首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Developing indicators for European birds   总被引:15,自引:0,他引:15  
The global pledge to deliver 'a significant reduction in the current rate of biodiversity loss by 2010' is echoed in a number of regional and national level targets. There is broad consensus, however, that in the absence of conservation action, biodiversity will continue to be lost at a rate unprecedented in the recent era. Remarkably, we lack a basic system to measure progress towards these targets and, in particular, we lack standard measures of biodiversity and procedures to construct and assess summary statistics. Here, we develop a simple classification of biodiversity indicators to assist their development and clarify purpose. We use European birds, as example taxa, to show how robust indicators can be constructed and how they can be interpreted. We have developed statistical methods to calculate supranational, multi-species indices using population data from national annual breeding bird surveys in Europe. Skilled volunteers using standardized field methods undertake data collection where methods and survey designs differ slightly across countries. Survey plots tend to be widely distributed at a national level, covering many bird species and habitats with reasonable representation. National species' indices are calculated using log-linear regression, which allows for plot turnover. Supranational species' indices are constructed by combining the national species' indices weighted by national population sizes of each species. Supranational, multi-species indicators are calculated by averaging the resulting indices. We show that common farmland birds in Europe have declined steeply over the last two decades, whereas woodland birds have not. Evidence elsewhere shows that the main driver of farmland bird declines is increased agricultural intensification. We argue that the farmland bird indicator is a useful surrogate for trends in other elements of biodiversity in this habitat.  相似文献   

2.
Multi-species indicators are often used to assess biodiversity trends. By combining population trends across several species they summarise trends across a community. Composite indicators such as these are useful for examining general temporal patterns and may suggest important drivers of biodiversity change. However, they may also mask substantial spatial variation in population trends, particularly when they are calculated over large spatial regions. We produced spatially-explicit indicators for farmland and woodland bird communities in the UK and further separate these into trends for generalist and specialist species within each group. We found considerable spatial variation in the indicators, which is masked by indicators calculated at the national level. The farmland community indicator showed mostly positive trends in western areas and extensive declines in south-east England. The woodland community indicator showed a north–south divide, with increases in Scotland and northern England and stability in the southern regions. For both communities, indicator trends for specialist species were more negative than those for generalists. We found no significant difference in farmland community indicators between arable land and improved grassland. Woodland specialists had significantly more negative trends in broadleaf compared to coniferous woodlands, suggesting habitat-type is one of the drivers of changes in the woodland community. These spatial patterns in bird population trends may be used to highlight regional conservation priorities and identify where those may differ from the national scale. In combination with information about other environmental changes, they may also be used to develop hypotheses about potential drivers of change. We advocate that this approach is adopted for other taxa and geographical areas.  相似文献   

3.
We examined the pattern of species composition of breeding birds along urban-rural gradients in the Osaka Prefecture, western Japan. We recorded the proportion of nine types of land-use and the presence/absence of each of 76 breeding birds in 5 km square quadrats on a map of the Prefecture. The proportion of woodland and farmland which increased from urban to rural areas were two major enviornmental gradients according to Principal Component Analysis of the nine types of land-use. Ordination by Canonical Correspondence Analysis (CCA) showed that the breeding bird distribution differentiated along the two major clines, woodland and farmland. The avifauna changed successively along these environmental gradients. There were no discrete boundaries of the distribution of bird species groups. We tentatively classified five groups of quadrats on the ordination plane of the sample score. The geographic position of these five groups on a map preserved the environmental gradient, but showed that water (seashore and river) was a stronger influence on bird species composition than land-use pattern. Although the diversity of land-use seemed to raise species richness in the third group, the less diverse, woodland-rich group contained as many species as the third group. Four groups of bird species, and one group in which species occurred in more than 90% of the quadrats, were classified in the CCA-ordination plane. The occurrence of these bird groups correlated with land-use; the first group with woodland area, the second with scatter woodland, the third with farmland and the fourth with seashore.  相似文献   

