首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
A new benthic toxic dinoflagellate is described from the Celebes Sea. Gambierdiscus balechii sp. nov. was isolated from seaweeds growing in tidal ponds. Its morphology was studied by means of LM and SEM; G. balechii has a very ornamented theca, a hatchet shaped second apical plate, a narrow second antapical plate and an asymmetrical third precigular plate, a unique combination of characters among Gambierdiscus species. It has a very wide size range with widths from 36 to 88 μm. Phylogenetic analyses of two G. balechii strains, based on LSU rRNA (D8–D10) and partial SSUrRNA sequences confirmed that these clustererd in its’ own group, separated from the rest of Gambierdiscus species and with G. pacificus, G. belizeanus and G. scabrosus as its closest relatives. Thecate cysts are described from culture as non motile vegetative-like cells which germinated after being isolated and transferred to fresh medium. Mouse tests showed that this species is toxic and hence it is a potential cause of ciguatera in the Celebes Sea.  相似文献   

2.
Viet Nam has a coastline of 3200 km with thousands of islands providing diverse habitats for benthic harmful algal species including species of Gambierdiscus. Some of these species produce ciguatera toxins, which may accumulate in large carnivore fish potentially posing major threats to public health. This study reports five species of Gambierdiscus from Vietnamese waters, notably G. australes, G. caribaeus, G. carpenteri, G. pacificus, and G. vietnamensis sp. nov. All species are identified morphologically by LM and SEM, and identifications are supported by molecular analyses of nuclear rDNA (D1–D3 and D8–D10 domains of LSU, SSU, and ITS1-5.8S-ITS2 region) based on cultured material collected during 2010–2021. Statistical analyses of morphometric measurements may be used to differentiate some species if a sufficiently large number of cells are examined. Gambierdiscus vietnamensis sp. nov. is morphologically similar to other strongly reticulated species, such as G. belizeanus and possibly G. pacificus; the latter species is morphologically indistinguishable from G. vietnamensis sp. nov., but they are genetically distinct, and molecular analysis is deemed necessary for proper identification of the new species. This study also revealed that strains denoted G. pacificus from Hainan Island (China) should be included in G. vietnamensis sp. nov.  相似文献   

3.

Background

The marine epiphytic dinoflagellate genus Gambierdiscus produce toxins that cause ciguatera fish poisoning (CFP): one of the most significant seafood-borne illnesses associated with fish consumption worldwide. So far, occurrences of CFP incidents in Japan have been mainly reported in subtropical areas. A previous phylogeographic study of Japanese Gambierdiscus revealed the existence of two distinct phylotypes: Gambierdiscus sp. type 1 from subtropical and Gambierdiscus sp. type 2 from temperate areas. However, details of the genetic diversity and distribution for Japanese Gambierdiscus are still unclear, because a comprehensive investigation has not been conducted yet.

Methods/Principal Finding

A total of 248 strains were examined from samples mainly collected from western and southern coastal areas of Japan during 2006–2011. The SSU rDNA, the LSU rDNA D8–D10 and the ITS region were selected as genetic markers and phylogenetic analyses were conducted. The genetic diversity of Japanese Gambierdiscus was high since five species/phylotypes were detected: including two reported phylotypes (Gambierdiscus sp. type 1 and Gambierdiscus sp. type 2), two species of Gambierdiscus (G. australes and G. cf. yasumotoi) and a hitherto unreported phylotype Gambierdiscus sp. type 3. The distributions of type 3 and G. cf. yasumotoi were restricted to the temperate and the subtropical area, respectively. On the other hand, type 1, type 2 and G. australes occurred from the subtropical to the temperate area, with a tendency that type 1 and G. australes were dominant in the subtropical area, whereas type 2 was dominant in the temperate area. By using mouse bioassay, type 1, type 3 and G. australes exhibited mouse toxicities.

