from different spatial scales.  相似文献   

10.
11.
Acoustic signals that emanate from ecosystems are an important ecological variable which can provide evidence of current ecological condition as well as ecological change over time. The Terrestrial Ecosystem Research Network (TERN) established protocols to record sounds in ten SuperSites distributed throughout Australia with the objective of characterizing the soundscape in a representative landscape in different regions of Australia. This acoustic monitoring system enables a comparison of the soundscapes within and between Australian regions to determine similarities and differences in these landscapes and regions.This research quantifies the soundscape patterns in one of these SuperSites, Samford Ecological Research Facility (TERN-SERF), which is part of the South-East Queensland Peri-Urban SuperSite. An analysis and visualization of patterns in the soundscape was conducted using a continuous acoustic recording collected at TERN-SERF. The recording was made using a Song Meter (SM2) in a representative wooded habitat at TERN-SERF from 1 August to 30 September 2013. The recording was made in 16-bit stereo at 44 kHz and stored in wav file format. The recording was split into 1-minute-long recordings comprising 86,196 records and then sub-sampled at a 30-minute interval, providing 2878 one-minute-long recordings every 1/2 h. Soundscape metrics were computed for each of the two recording intervals. Soundscape power values were computed for each of ten frequency intervals (1–11 kHz) for both the 1-minute and the 30-minute interval recordings. In addition, six acoustic indices were computed from each recording.The acoustics metrics derived from the two sets of recordings (1-minute and 30-minute recording intervals) were examined to determine if they revealed different patterns. Several soundscape metrics were calculated for each recording including ten soundscape power values at 1 kHz frequency intervals and six acoustics indices. The soundscape shows a dynamic but consistent pattern over time of day during the monitoring period, depending on the metric examined. The metrics revealed different soundscape patterns. All soundscape power values at 1 kHz frequency intervals defined the dawn and dusk chorus, some more distinctly than others. Three of six acoustic indices also changed abruptly at the dawn chorus. No significant difference was found when soundscape metrics were compared between the 1-minute (high resolution) and 30-minute (lower resolution) recording intervals. A t-test was used to compare the mean values of ten soundscape power frequency intervals (p = 0.44) and the mean values of six acoustics indices (p = 0.41).Sounds were identified in 180 recordings made at 0530 h, 0600 h and 0630 h in the 1-minute long 30-minute interval recordings each day during the recording period (August and September). Sixty-seven species of birds were identified. Soundscape metrics were correlated with avian species counts and calls by all species using a correlation threshold of r > 0.7. This analysis revealed that soundscape power at the frequency interval 3–4 kHz was correlated with both the number of species (r =  0.927) and total calls (r =  0.996) over the three time periods. Three indices, the ADI (r = 0.953, r = 0.709), the AEI (r = 0.978, r = 0.774) and (H) (r = 0.795, r = 0.985) were similarly correlated as was an index derived soundscape power, the Shannon-Weaver Index (r =  0.997, r =  0.849). Other indices were correlated (r > 0.7) with only the number of avian species or only the number of calls.This methodology establishes an analysis protocol for analyzing large acoustic data sets, and demonstrates the effectiveness of using acoustic metrics for summarizing and interpreting long-term recordings.  相似文献   

12.
Human disturbance may differentially affect the behavior of wild animals and such behavioral perturbations may have fitness consequences. To understand the effects of specific types of human disturbance on antipredator behavior, a behavior whose performance enhances survival, we studied yellow-bellied marmots (Marmota flaviventris). We quantified both antipredator vigilance and the flight initiation distance of the marmots to an approaching human in six different colony sites where we also quantified the frequency and type of human visitation. We developed an analysis framework, using linear mixed models, and found that: (1) when the presence of motorized vehicles and bicycles was high, marmots increased the proportion of time spent vigilant (pseudo R2 = 0.33 and 0.31 for motorized vehicles and bicycles, P < 0.05) and decreased the time spent foraging (pseudo R2 = 0.29 and 0.23 for motorized vehicles and bicycles, P < 0.05), (2) there was no significant effect of the presence of pedestrians on the time allocated to vigilance and foraging (pseudo R2 = 0.25 and 0.19, P > 0.05), (3) marmots decreased the flight initiation distance as disturbance of motorized vehicles (pseudo R2 = 0.85) and pedestrians (pseudo R2 = 0.84) increased (P < 0.05), and (4) when we considered bicycles as the disturbance, juveniles tolerated closer approaches than adults or yearlings (P < 0.001). Marmots thus responded to some human disturbance by adjusting time spent in foraging and shortening the tolerance distance. Since these behavioral responses could have significant implications for survival and reproduction, we should generally view human disturbance as something that can influence natural antipredator behavior. Importantly, based on an understanding of the differential effects of human activities on wildlife, reducing human disturbance should be taken into account for wildlife management. In addition, our approach will be useful to quantify differential effects of humans on wildlife and to enhance our ability to manage those impacts.  相似文献   