4.
Recent declines of many European bird species have been linked with various environmental changes, especially land-use change and climate change. Since the intensity of these environmental changes varies among different countries, we can expect geographic variation in bird population trends. Here, we compared the population trends of bird species among neighbouring countries within central Europe (Czech Republic, Denmark, Germany, Switzerland) between 1990 and 2016 and examined trait-associations with population trends at both national and international scales. We found that Denmark had the highest proportion of declining species while Switzerland had the lowest. Species associated with farmland had negative trends, but the effect size tended to differ among countries. A preference for higher temperature was positively associated with population trends and its effect size was similar among countries. Species that were increasing across all four countries were associated with forest; while species that were decreasing across all countries were long-distance migrants or farmland birds. Our results suggest that land-use change tends to be a more regionally variable driver of common bird population trends than climate change in central Europe. For species declining across all countries, international action plans could provide a framework for more efficient conservation. However, farmland birds likely need both, coordinated international action (e.g. through a green agricultural policy) to tackle their widespread declines as well as regionally different approaches to address varying national effect trajectories.  相似文献   

5.
Many bird species of lowland farmland have declined substantially in the United Kingdom over the past 30 years. Declines among farmland specialists are steeper than for generalists and were most rapid for these specialists in the 1970s and 1980s. These changes have been linked to increased agricultural intensification and are reflected in Red or Amber conservation concern status for many common farmland species, as well as for rarer ones. We review long- and short-term population trends and the conservation status of lowland farmland birds in the UK using the latest available information from bird surveys, and examine patterns among species. Analyses of demographic parameters suggest broadly that the key factor driving population changes of seed-eating and migrant birds is overwinter survival, whereas for many non-passerine species population growth appears to be limited by productivity. Population trends for a suite of lowland farmland species were first combined in the UK Government's headline wild bird indicator published in 1998. This 'Skylark index' as it is sometimes known was intended to reflect the health of the wider countryside and struck a chord with the public and decision-makers. We look at the behaviour of the composite indicator and explore the population dynamics of the increasing and declining species separately. Simple models of population growth in these groups are then used to explore plausible scenarios for delivering the Government's Public Service Agreement target to reverse the long-term decline in the number of farmland birds by 2020.  相似文献   

6.
Thousands of plant species worldwide are dependent on birds for pollination. While the ecology and evolution of interactions between specialist nectarivorous birds and the plants they pollinate is relatively well understood, very little is known on pollination by generalist birds. The flower characters of this pollination syndrome are clearly defined but the geographical distribution patterns, habitat preferences and ecological factors driving the evolution of generalist‐bird‐pollinated plant species have never been analysed. Herein I provide an overview, compare the distribution of character states for plants growing on continents with those occurring on oceanic islands and discuss the environmental factors driving the evolution of both groups. The ecological niches of generalist‐bird‐pollinated plant species differ: on continents these plants mainly occur in habitats with pronounced climatic seasonality whereas on islands generalist‐bird‐pollinated plant species mainly occur in evergreen forests. Further, on continents generalist‐bird‐pollinated plant species are mostly shrubs and other large woody species producing numerous flowers with a self‐incompatible reproductive system, while on islands they are mostly small shrubs producing fewer flowers and are self‐compatible. This difference in character states indicates that diverging ecological factors are likely to have driven the evolution of these groups: on continents, plants that evolved generalist bird pollination escape from pollinator groups that tend to maintain self‐pollination by installing feeding territories in single flowering trees or shrubs, such as social bees or specialist nectarivorous birds. This pattern is more pronounced in the New compared to the Old World. By contrast, on islands, plants evolved generalist bird pollination as an adaptation to birds as a reliable pollinator group, a pattern previously known from plants pollinated by specialist nectarivorous birds in tropical mountain ranges. Additionally, I discuss the evolutionary origins of bird pollination systems in comparison to systems involving specialist nectarivorous birds and reconstruct the bird pollination system of Hawaii, which may represent an intermediate between a specialist and generalist bird pollination system. I also discuss the interesting case of Australia, where it is difficult to distinguish between specialist and generalist bird pollination systems.  相似文献   