Conclusions/Significance

This study revealed a surprising diversity of Japanese Gambierdiscus and the distribution of five species/phylotypes displayed clear geographical patterns in Japanese coastal areas. The SSU rDNA and the LSU rDNA D8–D10 as genetic markers are recommended for further use.  相似文献   

4.
Benthic dinoflagellates in the genus Gambierdiscus produce the ciguatoxin precursors responsible for the occurrence of ciguatera toxicity. The prevalence of ciguatera toxins in fish has been linked to the presence and distribution of toxin-producing species in coral reef ecosystems, which is largely determined by the presence of suitable benthic habitat and environmental conditions favorable for growth. Here using single factor experiments, we examined the effects of salinity, irradiance, and temperature on growth of 17 strains of Gambierdiscus representing eight species/phylotypes (G. belizeanus, G. caribaeus, G. carolinianus, G. carpenteri, G. pacificus, G. silvae, Gambierdiscus sp. type 4–5), most of which were established from either Marakei Island, Republic of Kiribati, or St. Thomas, United States Virgin Island (USVI). Comparable to prior studies, growth rates fell within the range of 0–0.48 divisions day-1. In the salinity and temperature studies, Gambierdiscus responded in a near Gaussian, non-linear manner typical for such studies, with optimal and suboptimal growth occurring in the range of salinities of 25 and 45 and 21.0 and 32.5°C. In the irradiance experiment, no mortality was observed; however, growth rates at 55μmol photons · m-2 · s-1 were lower than those at 110–400μmol photons · m-2 · s-1. At the extremes of the environmental conditions tested, growth rates were highly variable, evidenced by large coefficients of variability. However, significant differences in intraspecific growth rates were typically found only at optimal or near-optimal growth conditions. Polynomial regression analyses showed that maximum growth occurred at salinity and temperature levels of 30.1–38.5 and 23.8–29.2°C, respectively. Gambierdiscus growth patterns varied among species, and within individual species: G. belizeanus, G. caribaeus, G. carpenteri, and G. pacificus generally exhibited a wider range of tolerance to environmental conditions, which may explain their broad geographic distribution. In contrast, G. silvae and Gambierdiscus sp. types 4–5 all displayed a comparatively narrow range of tolerance to temperature, salinity, and irradiance.  相似文献   

5.
Marine toxic dinoflagellates of the genus Gambierdiscus are the causative agents of ciguatera fish poisoning (CFP), a seafood poisoning that is widespread in tropical, subtropical and temperate regions of the world. In the main island of Japan, distributions of Gambierdiscus australes, Gambierdiscus scabrosus and two phylotypes of Gambierdiscus spp. type 2 and type 3, have been reported. To discuss the bloom dynamics of these Japanese species/phylotypes of Gambierdiscus, first we tested six culture media to optimize growth conditions and then clarified the effects of temperature and salinity and temperature–salinity interactions on growth. All strains of the species/phylotypes tested showed the highest cell yields when they were cultivated in IMK/2 medium. G. australes, G. scabrosus and Gambierdiscus sp. type 2 grew in the range 17.5–30 °C, whereas Gambierdiscus sp. type 3 grew in 15–25 °C. The semi-optimal temperature ranges (≥80% of the maximal growth rate) of the former three species/phylotypes were 19–28 °C, 24–31 °C and 21–28 °C, respectively, whereas that of the latter phylotype was 22–25 °C. Hence, Gambierdiscus sp. type 3 may be adapted to relatively lower water temperatures of ≤25 °C. In contrast, G. australes, G. scabrosus and Gambierdiscus sp. type 2 presumably possess adaptability to relatively high water temperatures. The optimal temperature for G. scabrosus was 30 °C, whereas the optimal temperature for the others was 25 °C. G. australes and Gambierdiscus sp. type 3 grew in a salinity range of 25–40 whereas G. scabrosus and Gambierdiscus sp. type 2 grew in salinity 20–40. Furthermore, the semi-optimal salinity range of G. australes, G. scabrosus, Gambierdiscus spp. type 2 and type 3 were salinity 27–38, 24–36, 22–36 and 29–37, respectively. Among the species/phylotypes, G. scabrosus and Gambierdiscus sp. type 2 grew even at salinity 20 where the others did not grow, thus possessing adaptability to low salinity waters. Our results clearly demonstrate that the optimal and tolerable temperature–salinity conditions differ among Japanese Gambierdiscus species/phylotypes. Considering these results, temperature–salinity interactions may play an important role in bloom dynamics and the distribution of the Gambierdiscus species/phylotypes in Japanese coastal waters.  相似文献   

