首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
There are high numbers of endangered birds in Iran. Birds also are indicators of biodiversity in different landscapes and using birds as indicator give us a complete overview about the ecological status of the landscape. In the present study migratory waterfowls were used to identify biodiversity hotspots in Iran. Iran is an interesting place for ornithologists because it is in fact a crossroads of flyways for migratory waterfowls coming from Europe, southern Asia, and Siberia. We predicted the habitat distributions for 27 bird species of Anseriformes in Iran using an ensemble forecasting framework to identify biodiversity hotspots. Moreover, we measured the percentage of overlap between hotspots and protected areas including Ramsar sites. The results showed that suitable habitats for different bird species greatly varied among different ecosystems and they showed dissimilar responses to environmental variables. However, for most species digital elevation model (DEM) was the most important variable in predicting suitable habitats. Our study also revealed that 36.02% of Iran can be considered as suitable habitats for the species and the highest suitability belongs to areas along Zagros and Alborz mountain ranges. Furthermore, the suitable habitats had 7.10% overlap with protected areas and 75% with Ramsar sites. The low overlap between hotspots and protected areas demonstrated the shortage of biodiversity protection in Iran. Therefore, it is essential to select new protected areas based on biodiversity hotspots, and to develop a network of protected areas within those hotspots in Iran.  相似文献   

2.
Human advance on natural habitats is a major cause of biodiversity loss. This transformation process represents a profound change in wooded environments, disrupting original communities of flora and fauna. Many species are highly dependent on forests, especially parrots (Psittaciformes) with almost a third of their species threatened by extinction. Most parrot species occur in tropical and subtropical forests, and given the forest dependence of most species, this is the main reason why habitat loss has been highlighted as the main threat for the group. Such habitat loss acts in synergy with other important threats (e.g., logging and poaching), which become especially problematic in certain developing countries along tropical latitudes. In this study, we used available information on parrot distributions, species traits, IUCN assessment, habitat loss and timber extraction for different periods, and distribution of protected areas, to determine conservation hotspots for the group, and analyze potential changes in the conservation status of these species. We detected four conservation hotspots for parrots: two in the Neotropics and two in Oceania, all of them facing different degrees of threat in regard of current habitat loss and agricultural trends. Our results suggest that the future of the group is subject to policymaking in specific regions, especially in the northeastern Andes and the Atlantic Forest. In addition, we predicted that agricultural expansion will have a further negative effect on the conservation status of parrots, pushing many parrot species to the edge of extinction in the near future. Our results have conservation implications by recommending protected areas in specific parrot conservation hotspots. Our recommendations to mitigate conservation risks to this group of umbrella species would also benefit many other coexisting species as well.  相似文献   

3.
Current levels of endangerment and historical trends of species and habitats are the main criteria used to direct conservation efforts globally. Estimates of future declines, which might indicate different priorities than past declines, have been limited by the lack of appropriate data and models. Given that much of conservation is about anticipating and responding to future threats, our inability to look forward at a global scale has been a major constraint on effective action. Here, we assess the geography and extent of projected future changes in suitable habitat for terrestrial mammals within their present ranges. We used a global earth-system model, IMAGE, coupled with fine-scale habitat suitability models and parametrized according to four global scenarios of human development. We identified the most affected countries by 2050 for each scenario, assuming that no additional conservation actions other than those described in the scenarios take place. We found that, with some exceptions, most of the countries with the largest predicted losses of suitable habitat for mammals are in Africa and the Americas. African and North American countries were also predicted to host the most species with large proportional global declines. Most of the countries we identified as future hotspots of terrestrial mammal loss have little or no overlap with the present global conservation priorities, thus confirming the need for forward-looking analyses in conservation priority setting. The expected growth in human populations and consumption in hotspots of future mammal loss mean that local conservation actions such as protected areas might not be sufficient to mitigate losses. Other policies, directed towards the root causes of biodiversity loss, are required, both in Africa and other parts of the world.  相似文献   