7.
A key aim of many European agri-environment schemes (AES) is to improve biodiversity on farmland. In recent years, several countries have been looking at long term trends in the spring adult population size of a target group of farmland birds as an indicator of this. The overall trend in these indicators is however not upwards. While this might suggest we need to look at the design and deployment of habitat management options within schemes, there is an increasing view that we also need to refine and improve our indicators, or the way we monitor them.Relating spring adult bird population size to AES options is problematic not least because of the time lag between the deployment of those designed to enhance bird breeding success in summer, and the spring surveys the following year. At the other end of the scale detailed studies of breeding success in farmland birds have practical/cost restraints. We argue that to understand the impact on farmland birds of particular summer options within AESs we need to be able to estimate the breeding success of local bird populations quickly and cheaply. This would enable us to relate particular AES options to the breeding performance of the birds actually using them.Complementing a previous study of woodland birds, we assess the likelihood of encountering fledged broods of hedgerow nesting bird species during transect surveys without finding nests, and then apply a simple mark-recapture analysis technique to provide an index of breeding success for those species. Following spring adult assessments, counts of fledged broods were undertaken four times a week during April, May, June and July, in four 2.5 km hedgerow transects, at four sites in southern England in 2010. Mean daily detection probabilities of fledged broods of 16 common hedgerow birds were calculated from these counts using the software Presence. For 15 out of these 16 species these detection probabilities were sufficiently high for a programme of fledged brood surveys, involving just two or three visits per week from mid-May to mid-July, to provide a useful estimate of breeding success.The survey technique and associated analyses make certain assumptions when providing estimates of breeding success and these are discussed. Little is known about initial dispersal in passerine fledglings and a study in hedgerows may be useful here. However our pilot study suggests that the method could have application as a relatively easily derived productivity index for hedgerow birds, and hence an additional method available to study the impact of certain AES options on indicator species, or for research studies.  相似文献   

8.
Biotic homogenization (BH) is a process whereby some species (losers) are systematically replaced by others (winners). While this process has been related to the effects of anthropogenic activities, whether and how BH is occurring across regions and the role of native species as a driver of BH has hardly been investigated. Here, we examine the trend in the community specialization index (CSI) for 234 native species of breeding birds at 10 111 sites in six European countries from 1990 to 2008. Unlike many BH studies, CSI uses abundance information to estimate the balance between generalist and specialist species in local assemblages. We show that bird communities are more and more composed of native generalist species across regions, revealing a strong, ongoing BH process. Our result suggests a rapid and non-random change in community composition at a continental scale is occurring, most likely driven by anthropogenic activities.  相似文献   

9.
Conserving biodiversity on farmland is an essential element of worldwide efforts for reversing the global biodiversity decline. Common approaches involve improving the natural component of the landscape by increasing the amount of natural and seminatural habitats (e.g., hedgerows, woodlots, and ponds) or improving the production component of the landscape by increasing the amount of biodiversity‐friendly crops. Because these approaches may negatively impact on economic output, it was suggested that an alternative might be to enhance the diversity (compositional heterogeneity) or the spatial complexity (configurational heterogeneity) of land cover types, without necessarily changing composition. Here, we develop a case study to evaluate these ideas, examining whether managing landscape composition or heterogeneity, or both, would be required to achieve conservation benefits on avian diversity in open Mediterranean farmland. We surveyed birds in farmland landscapes of southern Portugal, before (1995–1997) and after (2010–2012) the European Union's Common Agricultural Policy (CAP) reform of 2003, and related spatial and temporal variation in bird species richness to variables describing the composition, and the compositional and configurational heterogeneity, of the natural and production components of the landscape. We found that the composition of the production component had the strongest effects on avian diversity, with a particularly marked effect on the richness of farmland and steppe bird species. Composition of the natural component was also influential, mainly affecting the richness of woodland/shrubland species. Although there were some effects of compositional and configurational heterogeneity, these were much weaker and inconsistent than those of landscape composition. Overall, we suggest that conservation efforts in our area should focus primarily on the composition of the production component, by striving to maximize the prevalence of biodiversity‐friendly crops. This recommendation probably applies to other areas such as ours, where a range of species of conservation concern is strongly associated with crop habitats.  相似文献   