6.
Species of the benthic dinoflagellate Gambierdiscus produce polyether neurotoxins that caused ciguatera fish/shellfish poisoning in human. The toxins enter marine food webs by foraging of herbivores on the biotic substrates like macroalgae that host the toxic dinoflagellates. Interaction of Gambierdiscus and their macroalgal substrate hosts is believed to shape the tendency of substrate preferences and habitat specialization. This was supported by studies that manifested epiphytic preferences and behaviors in Gambierdiscus species toward different macroalgal hosts. To further examine the supposition, a laboratory-based experimental study was conducted to examine the growth, epiphytic behaviors and host preferences of three Gambierdiscus species towards four macroalgal hosts over a culture period of 40 days. The dinoflagellates Gambierdiscus balechii, G. caribaeus, and a new ribotype, herein designated as Gambierdiscus type 7 were initially identified based on the thecal morphology and molecular characterization. Our results showed that Gambierdiscus species tested in this study exhibited higher growth rates in the presence of macroalgal hosts. Growth responses and attachment behaviors, however, differed among different species and strains of Gambierdiscus over different macroalgal substrate hosts. Cells of Gambierdiscus mostly attached to substrate hosts at the beginning of the experiments but detached at the later time. Localized Gambierdiscus-host interactions, as demonstrated in this study, could help to better inform efforts of sampling and monitoring of this benthic toxic dinoflagellate.  相似文献   

7.
8.
The benthic dinoflagellates in the genus Gambierdiscus produce toxins that bioaccumulate in tropical and sub‐tropical fish causing ciguatera fish poisoning (CFP). Other co‐occurring genera such as Coolia have also been implicated in causing CFP. Little is known about the diversity of the two genera Gambierdiscus and Coolia along the Thai coasts. The results of morphological analyses based on observation under light microscopy and scanning electron microcopy showed that strains of Gambierdiscus from Thailand displayed the typical Gambierdiscus plate formula: Po, 4′, 0a, 6″, 6c,?s, 5′′′, 0p and 2′′′′. Morphological examination of Thai Gambierdiscus enabled it to be identified as Gambierdiscus caribaeus: round and anterior‐posteriorly compressed cell shape, broad 2′′′′ plate, rectangular 2′ plate, and symmetrical 3″ plate. The phylogenetic analyses based on the large subunit (LSU) rDNA D8/D10 sequences of Gambierdiscus from Thailand confirmed the morphological identification. The thecal plate formula for all of the Coolia isolates from Thailand was Po, 4′, 0a, 6″,?c,?s, 5′′′, 0p and 2′′′′. Most, but not all, of these isolates could be identified morphologically as Coolia malayensis. An LSU rDNA D1/D2 phylogenetic analysis confirmed identity of C. malayensis isolates identified morphologically. The remaining unidentified isolates fell in the C. tropicalis clade.  相似文献   

9.
Gambierdiscus spp. are epiphytic, benthic dinoflagellates. Some species have been shown to be toxic and cause ciguatera fish poisoning. We report, for the first time, the occurrence of Gambierdiscus caribaeus isolated from the waters off Jeju Island in Korea. Its morphology was similar to that of the original Belize strains of G. caribaeus. Gambierdiscus caribaeus has been reported in the tropical and subtropical waters of the Pacific, Gulf of Mexico, Caribbean Sea, and Floridian coast. Our report extends its range to the North Pacific Ocean. The plates of the Korean strain were arranged in a Kofoidian series of Po, 3′, 7′′, 6c, 6s, 5′′′, 1p, and 2′′′′, morphologically closer to other strains of G. caribaeus than to G. carpenteri. When properly aligned, its small subunit (SSU) rDNA was 0.5% different from those of Gambierdiscus sp. C‐1, a strain that was isolated from the waters off eastern Japan, but was 2.4–4.0% different from those of the NOAA strains of G. caribaeus and 3.1–3.4% different from those of the NOAA strains of G. carpenteri. Additionally, the D1–D3 large subunit (LSU) rDNA sequence of the Korean strain of G. caribaeus was 4.7–5.3% different from those of the NOAA strains of G. caribaeus and 7.1–7.5% different from those of all reported G. carpenteri strains, including the NOAA strains. In phylogenetic trees based on SSU and LSU rDNA sequences, our Korean strain was basal to the clade consisting of the NOAA strains of G. caribaeus, which in turn was sister clade to all reported G. carpenteri strains.  相似文献   