4.
As marine systems are threatened by increasing human impacts, mechanisms to maintain biodiversity and ecosystem functions and services are needed. Protecting areas of conservation importance may serve as a proxy for maintaining these functions, while also facilitating efficient use and management of limited resources. Biodiversity hotspots have been used as surrogates for spatial conservation importance; however, as many protected areas have been established opportunistically and under differing criteria, it is unclear how well they actually protect hotspots. We evaluated how well the current protected area network and priority areas selected through previous systematic conservation planning exercises preserve biodiversity hotspots in the Gulf of California, Mexico. We also determined spatial congruence between biodiversity hotspots based on different criteria, which may determine their ability to be used as surrogates for each other. We focus on the Gulf of California because it is a megadiverse system where limited information regarding species diversity and distribution has constrained development of strategies for conservation and management. We developed a species occurrence database and identified biodiversity hotspots using four different criteria: species richness, rarity, endemism, and threatened species. We interpolated species occurrence, while accounting for heterogeneous sampling efforts. We then assessed overlap of hotspots with existing protected areas and priority areas, and between hotspots derived by distinct criteria. We gathered 286,533 occurrence records belonging to 12,105 unique species, including 6388 species identified as rare, 642 as endemic, and 386 as threatened. We found that biodiversity hotspots showed little spatial overlap with areas currently under protection and previously identified priority areas. Our results highlight the importance of distinct spatial areas of biodiversity and suggest that different ecological mechanisms sustain different aspects of diversity and multiple criteria should be used when defining conservation areas.  相似文献   

5.
Global biodiversity hotspots are rich in endemic insect species, many of which are threatened by the ongoing anthropogenic pressures on their habitats. The Cape region (South Africa) is one of these biodiversity hotspots, maintaining a high number of endemics. However, the ecology of most insect species in this region remains poorly understood. The two Orthoptera species Betiscoides meridionalis and Betiscoides parva are endemic to the Cape region and specialized on restio vegetation. They are threatened by increasing wildfire frequencies and invasions of non-native plant species. However, this information has been inferred from habitat changes, whereas no ecological study on these species has been conducted since they have been described. In order to facilitate conservation management, information on the ecology of these species is urgently required. The aim of our study was (1) to obtain data on the population ecology (particularly population sizes and mobility), and (2) to study the behavior of both species in response to environmental factors. For this purpose a mark-recapture-study and an observational behavior study were conducted. Both species had small population sizes and a low mobility with males moving greater distances than females. Wind had a strong influence on the behavior of Betiscoides, particularly on the small males of B. parva. Future studies might thus focus on the question whether wind-exposure is a critical factor for habitat choice of this species. We strongly recommend enhancing the connectivity of restio habitats and restoring these habitats to prevent extinction of specialized insect species.  相似文献   

6.
优先保护区识别对受威胁物种的多样性保护具有重要价值。基于GIS空间分析、管理及预测能力,以中国受威胁陆栖哺乳动物为对象,建立受威胁物种的分布二值网格系统;利用Dobson算法对研究区3810个网格单元进行筛除,确定全国范围下受威胁物种的优先保护区域;结合中国主要的自然保护地分布数据(国家公园和自然保护区),采用保护空缺方法分析优先保护区内受威胁动物的保护现状。研究发现,29个50km×50km的网格单元就包含了全部的受威胁陆栖哺乳物种,其中位于喜马拉雅山东南区等地的10个网格区域覆盖有80%以上的物种,其所处的10组县级行政区内被主要自然保护地保护的土地面积占25.9%,物种数占83.6%,存在一定的保护空缺。本文采用Dobson排除算法,以小面积规则网格为基本单元,顾及到了实验结果的客观性,有助于提高优先保护区的识别效率。  相似文献   

