首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
In the last decades, the cyanobacterium Dolichospermum lemmermannii showed an increasing spread to Southern Europe, raising serious concerns due to its ability to produce cyanotoxins. The widening of its geographic distribution and the observation of strains showing high optimum temperature underline its ecological heterogeneity, suggesting the existence of different ecotypes. To investigate its biogeography, new isolates from different European water bodies, together with strains maintained by the Norwegian Institute for Water Research Culture Collection of Algae, were genetically characterised for the 16S rRNA gene and compared with strains obtained from public repositories. Geographic distance highly influenced the differentiation of genotypes, further suggesting the concurrent role of geographic isolation, physical barriers and environmental factors in promoting the establishment of phylogenetic lineages adapted to specific habitats. Differences among populations were also examined by morphological analysis and evaluating the toxic potential of single strains, which revealed the exclusive ability of North European strains to produce microcystins, whereas the populations in Southern Europe tested negative for a wide range of cyanotoxins. The high dispersion ability and the existence of toxic genotypes indicate the possible spread of harmful blooms in other temperate regions.  相似文献   

2.
Reflections on the ballast water dispersal—harmful algal bloom paradigm   总被引:1,自引:0,他引:1  
The ballast water dispersal—HAB paradigm, increasingly invoked circumstantially to explain puzzling and unaccountable HAB species outbreaks when lacking the multiple tests of confirmation recommended by Bolch and de Salas (2007), is evaluated. The types and examples of natural dispersions and taxon cycles are compared to exotic species bloom behavior linked to ballast water vectoring. The regional spreading, bloom behavior and disjunct distributions of the brown tide pelagophyte Aureococcus anophagefferens and the toxic dinoflagellate Gymnodinium catenatum, attributed to ballast water vectoring, are used as representative examples to evaluate the general application of the ballast water—HAB paradigm and associated interpretative problems. Human-aided emigration has a seeding and colonization ecology that differs from bloom ecology. For self-sustaining blooms to occur, these two ecologies must be accommodated by habitat growth conditions. The three stages that a non-native species must pass through (pioneering, persistence, community entry) to achieve colonization, community maintenance, and to bloom, and the niche-related factors and role of habitat disturbance are discussed. The relevance of cryptic occurrences, cyst deposits, dormancy periods and bloom rhythms of HAB species to their blooms attributed to ballast water-assisted introductions is also sketched. The different forms of HAB species rarity, their impact on the ballast water dispersal—HAB paradigm, and the dispersion and blooms of specialist and generalist HAB species are discussed. The remarkable novel and, often, monospecific blooms of dinoflagellate HAB species are being paralleled by similar eruptive bloom behavior cutting across phylogenetic lines, and being found also in raphidophytes, haptophytes, diatoms, silicoflagellates, etc. These blooms cannot be explained only as seeding events. An ecological release of ‘old barriers’ appears to be occurring generally at coastal bloom sites, i.e. something significant is happening ecologically and embedded within the ballast water—HAB paradigm. There may be a relationship between Life Form type [Smayda, T.J., Reynolds, C.S., 2001. Community assembly in marine phytoplankton: application of recent models to harmful dinoflagellate blooms. J. Plankton Res. 23, 447–461] and mode of expatriation; HAB dinoflagellate species commonly reported to produce ballast water-assisted toxic blooms invariably are members of cyst-producing Life Forms IV, V, VI. Ballast water vectoring of Life Forms I, II, III is rarely reported, even though many produce cysts, and where their novel introductions do occur they are more likely to be ichthyotoxic and vectored in shellfish stock consignments. The relevance of, and need to distinguish between morphospecies and their geographic/ribotype clades are discussed based on the Alexandrium tamarense/catenella/fundyense complex. Morphospecies-level ballast water dispersions are probably minor compared to the dispersal of the different ribotypes (toxic/non-toxic clades) making up HAB morphospecies; the redistribution and admixture of genotypes should be the focus. Ballast water-assisted expatriations impact the global occurrence of HABs through the direct transfer of previously absent species or introduction of genetic strains from the donor habitat that are ecologically favored over resident strains. The hybridization of species may be of potentially greater impact, resulting from the (1) mating of individuals from the donor and recipient habitats, or (2) through the interbreeding of strains introduced from two different donor sites into the recipient site, and whose progeny have greater ecological fitness than indigenous strains. Exceptional ecological changes of some sort appear to be occurring globally which, in combination with the genetically altered ecophysiological behavior of HAB species linked to ballast water dispersion and admixture, underpins the global HAB phenomenon. The impact of ballast water and shellfish transplantation on HABs and phytoplankton community ecology, generally, is considerably greater than the current focus on HAB species distributions, vectoring, and blooms. The methodological, investigative and conceptual potential of the ballast water—HAB paradigm should be exploited by developing a GEOHAB type intiative to advance quantification of global HAB ecology.  相似文献   