10.
The marine epiphytic dinoflagellate Gambierdiscus is a toxicologically important genus responsible for ciguatera fish poisoning, the principal cause of non-bacterial illness associated with fish consumption. The genus currently contains species exhibiting either globular or anterior-posteriorly compressed morphologies with marked differences in cell shape and plate arrangement. Here we report a third globular, epiphytic and tychoplanktonic species from the coasts of Ubatuba, Brazil. The new species can be distinguished from G. yasumotoi and G. ruetzleri by its broader first apical plate that occupies a larger portion of the epitheca. Accordingly, phylogenetic trees from small subunit (SSU) and large subunit (LSU) ribosomal DNA sequences also showed strongly supported separation of the new species from the G. yasumotoi / G. ruetzleri group albeit with short distance. The molecular phylogenies, which included new sequences of the planktonic species Goniodoma polyedricum, further indicated that the globular species of Gambierdiscus formed a tight clade, clearly separated (with strong bootstrap support) from the clade of lenticular species including the type for Gambierdiscus. The morphological and molecular data in concert support the split of Gambierdiscus sensu lato into two genera. Gambierdiscus sensu stricto should be reserved for the species with lenticular shapes, highly compressed anterioposteriorly, with short-shank fishhook apical pore plate, large 2'' plate, low and ascending cingular displacement, and pouch-like sulcal morphology. The new genus name Fukuyoa gen. nov. should be applied to the globular species, slightly laterally compressed, with long-shank fishhook apical pore plate, large 1'' plate, greater and descending cingular displacement, and not pouch-like vertically-oriented sulcal morphology. Fukuyoa contains the new species Fukuyoa paulensis gen. et sp. nov., and F. yasumotoi comb. nov. and F. ruetzleri comb. nov.  相似文献   

11.
The Gambierdiscus genus is a group of benthic dinoflagellates commonly associated with ciguatera fish poisoning (CFP), which is generally found in tropical or sub-tropical regions around the world. Morphologically similar species within the genus can vary in toxicity; however, species identifications are difficult or sometimes impossible using light microscopy. DNA sequencing of ribosomal RNA genes (rDNA) is thus often used to identify and describe Gambierdiscus species and ribotypes, but the expense and time can be prohibitive for routine culture screening and/or large-scale monitoring programs. This study describes a restriction fragment length polymorphism (RFLP) typing method based on analysis of the large subunit rDNA that can successfully identify at least nine of the described Gambierdiscus species and two Fukuyoa species. The software programs DNAMAN 6.0 and Restriction Enzyme Picker were used to identify a set of restriction enzymes (SpeI, HpyCH4IV, and TaqαI) capable of distinguishing most of the known Gambierdiscus species for which DNA sequences were available. This assay was tested using in silico analysis and cultured isolates, and species identifications of isolates assigned by RFLP typing were confirmed by DNA sequencing. To verify the assay and assess intra-specific heterogeneity in RFLP patterns, identifications of 63 Gambierdiscus isolates comprising ten Gambierdiscus species, one ribotype, and two Fukuyoa species were confirmed using RFLP typing, and this method was subsequently employed in the routine identification of isolates collected from the Caribbean Sea. The RFLP assay presented here reduces the time and cost associated with morphological identification via scanning electron microscopy and/or DNA sequencing, and provides a phylogenetically sensitive method for routine Gambierdiscus species assignment.  相似文献   