13.
Due to deforestation, intact tropical forest areas are increasingly transformed into a mixture of remaining forest patches and human modified areas. These forest fragments suffer from edge effects, which cause changes in ecological and ecosystem processes, undermining habitat quality and the offer of ecosystem services. Even though detailed and long term studies were developed on the topic of edge effects at local scale, understanding edge effect characteristics in fragmented forests on larger scales and finding indicators for its impact is crucial for predicting habitat loss and developing management options. Here we evaluate the spatial and temporal dimensions of edge effects in large areas using remote sensing. First we executed a neighborhood pixel analysis in 11 LANDSAT Tree Cover (LTC) scenes (180 × 185 km each, 8 in the tropics and 3 in temperate forested areas) using tree cover as an indicator of habitat quality and in relation to edge distance. Second, we executed a temporal analysis of LTC in a smaller area in the Brazilian Amazon forest where one larger forest fragment (25,890 ha) became completely fragmented in 5 years. Our results show that for all 11 scenes pixel neighborhood variation of LTC is much higher in the vicinity of forest edges, becoming lower towards the forest interior. This analysis suggests a maximum distance for edge effects and can indicate the location of unaffected core areas. However, LTC patterns in relation to fragment edge distance vary according to the analyzed region, and maximum edge distance may differ according to local conditions. Our temporal analysis illustrates the change in tree cover patterns after 5 years of fragmentation, becoming on average lower close to the edge (between 50 and 100 m). Although it is still unclear which are the main causes of LTC edge variability within and between regions, LANDSAT Tree Cover could be used as an accessible and efficient discriminator of edge and interior forest habitats in fragmented landscapes, and become invaluable for deriving qualitative spatial and temporal information of ecological and ecosystem processes.  相似文献   

14.
Texture information from passive remote sensing images provides surrogates for habitat structure, which is relevant for modeling biodiversity across space and time and for developing effective ecological indicators. However, the applicability of this information might differ among taxa and diversity measures. We compared the ability of indicators developed from texture analysis of remotely sensed images to predict species richness and species turnover of six taxa (trees, pyraloid moths, geometrid moths, arctiinae moths, ants, and birds) in a megadiverse Andean mountain rainforest ecosystem. Partial least-squares regression models were fitted using 12 predictors that characterize the habitat and included three topographical metrics derived from a high-resolution digital elevation model and nine texture metrics derived from very high-resolution multi-spectral orthophotos. We calculated image textures derived from mean, correlation, and entropy statistics within a relatively broad moving window (102 m × 102 m) of the near infra-red band and two vegetation indices. The model performances of species richness were taxon dependent, with the lowest predictive power for arctiinae moths (4%) and the highest for ants (78%). Topographical metrics sufficiently modeled species richness of pyraloid moths and ants, while models for species richness of trees, geometrid moths, and birds benefited from texture metrics. When more complexity was added to the model such as additional texture statistics calculated from a smaller moving window (18 m × 18 m), the predictive power for trees and birds increased significantly from 12% to 22% and 13% to 27%, respectively. Gradients of species turnover, assessed by non-metric two-dimensional scaling (NMDS) of Bray-Curtis dissimilarities, allowed the construction of models with far higher predictability than species richness across all taxonomic groups, with predictability for the first response variable of species turnover ranging from 64% (birds) to 98% (trees) of the explained change in species composition, and predictability for the second response variable of species turnover ranging from 33% (trees) to 74% (pyraloid moths). The two NMDS axes effectively separated compositional change along the elevational gradient, explained by a combination of elevation and texture metrics, from more subtle, local changes in habitat structure surrogated by varying combinations of texture metrics. The application of indicators arising from texture analysis of remote sensing images differed among taxa and diversity measures. However, these habitat indicators improved predictions of species diversity measures of most taxa, and therefore, we highly recommend their use in biodiversity research.  相似文献   