3.
Harmful algal blooms (HABs) caused by microscopic algae present a threat to human health, ecosystem, fishery, tourism, and aquaculture worldwide. HAB warning and monitoring projects require a simple and rapid method for accurate parallel identification of causative algae. This study presents a useful method for simultaneous detection of harmful algae by multiple PCR coupled with reverse dot blot hybridization (MPCRDBH). A variety of probes, including positive, negative, and specific, were first developed by sequencing and consequent sequence analysis of large subunit rDNA D1–D2 from target species and used for specificity test by blot hybridization. The MPCRDBH assay mainly included five steps: (1) microalgal DNA isolation; (2) amplification and labeling of target DNA by multiple PCR; (3) probe tailing and fixation onto positively charged nylon membrane; (4) reverse dot blot hybridization; and (5) hybridization signal recognition by naked eyes. The reverse dot blot hybridization conditions were optimized, and the appropriate parameters were as follows: ultraviolet cross-linking time, 0.5 min; probe density, 2 μM; Dig-labeled PCR product density, 200 ng; hybridization time and temperature, 2 h and 42 °C; and washing time and temperature, 2 × 5 min and 47 °C. Sensitivity tests showed that MPCRDBH demonstrated a detection limit of 0.6 cell. MPCRDBH recovered all target species and was not affected by background DNA. MPCRDBH also demonstrated a stable detection performance for fixative (acidic Lugol's solution)-preserved samples over 30 d using simulated field samples. MPCRDBH applicability was assessed and proven effective for parallel detection of target microalgae in the field samples. The developed MPCRDBH exhibited a simple membrane-based DNA array preparation and hybridization signal recognition compared with other current DNA arrays. The assay presented in this study is specific and sensitive for parallel detection of microalgae, with stable performance. Therefore, this assay is promising for field monitoring of natural samples.  相似文献   

4.
In recent decades, the frequency and intensity of harmful algal blooms (HABs), as well as a profusion of toxic phytoplankton species, have significantly increased in coastal regions of China. Researchers attribute this to environmental changes such as rising atmospheric CO2 levels. Such addition of carbon into the ocean ecosystem can lead to increased growth, enhanced metabolism, and altered toxicity of toxic phytoplankton communities resulting in serious human health concerns. In this study, the effects of elevated partial pressure of CO2 (pCO2) on the growth and toxicity of a strain of Alexandrium tamarense (ATDH) widespread in the East and South China Seas were investigated. Results of these studies showed a higher specific growth rate (0.31 ± 0.05 day−1) when exposed to 1000 μatm CO2, (experimental), with a corresponding density of (2.02 ± 0.19) × 107 cells L−1, that was significantly larger than cells under 395 μatm CO2(control). These data also revealed that elevated pCO2 primarily affected the photosynthetic properties of cells in the exponential growth phase. Interestingly, measurement of the total toxin content per cell was reduced by half under elevated CO2 conditions. The following individual toxins were measured in this study: C1, C2, GTX1, GTX2, GTX3, GTX4, GTX5, STX, dcGTX2, dcGTX3, and dcSTX. Cells grown in 1000 μatm CO2 showed an overall decrease in the cellular concentrations of C1, C2, GTX2, GTX3, GTX5, STX, dcGTX2, dcGTX3, and dcSTX, but an increase in GTX1 and GTX4. Total cellular toxicity per cell was measured revealing an increase of nearly 60% toxicity in the presence of elevated CO2 compared to controls. This unusual result was attributed to a significant increase in the cellular concentrations of the more toxic derivatives, GTX1 and GTX4.Taken together; these findings indicate that the A. tamarense strain ATDH isolated from the East China Sea significantly increased in growth and cellular toxicity under elevated pCO2 levels. These data may provide vital information regarding future HABs and the corresponding harmful effects as a result of increasing atmospheric CO2.  相似文献   