12.
A new epiphytic dinoflagellate is described, G ambierdiscus scabrosus sp. nov., from tidal pools and rocky shores along the coastal areas of Japan. Cells are 63.2 ± 5.7 μm in depth, 58.2 ± 5.7 μm in width, and 37.3 ± 3.5 μm in length. The plate formula of G . scabrosus is Po, 4′, 0a, 6′′, 6c, ?s, 5′′′, 0p, and 2′′′′. Morphologically, G . scabrosus resembles G . belizeanus as follows: anterioposteriorly compressed cell shape, narrow 2′′′′ plate, and areolated surface. Despite this similarity, the cells of G . scabrosus can be distinguishable by the presence of the asymmetric shaped 3′′ plate and the rectangular shaped 2′ plate.  相似文献   

13.
A new species of marine sand‐dwelling dinoflagellate, Plagiodinium ballux N. Yamada, Dawut, R. Terada & T. Horiguchi is described from a deep (36 m) seafloor off Takeshima Island, Kagoshima Prefecture, Japan in the subtropical region of the northwest Pacific. The species is thecate and superficially resembles species of Prorocentrum, but possesses an extremely small epitheca. The cell varies from ovoid to a rounded square, and is small (15.0–22.5 μm in length) and laterally compressed. The thecal plates are smooth and the thecal plate arrangement (Po, 1′, 0a, 5″, 5C, 2S, 5?, 0p, 1″″) is similar to that of Plagiodinium belizeanum, the type species of the genus. Molecular phylogenetic analyses based on SSU rDNA and partial LSU rDNA reveal that the dinoflagellate is closely related to P. belizeanum, but it can be clearly distinguished by its size and cell shape. This suite of morphological and molecular differences leads to the conclusion that this deep benthic dinoflagellate represents a new species of the genus Plagiodinium.  相似文献   

14.
Ciguatera fish poisoning is a common form of seafood poisoning caused by toxins (ciguatoxins) that accumulate in demersal (reef) food webs. The precursors of ciguatoxins are produced by dinoflagellates of the genus Gambierdiscus, and enter the food web via herbivory and detritivory. The Gambierdiscus genus was recently revised and new research on the physiology and ecology of the revised species is needed. While it has been demonstrated that Gambierdiscus spp. are predominately epiphytic, the variability in epiphytic behavior among the various Gambierdiscus species is not known. Five Gambierdiscus species isolated from the Greater Caribbean Region were the focus of this study (G. belizeanus, G. caribaeus, G. carolinianus, G. carpenteri, and G. yasumotoi). Cells of Gambierdiscus were grown in wells with algae fragments from eight different macroalgal host genera (Acanthophora, Caulerpa, Dasya, Derbesia, Dictyota, Laurencia, Polysiphonia, and Ulva) where the epiphytic behavior and growth of the different Gambierdiscus species were monitored over 29 days. The results of this experiment demonstrate that epiphytic behavior (growth and attachment) differs among the Gambierdiscus species toward the various macroalgal hosts. Results tended to be specific to Gambierdiscus – host pairings with few commonalities in the way a particular Gambierdiscus species interacted across hosts or how the various Gambierdiscus species responded to a particular host. The Gambierdiscus – host pairings that resulted in the highest growth and attachment combinations were examined in terms of known cellular toxicity and host palatability to determine which pairings could represent the most likely vectors for the transfer of ciguatoxins (or precursors) into the demersal food web. Two pairings, Gambierdiscus belizeanusPolysiphonia and G. belizeanusDictyota, best met these criteria, providing a hypothetical approach to better focus sampling and monitoring efforts on such potential vectors in the benthic environment.  相似文献   