7.
Rapid deforestation has occurred in northern Thailand and is expected to continue. Thus, identification and protection of sufficient amounts of the highest quality habitat is urgent. Wildlife occurrence data were gathered along wildlife trails and patrolling routes in protected areas and forest patches outside of protected areas. Geographic Information Systems, bio-physical and anthropogenic variables were used to generate suitable habitats for 17 mammal species using maximum entropy theory (MAXENT). Suitable habitats for all species were aggregated, and used to set priorities for wildlife conservation in northern Thailand. In addition, predicted deforestation was overlaid on moderate and high priority areas to determine future wildlife threats and aid decision-making concerning which areas to protect. The results revealed that the total extent of suitable habitats for the studied species covers approximately 37% of the region. Nearly 70% of the total habitat for endangered and vulnerable species is predicted in large and contiguous protected areas. Threatened areas with high biodiversity encompass approximately 1.9% of the region, and 66% of this figure is predicted to occur in existing protected areas. Based on the model outcomes, we recommend reducing human pressures, enhancing the density of prey species and conservation outside protected areas, as well as increasing connectivity of suitable habitats among protected areas that are too small to maintain viable populations in isolation.  相似文献   

8.
In the European Union, the Directive 92/43/EEC defines a number of species and habitats of community interest that are worthy to be preserved because in danger to disappear or because they are representative of the different European bio-geographical regions. In the light of the limited economic resources generally allocated to conservation efforts, there is the necessity to prioritise conservation actions in order to avoid deterioration of protected areas. To this aim, in the present study the most representative habitats of the Italian Alps are compared on the basis of vascular plant biodiversity and a conservation priority index is proposed for each habitat taking into account the potential distribution of 252 threatened vascular plant species. Rocky slopes, screes and alpine grasslands resulted to have the greatest percentage of endemic plant species so reflecting the general distributional pattern of endemic plant species at high altitudes in Eurasian mountains. The relationship between the conservation priority index and the corresponding habitat extent within the Natura 2000 network suggests that peatlands, arid grasslands, wet meadows and freshwater habitats deserve a higher priority in conservation actions. Although vascular plant biodiversity is not necessarily a surrogate of overall biodiversity of Alpine habitats, the results here reported can be used as an initial reference framework for prioritising conservation actions, so as to accomplish the provisions of Article 6 of Habitats Directive.  相似文献   

9.
10.
Climate change, habitat loss, and human disturbance are major threats to biodiversity. Protecting habitats plays a pivotal role in biodiversity conservation, and there is a global imperative to establish an effective system of protected areas (PAs) to implement habitat conservation and halt biodiversity decline. However, the protected patch size of habitat for a species is just as important for biodiversity conservation as the expansion of areas already under protection. In China, conservation management is often carried out based on administrative divisions. Therefore, here, an analytical conservation management framework was developed based on administrative divisions to assess whether the current network of PAs can effectively meet species' conservation needs using the minimum area requirements (MARs) of species as criteria for medium and large-sized mammals in China. This study found that the MAR of medium and large-sized mammals was larger in the northwest and smaller in the southeast, while taking the Hu line as the dividing line. Precipitation seasonality, elevation, annual mean temperature, and annual precipitation are the main environmental factors driving the distribution of a species MAR. Compared with MAR for each species, the maximum protected patch size of habitat is severely undersized in most provinces where those species primarily distribute, and this is particularly true for large carnivores and threatened species. The densely populated provinces of eastern China are particularly affected by this. The present study's framework can identify the provinces needing to expand PAs or implement other effective area-based conservation measures and habitat restoration. This analytical framework is also relevant for biodiversity conservation in different taxa and regions around the globe.  相似文献   