5.
Western Lake Erie (WLE) experiences anthropogenic eutrophication and annual, toxic cyanobacterial blooms of non-nitrogen (N) fixing Microcystis. Numerous studies have shown that bloom biomass is correlated with an increased proportion of soluble reactive phosphorus loading from the Maumee River. Long term monitoring shows that the proportion of the annual Maumee River N load of non-nitrate N, or total Kjeldahl nitrogen (TKN), has also increased significantly (Spearman's ρ = 0.68, p = 0.001) over the last few decades and is also significantly correlated to cyanobacterial bloom biomass (Spearman's ρ = 0.64, p = 0.003). The ratio of chemically reduced N to oxidized N (TKN:NO3) concentrations was also compared to extracted chlorophyll and phycocyanin concentrations from all weekly sampling stations within WLE from 2009 to 2015. Both chlorophyll (Spearman's ρ = 0.657, p < 0.0001) and phycocyanin (Spearman's ρ = 0.714, p < 0.0001) were significantly correlated with TKN:NO3. This correlation between the increasing fraction of chemically reduced N from the Maumee River and increasing bloom biomass demonstrates the urgent need to control N loading, in addition to current P load reductions, to WLE and similar systems impacted by non-N-fixing, toxin-producing cyanobacteria.  相似文献   

6.
Detecting harmful bioactive compounds produced by bloom-forming pelagic algae is important to assess potential risks to public health. We investigated the application of a cell-based bioassay: the rainbow trout gill-w1 cytotoxicity assay (RCA) that detects changes in cell metabolism. The RCA was used to evaluate the cytotoxic effects of (1) six natural freshwater lake samples from cyanobacteria-rich lakes in central Ontario, Canada; (2) analytical standards of toxins and noxious compounds likely to be produced by the algal communities in these lakes; and (3) complex mixtures of compounds produced by cyanobacterial and chrysophyte cultures. RCA provided a measure of lake water toxicity that could not be reproduced using toxin or noxious compound standards. RCA was not sensitive to toxins and only sensitive to noxious compounds at concentrations higher than reported environmental averages (EC50  103 nM). Cultured algae produced bioactive compounds that had recognizable dose dependent and toxic effects as indicated by RCA. Toxicity of these bioactive compounds depended on taxa (cyanobacteria, not chrysophytes), growth stage (stationary phase more toxic than exponential phase), location (intracellular more toxic than extracellular) and iron status (cells in high-iron treatment more toxic than cells in low-iron treatment). The RCA provides a new avenue of exploration and potential for the detection of natural lake algal toxic and noxious compounds.  相似文献   

7.
While searching for effective bio-agents to control harmful algal blooms (HABs), the bacterial strain LP-10, which has strong algicidal activity against Phaeocystis globosa (Prymnesiophyceae), was isolated from surface seawater samples taken from the East China Sea. 16S rDNA sequence analysis and morphological characteristics revealed the strain LP-10 belonged to the genus Bacillus. The lytic effect of Bacillus sp. LP-10 against P. globosa was both concentration- and time-dependent. Algicidal activities of different growth stages of the bacterial culture varied significantly. The lytic effect of different parts of the bacterial cultures indicated that the algal cells were lysed by algicidal active compounds in the cell-free filtrate. Analysis of the properties of the active compounds showed that they had a molecular weight of less than 1000 Da and that the active compounds were stable between −80 and 121 °C. The algicidal range assay indicated that five other algal species were also suppressed by strain LP-10, including: Alexandrium catenella, A. tamarense, A. minutum, Prorocentrum micans and Asterionella japonica. Our results suggested that the algicidal bacterium Bacillus sp. LP-10 could be a potential bio-agent to control the blooms of harmful algal species.  相似文献   