15.
We examine lacustrine wetland plant assemblages in the Central Corn Belt Plain portion of the Lake Michigan basin and developed a multimetric plant index of biotic integrity (PIBI). Our objectives were to determine the structural and functional attributes of littoral zone plant assemblages of least-impacted lacustrine wetlands, establish and test candidate metrics, statistically test and calibrate metrics, and finally validate a PIBI along a disturbance gradient. Of 35 candidate metrics, we chose 11 metrics that were grouped into four categories: species richness and composition, species tolerance, guild structure, and vegetation abundance. Based on Spearman correlations, we identified a suite of metrics, particularly those related to species richness and tolerance that had a strong response to human-induced habitat change. The overall PIBI correlated strongly with independent measures of habitat quality (p < 0.001) using a qualitative habitat index developed for lacustrine habitats. We validated the lacustrine PIBI by comparing index response to various landuse, landcover, and management types. Least impacted lakes and lakes classified as recreational or undergoing ecological restoration were not statistically separable and received the highest index scores, while the lowest scores were associated with industrial and residential land use. Least-impacted sites differ significantly (p < 0.001) from both industrial and residential lakes.  相似文献   

16.
We developed a preliminary fish-based multimetric index (MMI) to assess biotic condition of Atlantic Rain Forest streams in Southeastern Brazil. We used least-disturbed sites as proxies of reference conditions for metric development. To determine the disturbance gradient we used an Integrated Disturbance Index (IDI) that summarized the multiple disturbances measured at local/regional catchment scales in a single index, describing the totality of exposure of the streams to human pressures. For our 48 sites, nine were least-disturbed (IDI < 0.25), five were most-disturbed (IDI > 1.35) and 34 were intermediate. Initially, we considered 41 candidate metrics selected primarily from previous studies. We screened this pool of candidate metrics using a series of tests: range test, signal-to-noise test, correlation with natural gradients, responsiveness test, and redundancy test. After screening, we selected six metrics for the MMI: % Characiform individuals, % water column native individuals, % benthic invertivorous individuals, % tolerant species, % intolerant species, and % detritivorous individuals. Metrics such as diversity, dominance, species richness and biomass that have been historically used for assessing ecosystem condition failed one or more screening tests. We conclude that an IDI and rigorous metric screening are critical to the MMI development process and for meaningful assessments of stream condition.  相似文献   

17.
Biological indicators are increasingly being used as integrative measures of the ecosystem health in streams, particularly those using macroinvertebrate assemblage composition. Monitoring biological quality of rivers has not a long tradition in some Mediterranean European countries like Spain. Several macroinvertebrate metrics have been recently proposed to assess ecological status in Mediterranean streams, so it is necessary to compare the use of proposed biological quality metrics to select the most appropriate ones.In the present work, two classic richness metrics (total number of families and number of the Ephemeroptera, Plecoptera and Trichoptera families), three indices (IBMWP, IASPT and t-BMWQ) and two multimetric indices, recently proposed to be used in Mediterranean streams (ICM-9 and ICM-11a or IMMi-L), were compared by the analysis of the sensitivity of these metrics to a multiple stressor gradient which reflected the main pressures present in the study area. For this purpose, data from 193 sites sampled in spring (95 reference sites and 98 disturbed sites) belonging to five different Mediterranean stream types present in 35 basins were studied.The results showed that the adjusted regression coefficients (r2) for all seven metrics in the exponential regression models were higher than linear ones, thus indicating an exponential relationship between metrics and the environmental alteration. The two studied multimetric indices presented higher regression coefficients (r2 = 0.590–0.669) than the three indices (r2 = 0.524–0.574) and the two metrics (r2 = 0.471–0.525), therefore showing a better response to a stressor gradient in Mediterranean streams. Within the multimetric indices group, ICM-11a showed the highest regression coefficients. Based on the results obtained, we suggest using the ICM-11a, apart from the IBMWP, to assess ecological status in Mediterranean streams.  相似文献   