10.
Biotope Use and Trends of European Butterflies   总被引:7,自引:4,他引:3  
Europe has undergone substantial biotope loss and change over the last century and data are needed urgently on the rate of decline in different wildlife groups in order to identify and target conservation measures. However, pan-European data are available for very few taxonomic groups, notably birds. We present here the first overview of trends for an insect group within different biotopes across Europe, based on data from the Red Data Book of European Butterflies. The most important biotopes for Europe’s 576 butterfly species, including threatened species, are man-made or man-influenced, notably types of grassland or heath/scrub communities. Our results show that butterflies are declining substantially across Europe, with a decline in distribution of −11% over the last 25 years. The distributions of the 25 most “generalist” species are declining only slowly (−1%) compared to specialist butterflies of grassland (−19%), wetlands (−15%), and forests (−14%). On average, grassland butterflies have declined somewhat slower than farmland birds (annual decrease −0.8% compared to −1.5%), but woodland butterflies have decreased more rapidly (−0.01% to −0.6%) than woodland birds, which are more or less stable. The sensitivity of butterflies to environmental changes and the availability of data across Europe suggest that they are very good candidates to build biodiversity indicators and, along with other major groups such as birds, suitable to monitor progress towards the EU target of halting biodiversity loss by 2010. An erratum to this article is available at .  相似文献   

11.
Bird populations are declining in agricultural landscapes, which is ongoing for decades now. With standardized breeding bird observation data of five years within 2001–2014 from six sites in Central Germany we investigated whether trends in bird abundance are reflected by trends in species richness and whether these trends depend on the landscape context. We further analyzed whether trends and their dependencies on the landscape context differ among species groups according to their particular traits. For most of the groups (farmland birds, large birds, resident birds, short distance migrators, insectivores, granivores and birds of prey) we found declining trends in abundance. However, these trends were not reflected by species richness. In contrast to our expectations, high amounts of semi-natural habitats in the landscape did not buffer the overall negative trends. Surprisingly, bird abundance declined most in landscapes characterized by larger ranges in altitude and initially highest bird abundance in 2001. We conclude that flat landscapes in Central Germany have been utilized with high intensity already for a long time and they simply maintained their already low bird abundance. On the other hand, a recent increase in agricultural intensity in landscapes with marked altitudinal reliefs, and presumably less usability and productivity, causes the drastic declines in bird abundances. Since these strong declines are not related to habitat loss, we assume that changes in the management of agricultural fields are responsible.  相似文献   