8.
Species of the benthic dinoflagellate Gambierdiscus produce polyether neurotoxins that caused ciguatera fish/shellfish poisoning in human. The toxins enter marine food webs by foraging of herbivores on the biotic substrates like macroalgae that host the toxic dinoflagellates. Interaction of Gambierdiscus and their macroalgal substrate hosts is believed to shape the tendency of substrate preferences and habitat specialization. This was supported by studies that manifested epiphytic preferences and behaviors in Gambierdiscus species toward different macroalgal hosts. To further examine the supposition, a laboratory-based experimental study was conducted to examine the growth, epiphytic behaviors and host preferences of three Gambierdiscus species towards four macroalgal hosts over a culture period of 40 days. The dinoflagellates Gambierdiscus balechii, G. caribaeus, and a new ribotype, herein designated as Gambierdiscus type 7 were initially identified based on the thecal morphology and molecular characterization. Our results showed that Gambierdiscus species tested in this study exhibited higher growth rates in the presence of macroalgal hosts. Growth responses and attachment behaviors, however, differed among different species and strains of Gambierdiscus over different macroalgal substrate hosts. Cells of Gambierdiscus mostly attached to substrate hosts at the beginning of the experiments but detached at the later time. Localized Gambierdiscus-host interactions, as demonstrated in this study, could help to better inform efforts of sampling and monitoring of this benthic toxic dinoflagellate.  相似文献   

9.
In culture, Gambierdiscus spp. have been shown to prefer irradiances that are relatively low (≤250 μmol photons m−2 s−1) versus those to which they are frequently exposed to in their natural environment (>500 μmol photons m−2 s−1). Although several behavioral strategies for coping with such irradiances have been suggested, it is unclear as to how these dinoflagellates do so on a physiological level. More specifically, how do long term exposures (30 days) affect cell size and cellular chlorophyll content, and what is the photosynthetic response to short term, high irradiance exposures (up to 1464 μmol photons m−2 s−1)? The results of this study reveal that cell size and chlorophyll content exhibited by G. carolinianus increased with acclimation to increasing photon flux density. Additionally, both G. carolinianus and G. silvae exhibited reduced photosynthetic efficiency when acclimated to increased photon flux density. Photosynthetic yield exhibited by G. silvae was greater than that for G. carolinianus across all acclimation irradiances. Although such differences were evident, both G. carolinianus and G. silvae appear to have adequate biochemical mechanisms to withstand exposure to irradiances exceeding 250 μmol photons m−2 s−1 for at least short periods of time following acclimation to irradiances of up to 150 μmol photons m−2 s−1.  相似文献   

10.
11.
Red tides caused by the marine dinoflagellate Cochlodinium polykrikoides Margalef pose significant environmental problems worldwide. Recently, the existence of severe blooms attributable to a single Cochlodinium Schütt species has been questioned by many researchers. Herein we investigated the dinoflagellate composition of harmful algal blooms (HABs) attributed to C. polykrikoides in Korean coastal waters at nine different stations (St.). The component species of Cochlodinium blooms were examined by using microscopic and gene-cloning methods. In the nine study areas, C. polykrikoides was the predominant species of HABs in St. 2, 4, 7, and St. 9. Based on the morphological identification, the bloom was initially thought to be caused only by C. polykrikoides; however, we detected additional bloom-forming dinoflagellates (Polykrikos schwartzii Bütschli and Polykrikos kofoidii Chatton), and diatoms (Pseudo-nitzschia americana (Hasle) Fryxell) along with C. polykrikoides. The parasitic dinoflagellates Amoebophrya Koeppen and Euduboscquella Coats, Bachvaroff & Delwiche were found to be co-located with Cochlodinium in our study, and for the first time, Cochlodinium fulvescens Iwataki, Kawami & Matsuoka was detected in Korea (west coast). These results suggest co-existence of multiple dinoflagellates in bloom populations of Cochlodinium and describe the composition of other dinoflagellate blooms (e.g., Polykrikos spp.) in Korean coastal regions. This co-occurrence may be considered during efforts to monitor and control HABs.  相似文献   