11.
Evaluations of species richness patterns have been performed at diverse scales, and biodiversity hotspots, especially endemism hotspots, have received much attention in conservation biology. We estimated the distributions of endemic bird species based on a 12-yr avian inventory project in Taiwan, identified biodiversity hotspots of endemism on a regional scale based on predictions from the ensemble forecasting framework and frequency histogram approach, and assessed the efficiency of protected areas. The results indicated that the predicted endemism hotspots were mostly located in mid- and high-elevation areas along the Central Mountain Range of Taiwan. An observed endemism hotspot was defined as one in which at least five of Taiwan's 17 endemic bird species were present. This criterion was used because the 5% of the sampled grid squares that were the richest in endemic bird species all had 5 endemic bird species or more. Seventy to seventy-one percent of the observed biodiversity hotspots matched the predicted biodiversity hotspots. This outcome was obtained whether the richness biodiversity in a grid square was based on summed predicted probability or summed predicted richness. The majority of the protected areas for these Taiwanese endemic bird species were national parks, protecting 24.1% of the predicted hotspot areas, whereas nature reserves and wildlife refuges protected less than 7%. Most of the predicted endemism hotspots were not adequately protected. We conclude that the ensemble forecasting framework and the frequency histogram approach are useful for selecting critical habitats and biodiversity hotspots for endemic species and for appraising the efficiency of the protection status provided by governments.  相似文献   

12.
The establishment of baseline IUCN Red List assessments for plants is a crucial step in conservation planning. Nowhere is this more important than in biodiversity hotspots that are subject to significant anthropogenic pressures, such as Madagascar. Here, all Madagascar palm species are assessed using the IUCN Red List categories and criteria, version 3.1. Our results indicate that 83% of the 192 endemic species are threatened, nearly four times the proportion estimated for plants globally and exceeding estimates for all other comprehensively evaluated plant groups in Madagascar. Compared with a previous assessment in 1995, the number of Endangered and Critically Endangered species has substantially increased, due to the discovery of 28 new species since 1995, most of which are highly threatened. The conservation status of most species included in both the 1995 and the current assessments has not changed. Where change occurred, more species have moved to lower threat categories than to higher categories, because of improved knowledge of species and their distributions, rather than a decrease in extinction risk. However, some cases of genuine deterioration in conservation status were also identified. Palms in Madagascar are primarily threatened by habitat loss due to agriculture and biological resource use through direct exploitation or collateral damage. The recent extension of Madagascar’s protected area network is highly beneficial for palms, substantially increasing the number of threatened species populations included within reserves. Notably, three of the eight most important protected areas for palms are newly designated. However, 28 threatened and data deficient species are not protected by the expanded network, including some Critically Endangered species. Moreover, many species occurring in protected areas are still threatened, indicating that threatening processes persist even in reserves. Definitive implementation of the new protected areas combined with local community engagement are essential for the survival of Madagascar’s palms.  相似文献   

13.
Mediterranean ecosystems are rich in wildlife species and habitats. In the last decades human pressure is increasing in lowland and coastal areas, while mountainous and island areas are being abandoned. These changes have substantial impacts on biodiversity protected by EU Directives. Recently agri-environmental schemes and wildlife habitat improvement measures have been taken to prevent biodiversity loss, although only a small proportion of their total budget is targeted directly at biodiversity conservation. Measures for wildlife are generally limited to restricted areas for a short-term period and in most cases have not been evaluated or properly applied. This review examines the influence of farming systems, agri-environmental and wildlife management measures on birds and mammals in Mediterranean agroecosystems. The conclusions are that in Mediterranean agroecosystems the most cost efficient and beneficial conservation measures for bird and mammal species are rotation, intercropping, and the selection of appropriate crops and farming practices. The increased biodiversity in the Mediterranean basin requires special management practices at local levels.  相似文献   