15.
Two monospecific genera of marine benthic dinoflagellates, Adenoides and Pseudadenoides, have unusual thecal tabulation patterns (lack of cingular plates in the former; and no precingular plates and a complete posterior intercalary plate series in the latter) and are thus difficult to place within a phylogenetic framework. Although both genera share morphological similarities, they have not formed sister taxa in previous molecular phylogenetic analyses. We discovered and characterized a new species of Pseudadenoides, P. polypyrenoides sp. nov., at both the ultrastructural and molecular phylogenetic levels. Molecular phylogenetic analyses of SSU and LSU rDNA sequences demonstrated a close relationship between P. polypyrenoides sp. nov. and Pseudadenoides kofoidii, and Adenoides and Pseudadenoides formed sister taxa in phylogenetic trees inferred from LSU rDNA sequences. Comparisons of morphological traits, such as the apical pore complex (APC), demonstrated similarities between Adenoides, Pseudadenoides and several planktonic genera (e.g. Heterocapsa, Azadinium and Amphidoma). Molecular phylogenetic analyses of SSU and LSU rDNA sequences also demonstrated an undescribed species within Adenoides.  相似文献   

16.
Ciguatera poisoning is caused by the consumption of reef fish or shellfish that have accumulated ciguatoxins, neurotoxins produced by benthic dinoflagellates of the genera Gambierdiscus or Fukuyoa. Although ciguatera constitutes the primary cause of seafood intoxication in Cuba, very little information is available on the occurrence of ciguatoxins in the marine food web and the causative benthic dinoflagellate species. This study conducted on the south-central coast of Cuba reports the occurrence of Gambierdiscus and Fukuyoa genera and the associated benthic genera Ostreopsis and Prorocentrum. Gambierdiscus/Fukuyoa cells were present at low to moderate abundances depending on the site and month of sampling. This genus was notably higher on Dictyotaceae than on other macrophytes. PCR analysis of field-collected samples revealed the presence of six different Gambierdiscus and one Fukuyoa species, including G. caribaeus, G. carolinianus, G. carpenteri, G. belizeanus, F. ruetzleri, G. silvae, and Gambierdiscus sp. ribotype 2. Only Gambierdiscus excentricus was absent from the eight Gambierdiscus/Fukuyoa species known in the wider Caribbean region. Eleven clonal cultures were established and confirmed by PCR and SEM as being either G. carolinianus or G. caribaeus. Toxin production in each isolate was assessed by a radioligand receptor binding assay and found to be below the assay quantification limit. These novel findings augment the knowledge of the ciguatoxin-source dinoflagellates that are present in Cuba, however further studies are needed to better understand the correlation between their abundance, species-specific toxin production in the environment, and the risk for fish contamination, in order to develop better informed ciguatera risk management strategies.  相似文献   

17.
The cyst–theca relationship of Protoperidinium fukuyoi n. sp. (Dinoflagellata, Protoperidiniaceae) is established by incubating resting cysts from estuarine sediments off southern Vancouver Island, British Columbia, Canada, and San Pedro Harbor, California, USA. The cysts have a brown‐coloured wall, and are characterized by a saphopylic archeopyle comprising three apical plates, the apical pore plate and canal plate; and acuminate processes typically arranged in linear clusters. We elucidate the phylogenetic relationship of P. fukuyoi through large and small subunit (LSU and SSU) rDNA sequences, and also report the SSU of the cyst‐defined species Islandinium minutum (Harland & Reid) Head et al. 2001. Molecular phylogenetic analysis by SSU rDNA shows that both species are closely related to Protoperidinium americanum (Gran & Braarud 1935) Balech 1974. Large subunit rDNA phylogeny also supports a close relationship between P. fukuyoi and P. americanum. Three subgroups in total are further characterized within the Monovela group. The cyst of P. fukuyoi shows a wide geographical range along the coastal tropical to temperate areas of the North‐east Pacific, its distribution reflecting optimal summer sea‐surface temperatures of ~14–18 °C and salinities of 22–34 psu.  相似文献   

18.
Species of the marine benthic dinoflagellate genus Gambierdiscus are the principal cause of Ciguatera fish poisoning. This genus has been recorded from tropical to temperate oceans, although Gambierdiscus species have rarely been found in Chinese waters. Our work revealed the morphological and genetic characteristics of three potentially toxic Gambierdiscus species observed in the temperate to subtropical waters of China. The fine thecal morphology was determined based on light microscopy and scanning electron microscopy analyses, and these species were also characterized by sequencing the D1–D3 and D8–D10 regions of the LSU rDNA. The morphological and genetic data indicated that these three Gambierdiscus species were G. pacificus, G. australes and G. caribaeus. This work provides the first report of these species in Chinese waters, which increases the known species distribution of this genus.  相似文献   