12.
13.
Within the past few decades, harmful algal blooms (HABs) have occurred frequently in Indonesian waters, resulting in environmental degradation, economic loss and human health problems. So far, HAB related studies mainly addressed ecological traits and species distribution, yet toxin measurements were virtually absent for Indonesian waters. The aim of the present study was to explore variability of the potentially toxic marine diatom genus Pseudo-nitzschia, as well as its neurotoxin domoic acid as a function of environmental conditions in Ambon Bay, eastern Indonesia. Weekly phytoplankton samples, oceanographic (CTD, nutrients) and meteorological (precipitation, wind) parameters were analyzed at 5 stations in the bay during the dry and wet seasons of 2018. Liquid chromatography – tandem mass spectrometry (LC–MS/MS) was used to detect particulate DA (pDA). Vegetative cells of Pseudo-nitzschia spp. and pDA were found in 98.6% and 51.4% of the samples, respectively. pDA levels were low, yet detected throughout the campaign, implying that Ambon Bay might potentially be subject to amnesic shellfish poisoning. The highest levels of both Pseudo-nitzschia spp. cell abundance and pDA were found in the wet season, showing a strong positive correlation between both parameters, compared to the dry season, (r = 0.87 and r = 0.66 (p < 0.01), respectively). Statistical analyses revealed that temperature and mixed layer depth positively correlated with Pseudo-nitzschia spp. and pDA during the dry season, while ammonium showed positive correlations in both seasons. This study represents the first successful investigation of the presence and variability of Pseudo-nitzschia spp. and its neurotoxin DA in Indonesian waters.  相似文献   

14.
The toxic marine dinoflagellate, Karenia brevis (the species responsible for most of red tides or harmful algal blooms in the Gulf of Mexico), is known to be able to swim vertically to adapt to the light and nutrient environments, nearly all such observations have been made through controlled experiments using cultures. Here, using continuous 3-dimensional measurements by an ocean glider across a K. brevis bloom in the northeastern Gulf of Mexico between 1 and 8 August 2014, we show the vertical migration behavior of K. brevis. Within the bloom where K. brevis concentration is between 100,000 and 1,000,000 cells L−1, the stratified water shows a two-layer system with the depth of pycnocline ranging between 14–20 m and salinity and temperature in the surface layer being <34.8 and >28 °C, respectively. The bottom layer shows the salinity of >36 and temperature of <26 °C. The low salinity is apparently due to coastal runoff, as the top layer also shows high amount of colored dissolved organic matter (CDOM). Within the top layer, chlorophyll-a fluorescence shows clear diel changes in the vertical structure, an indication of K. brevis vertical migration at a mean speed of 0.5–1 m h−1. The upward migration appears to start at sunrise at a depth of 8–10 m, while the downward migration appears to start at sunset (or when surface light approaches 0) at a depth of ∼2 m. These vertical migrations are believed to be a result of the need of K. brevis cells for light and nutrients in a stable, stratified, and CDOM-rich environment.  相似文献   

15.
Harmful cyanobacterial blooms (cHABs) have significant socioeconomic and ecological costs, which impact drinking water, fisheries, agriculture, tourism, real estate, water quality, food web resilience and habitats, and contribute to anoxia and fish kills. Many of these costs are well described, but in fact are largely unmeasured. Worldwide cHABs can produce toxins (cyanotoxins), which cause acute or chronic health effects in mammals (including humans) and other organisms. There are few attempts to characterize the full health-related effects other than acute incidences, which may go unrecorded. At present these are difficult to access and evaluate and may be ascribed to other causes. Such information is fundamental to measure the full costs of cHABs and inform the need for often-costly management and remediation. This paper synthesizes information on cHABs occurrence, toxicology and health effects, and relates this to past and current conditions in the Great Lakes, a major global resource which supplies 84% of the surface water in North America. This geographic region has seen a significant resurgence of cHABs since the 1980s. In particular we focus on Lake Erie, where increased reporting of cHABs has occurred from the early 1990's. We evaluate available information and case reports of cHAB-related illness and death and show that cHABs occur throughout the basin, with reports of animal illness and death, especially dogs and livestock. Lake Erie has consistently experienced cHABs and cyanotoxins in the last decade with probable cases of human illness, while the other Great Lakes show intermittent cHABs and toxins, but no confirmed reports on illness or toxicity. The dominant toxigenic cyanobacterium is the genus Microcystis known to produce microcystins. The presence of other cyanotoxins (anatoxin-a, paralytic shellfish toxins) implicates other toxigenic cyanobacteria such as Anabaena (Dolichospermum) and Lyngbya.  相似文献   