14.
The main goal of using global biodiversity hotspots for conservation purposes is to protect taxa with small geographic ranges because these are highly vulnerable to extinction. However, the extent to what different hotspots types are effective for meeting this goal remains controversial because hotspots have been previously defined as either the richest or most threatened and richest sites in terms of total, endemic or threatened species. In this regard, the use of species richness to set conservation priorities is widely discussed because strategies focused on this diversity measure tend to miss many of the taxa with small geographic ranges. Here we use data on global terrestrial mammal distributions to show that, hotspots of total species, endemism and threat defined in terms of species richness are effective in including 27%, 29% and 11% respectively, of the taxa with small geographic ranges. Whilst, the same hotspot types defined in terms of a simple diversity index, which is a function of species richness and range-size rarity, include 68%, 44% and 90% respectively, of these taxa. In addition, we demonstrate that index hotspot types are highly efficient because they conserve 79% of mammal species (21% more species than richness hotspot types), with 59% of species shared by three hotspot types (31% more than richness hotspot types). These results suggest that selection of different diversity measures to define hotspots may strongly affect the achievement of conservation goals.  相似文献   

15.
On oceanic islands, the evolution of plants and animals with particular characteristics is favoured due to their isolation, populations normally comprising a large number of unique, endemic species. The Madeira and Selvagens archipelagos are considered biodiversity hotspots, containing an especially rich bryoflora. Due to its characteristically small size, this taxonomic group does not get much attention in conservation programmes. However, these plants are an important component of terrestrial ecosystems, representing a major part of biodiversity and playing a vital role in the ecosystem's functioning. As such, the development of the first Red List for Madeira and Selvagens Archipelagos has the potential to guide conservation efforts focused on taxa and habitats where threatened species and endemics are better represented. By applying the International Union for Conservation of Nature and Natural Resources (IUCN) criteria, recently revised to apply to small islands, it was possible to obtain the percentage of threatened taxa present in the archipelagos (23.6%), and for each habitat type. It was verified that high mountain habitats and the Laurel forest represent areas that host higher percentages of threatened taxa (29.5% and 22.2%). An important result of the present Red List is the identification of hotspots for bryophyte diversity, supporting the definition of reserves/microreserves. The information obtained can also be linked up with the Red Lists of other taxonomic groups to work towards the definition of a more holistic conservation strategy.  相似文献   

16.
Conservation policies and environmental impact assessments commonly target threatened species and habitats. Nevertheless, macroecological research provides reasons why also common species should be considered. We investigate the consequences of focussing solely on legally protected species and habitats in a spatial conservation planning context using a comprehensive, benthic marine data set from the northern Baltic Sea. Using spatial prioritization and surrogacy analysis, we show that the common approach in conservation planning, where legally listed threatened species and habitats are the focus of conservation efforts, could lead to poor outcomes for common species (and therefore biodiversity as a whole), allowing them to decline in the future. If conservation efforts were aimed solely at threatened species, common species would experience a loss of 62% coverage. In contrast, if conservation plans were based only on common species, threatened species would suffer a loss of 1%. Threatened species are rare and their ecological niches distinct, making them poor surrogates for biodiversity. The best results are achieved by unified planning for all species and habitats. The minimal step towards acknowledging common species in conservation planning would be the inclusion of the richness of common species, complemented by information on indicator species or species of high importance for ecosystem functioning. The trade-off between planning for rare and common species should be evaluated, to minimize losses to biodiversity.  相似文献   

17.
Species distribution models (SDM) are increasingly used to understand the factors that regulate variation in biodiversity patterns and to help plan conservation strategies. However, these models are rarely validated with independently collected data and it is unclear whether SDM performance is maintained across distinct habitats and for species with different functional traits. Highly mobile species, such as bees, can be particularly challenging to model. Here, we use independent sets of occurrence data collected systematically in several agricultural habitats to test how the predictive performance of SDMs for wild bee species depends on species traits, habitat type, and sampling technique. We used a species distribution modeling approach parametrized for the Netherlands, with presence records from 1990 to 2010 for 193 Dutch wild bees. For each species, we built a Maxent model based on 13 climate and landscape variables. We tested the predictive performance of the SDMs with independent datasets collected from orchards and arable fields across the Netherlands from 2010 to 2013, using transect surveys or pan traps. Model predictive performance depended on species traits and habitat type. Occurrence of bee species specialized in habitat and diet was better predicted than generalist bees. Predictions of habitat suitability were also more precise for habitats that are temporally more stable (orchards) than for habitats that suffer regular alterations (arable), particularly for small, solitary bees. As a conservation tool, SDMs are best suited to modeling rarer, specialist species than more generalist and will work best in long‐term stable habitats. The variability of complex, short‐term habitats is difficult to capture in such models and historical land use generally has low thematic resolution. To improve SDMs’ usefulness, models require explanatory variables and collection data that include detailed landscape characteristics, for example, variability of crops and flower availability. Additionally, testing SDMs with field surveys should involve multiple collection techniques.  相似文献   