12.
Agricultural intensification resulted in substantial loss of farmland biodiversity. Semi-natural habitats may be viewed as potential buffers of these adverse impacts, but a rigorous assessment of their capacity for supporting farmland biodiversity is lacking. In this study, we explored conservation potential of two different types of semi-natural habitats for birds in intensively-used agricultural landscapes – farmland hedges (i.e., linear strips of shrubby and tree vegetation) and open scrubland (i.e., scattered shrubs and abandoned orchards). Specifically, we tested whether the abundance and species richness of birds differ between these habitats considering various species traits, such as habitat affinity (i.e., forest, farmland and urban species), diet specialization (i.e., animal eaters, plant eaters, and omnivores) and conservation status (Species of European Conservation Concern). We found that open scrubland hosted on average 37.9 bird species and 122.6 individuals per 1 km2 of the transect, whereas farmland hedges hosted only 19 species and 61.8 individuals per 1 km2 of the transect. However, results have substantially changed if we considered the area of suitable habitat into account. More specifically, open scrubland hosted more bird species and individuals when we considered open habitat species and the area of open habitats, whereas farmland hedges had higher species diversity and individuals of woodland bird species when we considered the area of woodland habitats. Similarly, analyses of habitat affiliations of individual species corresponded to the whole-community patterns; and revealed that several woodland bird species were mainly associated with farmland hedges (e.g., Chaffinch Fringilla coelebs, Common Nightingale Luscinia megarhynchos and Blackcap Sylvia atricapilla), whereas the open scrubland was preferred by open habitat bird species (e.g., Corn Bunting Emberiza calandra, Quail Coturnix coturnix and Skylark Alauda arvensis). These results demonstrate that semi-natural habitats, both open scrubland and farmland hedges, have large potential for promotion and conservation of bird communities within intensively used agricultural landscapes, as both may have represented suitable habitats for species with different ecological requirements. Therefore, management measures focused on the enlargement of the area of these habitats, in combination with suitable management (e.g., regulating the progress of natural succession in open scrubland; increasing structural diversity of existing farmland hedges), may substantially contribute to bird conservation within agricultural landscapes.  相似文献   

13.
Aim This paper describes the development of novel indices of bird‐habitat preference to examine bird species’ use of habitats and their distributions relative to habitats. It assesses the implications for bird conservation regionally and the scope for biodiversity assessments generally. Location A 200 km by 400 km area of farmland with seminatural and urban areas, covering south‐eastern England. Methods Cluster analysis was used to link birds to landscapes. Cluster centroid coordinate values were processed to derive indices of bird‐habitat preference. Further developments assessed the relative values of individual habitats for birds. Results Clustering objectively linked birds to landscapes. Maps of the clusters showed strong regional patterns associated with distinctive habitat assemblages. Derived indices related bird species directly to individual habitats and habitats to birds. Even rare species and scarce habitats showed successful linkages, often to each other. Objective corroboration strongly supported the associations of coastal, wetland, urban and woodland birds and habitats; but, it suggested that farmland birds, whose numbers have nearly halved since 1977, may prefer alternative habitats. Main conclusions Land cover maps from remote sensing provide an effective way to link birds to habitats and vice versa. Thus, generalized habitat maps might be used to extrapolate localized or sample‐based bird observations or the results of autecological studies, helping to predict and understand bird distributions in the wider countryside. The weak links between farmland birds and farmland habitats in a region dominated by farming, suggests that reasons for the decline in farmland birds may be deep seated and thus hard to reverse. The procedures described are repeatable elsewhere and applicable more generally to evaluate landscapes and biodiversity. It is suggested that remote sensing could rarely be bettered as a means of assessing habitats, comprehensively, over wide areas, in most parts of the world.  相似文献   

14.
Mountain areas often hold special species communities, and they are high on the list of conservation concern. Global warming and changes in human land use, such as grazing pressure and afforestation, have been suggested to be major threats for biodiversity in the mountain areas, affecting species abundance and causing distribution shifts towards mountaintops. Population shifts towards poles and mountaintops have been documented in several areas, indicating that climate change is one of the key drivers of species’ distribution changes. Despite the high conservation concern, relatively little is known about the population trends of species in mountain areas due to low accessibility and difficult working conditions. Thanks to the recent improvement of bird monitoring schemes around Europe, we can here report a first account of population trends of 44 bird species from four major European mountain regions: Fennoscandia, UK upland, south‐western (Iberia) and south‐central mountains (Alps), covering 12 countries. Overall, the mountain bird species declined significantly (?7%) during 2002–2014, which is similar to the declining rate in common birds in Europe during the same period. Mountain specialists showed a significant ?10% decline in population numbers. The slope for mountain generalists was also negative, but not significantly so. The slopes of specialists and generalists did not differ from each other. Fennoscandian and Iberian populations were on average declining, while in United Kingdom and Alps, trends were nonsignificant. Temperature change or migratory behaviour was not significantly associated with regional population trends of species. Alpine habitats are highly vulnerable to climate change, and this is certainly one of the main drivers of mountain bird population trends. However, observed declines can also be partly linked with local land use practices. More efforts should be undertaken to identify the causes of decline and to increase conservation efforts for these populations.  相似文献   