19.
A new species of the genus Boleodorus, recovered from southern Iran, is described and illustrated based upon morphological and molecular data. B. bushehrensis n. sp. is mainly characterized by having a wide and low cephalic region (which is continuous with the adjacent body), the oral aperture in a depression in side view under a light microscope, four lines in the lateral field, weak metacorpus with a vestigial-to-invisible valve, and short (26–38 mm long) hooked tail with rounded tip. The females are 334–464 mm long and have a spherical spermatheca filled with spheroid sperm; males have 11.5- to 12.0-mm-long spicules and weakly developed bursa. The new species has an annulated low cephalic region, four large cephalic papillae, and small crescent-shaped amphidial openings when observed by scanning electron microscopy (SEM). Its morphological and morphometric differences with seven known species are discussed. The phylogenetic relationships of the new species with other relevant genera and species have been studied using partial sequences of small and large subunit ribosomal DNA (SSU and LSU rDNA). In both the SSU and LSU phylogenies, the sequences of B. bushehrensis n. sp. and other Boleodorus spp. formed a clade. A second species, B. thylactus, when studied under SEM, has a raised, smooth cephalic region, four large cephalic papillae, and oblique amphidial slits, with the oral opening in a depression.  相似文献   

20.
Three new dinoflagellate species, Gambierdiscus polynesiensis, sp. nov., Gambierdiscus australes, sp. nov., and Gambierdiscus pacificus, sp. nov., are described from scanning electron micrographs. The morphology of the three new Gambierdiscus species is compared with the type species Gambierdiscus toxicus Adachi et Fukuyo 1979, and two other species: Gambierdiscus belizeanus Faust 1995 and Gambierdiscus yasumotoi Holmes 1998. The plate formula is: Po, 3′, 7", 6C, 8S, 5‴, 1p, 2". Culture extracts of these three new species displayed both ciguatoxin- and maitotoxin-like toxicities. The following morphological characteristics differentiated each species. 1) Cells of G. polynesiensis are 68–85 μm long and 64–75 μm wide, and the cell’s surface is smooth. They are identified by a large triangular apical pore plate (Po), a narrow fish-hook opening surrounded by 38 round pores, and a large, broad posterior intercalary plate (1p) wedged between narrow postcingular plates 2‴ and 4‴. Plate 1p occupies 60% of the width of the hypotheca. 2) Cells of G. australes also have a smooth surface and are 76–93 μm long and 65–85 μm wide in dorsoventral depth. They are identified by the broad ellipsoid apical pore plate (Po) surrounded by 31 round pores and a long and narrow 1p plate wedged between postcingular plates 2‴ and 4‴. Plate 1p occupies 30% of the width of the hypotheca. 3) Cells of G. pacificus are 67–77 μm long and 60–76 μm wide in dorsoventral depth, and its surface is smooth. They are identified by the four-sided apical pore plate (Po) surrounded by 30 round pores. A short narrow 1p plate is wedged between the wide postcingular plates 2‴ and 4‴. Plate 1p occupies 20% of the width of the hypotheca. These three newly described species were also characterized by isozyme electrophoresis and DNA sequencing of the D8–D10 region of their large subunit (LSU) rRNA genes. The consistency between species designations based on SEM microscopy and classification inferred from biochemical and genetic heterogeneities was examined among seven isolates of Gambierdiscus. Their classification into four morphospecies was not consistent with groupings inferred from isozyme patterns. Three molecular types could be distinguished based on the comparison of their LSU rDNA sequences. Although G. toxicus TUR was found to be more closely related to G. pacificus, sp. nov. than to other G. toxicus strains, the molecular classification was able to discriminate G. polynesiensis, sp. nov. and G. australes, sp. nov. from G. toxicus. These results suggest the usefulness of the D8–D10 portion of the Gambierdiscus LSU rDNA as a valuable taxonomic marker.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号