18.
The floodplain forests in the Amazon basin suffer from the continued exploitation of natural resources and, after being disturbed, show slow and sometimes irreversible recovery. Our goal was to create an index that could be used to assess the relative level of human disturbance in floodplain forests and determine the relative importance of different types of disturbance on a given site and between sites. The index proposed here (Flooded Forest Anthropization Index – FFAI) assesses human disturbance on a local scale and is composed by 15 indicators divided into three groups that represent different levels of impact: (1) simplification of ecosystems and reduction of local diversity; (2) ecosystem replacement/destruction; (3) disturbances with the potential to impact the ecosystem in both ways. The FFAI proved to be robust and revealed a wide range of values in the evaluated landscapes. The sites classified a priori as more anthropogenic showed significantly higher FFAI values than the less anthropogenic ones (0.14 ± 0.05 and 0.08 ± 0.02, respectively, F = 18.9, df = 19, p < 0.0001). The FFAI enabled a comprehensive assessment of human disturbance on a local scale in Amazonian floodplain forests and can be a useful tool for decision makers in choosing priority areas for interventions and for targeting the type of intervention that must be carried out. Although specific to floodplains, the index can be adjusted to be used in other ecosystems.  相似文献   

19.
There has been less understanding of relations of microbial community patterns with plant diversity in constructed wetlands. We conducted a single full-scale subsurface vertical flow constructed wetland (SVFCW, 1000 m2) study focusing on domestic wastewater processing. This study measured the size and structure of microbial community using fumigation extraction and BIOLOG Ecoplate? techniques, to examine the effects of macrophyte diversity on microbial communities that are critical in treatment efficiency of constructed wetlands. We also determined the relationship of plant diversity (species richness) with its biomass production under disturbance of the same wastewater supply. Linear regression analysis showed that plant biomass production strongly correlated with plant species richness (R = 0.407, P < 0.001). Increase in plant species richness increased microbial biomass carbon and nitrogen (R = 0.494, P < 0.001; R = 0.465, P < 0.001) and utilization of amino acids on Ecoplates (R = 0.235, P = 0.03), but limited the utilization of amine/amides (R = ?0.338, P = 0.013). Principal components analysis (PCA) showed that the diversity and community-level physiological profiles (CLPP) of microbial community at 168 h of incubation strongly depended on the presence or absence of plant species in the SVFCW system, but not on the species richness. This is the first step toward understanding relations of plant diversity with soil microbial community patterns in constructed wetlands, but the effect of species diversity on microbial community should be further studied.  相似文献   

20.
In the event of abdominal aortic aneurysm (AAA) rupture, the outcome is often death. This paper aims to experimentally identify the rupture locations of in vitro AAA models and validate these rupture sites using finite element analysis (FEA). Silicone rubber AAA models were manufactured using two different materials (Sylgard 160 and Sylgard 170, Dow Corning) and imaged using computed tomography (CT). Experimental models were inflated until rupture with high speed photography used to capture the site of rupture. 3D reconstructions from CT scans and subsequent FEA of these models enabled the wall stress and wall thickness to be determined for each of the geometries. Experimental models ruptured at regions of inflection, not at regions of maximum diameter. Rupture pressures (mean±SD) for the Sylgard 160 and Sylgard 170 models were 650.6±195.1 mmHg and 410.7±159.9 mmHg, respectively. Computational models accurately predicted the locations of rupture. Peak wall stress for the Sylgard 160 and Sylgard 170 models was 2.15±0.26 MPa at an internal pressure of 650 mmHg and 1.69±0.38 MPa at an internal pressure of 410 mmHg, respectively. Mean wall thickness of all models was 2.19±0.40 mm, with a mean wall thickness at the location of rupture of 1.85±0.33 and 1.71±0.29 mm for the Sylgard 160 and Sylgard 170 materials, respectively. Rupture occurred at the location of peak stress in 80% (16/20) of cases and at high stress regions but not peak stress in 10% (2/20) of cases. 10% (2/20) of models had defects in the AAA wall which moved the rupture location away from regions of elevated stress. The results presented may further contribute to the understanding of AAA biomechanics and ultimately AAA rupture prediction.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号