16.
Pulsed N inputs were simulated by exposing Alexandrium tamarense to sudden increase in concentration of three different N sources to evaluate an approach of using absorption coefficient (a ph) ratio at three wavelengths to detect toxic dinoflagellates such as A. tamarense. The present study examined the absorption properties of A. tamarense for a range of concentrations under three different nitrogen sources and concluded that using absorption such as chlorophyll-specific absorption coefficient (a ph * ) at a single wavelength is not appropriate for detecting bloom forming species due to variability of a ph * caused by varying physiological states. With appropriate wavelengths established, the a ph ratio approach with three wavelengths has the capability of detecting A. tamarense. Variable environmental conditions such as nutrient species, light quantity and light quality did not affect the a ph ratios significantly, particularly the ratio at 510 and 675 relative to 555 nm. This ratio allows differentiation of A. tamarense from other phytoplankton species including other bloom-forming dinoflagellates. In addition, this ratio could also detect the presence of A. tamarense in mixed cultures from diluted samples of as low as 5% in cell abundance (c. 30% in Chl a concentration). The present study suggests that this ratio could be an adequate biomarker for dinoflagellates such as A. tamarense. This absorption ratio technique could provide means of interpreting field populations and enhancing the capability for detecting harmful species such as A. tamarense.  相似文献   

17.
Effects of irradiance and iron on the growth of a typical harmful algal blooms (HABs) causative dinoflagellate, Scrippsiella trochoidea, were investigated under various irradiances (high light: 70 μmol m?2 s?1 and low light: 4 μmol m?2 s?1) and iron concentrations (low iron: 0.063 mg L?1, medium iron: 0.63 mg L?1 and high iron: 6.3 mg L?1), and evaluated by the parameters of algal cell density, specific growth rate, optical density and chlorophyll a content. The results indicated that there was significant difference in the cell density of dinoflagellate S. trochoidea between high light and low light intensity treatments across the entire experiments, 7-fold higher at high irradiance as compared with low irradiance, which was further enhanced by the iron concentration. It was found that the maximum cell density of 25 × 104 cell mL?1 occurred under the combination of high light intensity and high iron concentration, followed by 23 × 104 cell mL?1 in the combination of high light and medium iron, and 20 × 104 cell mL?1 in the combination of high light and low iron. There was no significant effect of iron concentration on the cell density under low light intensity. The cell density maintained about 3 × 104 cell mL?1 across all combinations of iron concentrations and low light in the end of experiments. Such interactive effects of light intensity and iron level dependent were also observed for the specific growth rate, OD680 and chlorophyll a content of S. trochoidea. The maximum values of specific growth rate, OD680 and chlorophyll a content peaked at the condition of high irradiance and high iron, which were 0.22 d?1, 0.282 and 0.673 mg L?1, respectively. In general, their values increased significantly with the increasing of iron concentration at high irradiance, whereas no significant difference was observed among three iron concentrations at low irradiance, all remaining approximately 0.06 d?1, 0.03 and 0.050 mg L?1, respectively. Those results suggest that there may be a strong interactive effect between irradiance and iron on microalgal growth and their physiological characteristics. The combination of high light and high iron concentration may accelerate algal cell growth and pigment biosynthesis, thus leading to massive occurrence of HABs.  相似文献   