18.
物种分布模型在海洋潜在生境预测的应用研究进展   总被引:1,自引:0,他引:1  
海洋生物的栖息分布与环境要素的关联性一直是海洋生态学研究的热点之一.近年来,物种分布模型被广泛应用于预测海洋物种分布、潜在适宜性生境评价等研究,为保护海洋生物多样性、防治外来物种入侵及制定渔业管理措施等提供了一条有效途径.物种分布模型主要包括生境适宜性指数模型、机理模型和统计模型.本文对物种分布模型的理论基础进行了归纳和总结,回顾了物种分布模型在预测海洋物种潜在地理分布研究中的开发与应用,重点介绍了不同类型统计模型在海洋物种潜在分布预测中的研究实例.比较各种选取变量和模型验证方法,认为赤池信息准则对于选取模型变量具有优势,Kappa系数和受试者操作特征曲线下面积在验证模型精度中应用最广泛.阐述了物种分布模型存在的问题及未来发展趋势,随着海洋生物生理机制研究的进一步深入,机理模型将是今后物种分布模型发展的重点.  相似文献   

19.

Agricultural intensification poses a major threat to the conservation of biodiversity and associated ecosystem services. Since non-crop habitats are regarded as important refuges for farmland biodiversity, various greening measures have been proposed to halt biodiversity loss. However, the effectiveness of these measures for biodiversity conservation is still under debate. Therefore, we here compared ground-dwelling beetle (Coleoptera) assemblages of different non-crop habitats (field margins, set-aside fields sown with wildflowers, and permanent grassland fallows) and wheat fields within an intensively used agricultural landscape in western Germany. Taxonomic diversity of Carabidae, Staphylinidae and other coleopteran families and their conservation value were higher in all non-crop habitats than on wheat fields. Surprisingly, though, different types of non-crop habitats did not differ in species richness or the number of threatened species. Thus, field margins and sown wildflower fields were as effective in promoting beetle diversity as grassland fallows. However, different non-crop habitats supported different species assemblages, and several species, in particular especially large ones, were restricted to grassland fallows. These results suggest that different greening measures are effective in promoting the biodiversity of beetles, and that permanent grassland fallows are essential for nature conservation. The fact that habitat types harbored different assemblages stresses the need to combine a variety of greening measures to yield the highest benefit for biodiversity.

  相似文献   

20.
The species distribution models (SDMs) are useful tools for investigating rare and endangered species as well as the environmental variables affecting them. In this paper, we propose the application of SDMs to assess the extinction-risk of plant species in relation to the spread of greenhouses in a Mediterranean landscape, where habitat depletion is one of the main causes of biodiversity loss. For this purpose, presence records of the model species (Linaria nigricans, a endemic and threatened species) and the greenhouses, a dataset of environmental variables, and different only presence-based modelling algorithms (Bioclim, Domain, GARP, MaxEnt and ENFA) were used to build SDMs for L. nigricans as well as for greenhouses. To evaluate the models a modified approach of the area-under-curve ROC was applied. Combining the most accurate models, we generated an extinction-risk model of L. nigricans populations, which enabled us to assess the sustainability of the most threatened populations. Our results show that is possible to model greenhouses spreading as a “biological invasion”. The procedure explained and used in this work is quite novel, and offers an objective spatial criterion intended for the management of natural resources and for the conservation of the biodiversity in areas threatened by habitat depletion processes as particular as greenhouses expansion.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号