18.
Ciguatera fish poisoning is a common form of seafood poisoning caused by toxins (ciguatoxins) that accumulate in demersal (reef) food webs. The precursors of ciguatoxins are produced by dinoflagellates of the genus Gambierdiscus, and enter the food web via herbivory and detritivory. The Gambierdiscus genus was recently revised and new research on the physiology and ecology of the revised species is needed. While it has been demonstrated that Gambierdiscus spp. are predominately epiphytic, the variability in epiphytic behavior among the various Gambierdiscus species is not known. Five Gambierdiscus species isolated from the Greater Caribbean Region were the focus of this study (G. belizeanus, G. caribaeus, G. carolinianus, G. carpenteri, and G. yasumotoi). Cells of Gambierdiscus were grown in wells with algae fragments from eight different macroalgal host genera (Acanthophora, Caulerpa, Dasya, Derbesia, Dictyota, Laurencia, Polysiphonia, and Ulva) where the epiphytic behavior and growth of the different Gambierdiscus species were monitored over 29 days. The results of this experiment demonstrate that epiphytic behavior (growth and attachment) differs among the Gambierdiscus species toward the various macroalgal hosts. Results tended to be specific to Gambierdiscus – host pairings with few commonalities in the way a particular Gambierdiscus species interacted across hosts or how the various Gambierdiscus species responded to a particular host. The Gambierdiscus – host pairings that resulted in the highest growth and attachment combinations were examined in terms of known cellular toxicity and host palatability to determine which pairings could represent the most likely vectors for the transfer of ciguatoxins (or precursors) into the demersal food web. Two pairings, Gambierdiscus belizeanusPolysiphonia and G. belizeanusDictyota, best met these criteria, providing a hypothetical approach to better focus sampling and monitoring efforts on such potential vectors in the benthic environment.  相似文献   

19.
Cai Z P  Huang W W  An M  Duan S S 《农业工程》2009,29(5):297-301
Effects of irradiance and iron on the growth of a typical harmful algal blooms (HABs) causative dinoflagellate, Scrippsiella trochoidea, were investigated under various irradiances (high light: 70 μmol m?2 s?1 and low light: 4 μmol m?2 s?1) and iron concentrations (low iron: 0.063 mg L?1, medium iron: 0.63 mg L?1 and high iron: 6.3 mg L?1), and evaluated by the parameters of algal cell density, specific growth rate, optical density and chlorophyll a content. The results indicated that there was significant difference in the cell density of dinoflagellate S. trochoidea between high light and low light intensity treatments across the entire experiments, 7-fold higher at high irradiance as compared with low irradiance, which was further enhanced by the iron concentration. It was found that the maximum cell density of 25 × 104 cell mL?1 occurred under the combination of high light intensity and high iron concentration, followed by 23 × 104 cell mL?1 in the combination of high light and medium iron, and 20 × 104 cell mL?1 in the combination of high light and low iron. There was no significant effect of iron concentration on the cell density under low light intensity. The cell density maintained about 3 × 104 cell mL?1 across all combinations of iron concentrations and low light in the end of experiments. Such interactive effects of light intensity and iron level dependent were also observed for the specific growth rate, OD680 and chlorophyll a content of S. trochoidea. The maximum values of specific growth rate, OD680 and chlorophyll a content peaked at the condition of high irradiance and high iron, which were 0.22 d?1, 0.282 and 0.673 mg L?1, respectively. In general, their values increased significantly with the increasing of iron concentration at high irradiance, whereas no significant difference was observed among three iron concentrations at low irradiance, all remaining approximately 0.06 d?1, 0.03 and 0.050 mg L?1, respectively. Those results suggest that there may be a strong interactive effect between irradiance and iron on microalgal growth and their physiological characteristics. The combination of high light and high iron concentration may accelerate algal cell growth and pigment biosynthesis, thus leading to massive occurrence of HABs.  相似文献   

20.
Karenia mikimotoi is a worldwide bloom-forming dinoflagellate in the genus Karenia. Blooms of this alga have been observed since the 1930s and have caused mass mortalities of fish, shellfish, and other invertebrates in the coastal waters of many countries, including Japan, Norway, Ireland, and New Zealand. This species has frequently bloomed in China, causing great financial losses (more than 2 billion yuan, Fujian Province, 2012). K. mikimotoi can adapt to various light, temperature, salinity, and nutrient conditions, which together with its complex life history, strong motility, and density-dependent allelopathy, allows it to form blooms that are lethal to almost all marine organisms. However, its toxicity differs between subspecies and some target-species-specific toxicity has also been recorded. Significant gill disorder is observed in affected fish, to which the massive fish kills are attributed, rather than to the hypoxia that occurs in the fading stage of a bloom. However, although this species is haemolytic and cytotoxic, and generates reactive oxygen species, none of the isolated toxins or lipophilic extracts have toxic effects as extreme as those of the intact algal cells. The toxic effects of K. mikimotoi are strongly related to contact with intact cells. Several reasonable hypotheses of how and why this species blooms and causes mass mortalities have been proposed, but further research is required.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号