15.
Europe has a well‐established network of breeding bird monitoring that is used to produce supranational indices of population trends for many species. However, a comparison of breeding bird censuses with other methods may be beneficial to confirm the validity of such indices. The aim of this study was to assess the value of standardized capture data of migratory birds at migration bottlenecks as an indicator of the effective breeding populations. One limitation to this method is that several populations are co‐occurring at these bottlenecks and their catchment areas need to be clearly identified to allow extrapolation of population indices. Here, we used standardized trends in capture numbers of 30 species on the island of Ponza, a migration bottleneck in the central Mediterranean, and compared them to population trends estimated in the putative catchment breeding areas between 2005 and 2016. The catchment areas were identified through the analysis of ring recoveries during the breeding season of birds passing through Ponza. Our results show an agreement between the population trends observed on Ponza and those in the breeding areas in 15 out of 30 species. The correlations were strongest in species with a more robust definition of the catchment areas, that is, species with more than 10 recoveries, and for which the recoveries were most likely of breeding birds. The main reason for disagreement between the two indices in the remaining species might be related to different intensity of sampling in different areas. This issue can be solved by further developing monitoring projects in underrepresented countries, as well as by intensifying monitoring through ringing, both in the breeding grounds and at migration bottlenecks. These results show that spring migration monitoring at bottlenecks has the potential to provide a valuable complement and an independent control of breeding bird surveys, allowing raising early warnings of population declines and contributing to their conservation.  相似文献   

16.
Although it is clear that the farmlands neighbouring fragmented forests are utilized by some forest birds, it is not clear how birds in general respond to farmland habitat mosaic. An effort was made to determine how bird density and foraging assemblages were influenced by farm structural characteristics and distance from forest edge. Thirty farms up to a distance of 12 km around Kakamega forest in western Kenya were studied. Farm structure entailed size, hedge volume, habitat heterogeneity, woody plant density, plant diversity and crop cover. Birds were surveyed using line transects and DISTANCE analyses and classified into six feeding guilds and three habitat associations. Size of farms increased away from the forest, as woody plant density, plant diversity, indigenous trees and subsistence crop cover declined. The most important farm structure variable was hedge volume, which enhanced bird species richness, richness of shrub‐land bird species and insectivorous bird density (R = 0.58, P < 0.01). Bird density increased with tree density while indigenous trees were suitable for insectivores and nectarivores. There were very few forest bird encounters. Agricultural practices incorporating maintenance of hedges and sound selection of agroforestry trees can enhance conservation of birds on farmland, though, not significantly for forest species.  相似文献   

17.
The effects of habitat fragmentation on birds have often been studied in forest specialist species. Here we aimed at comparing the response of open habitat birds within a range of habitat specialization. The study area was a Mediterranean pseudo-steppe, designated as important for conservation yet fragmented by tree encroachment. We defined bird species dependency on steppe-like habitat by a correspondence analysis, allowing us to distinguish between specialists, generalists and scrubland species. We studied species abundance in relation to fragment area, testing whether species representation in fragments differed from those in continuous habitat. This analysis showed a contrasted response to fragment size between “open habitat” specialist species and generalist ones. Open habitat species were under-represented in the smallest fragments, while generalist were over-represented in small fragments in comparison to their distribution in continuous habitats. We discuss how these results can be linked to species habitat requirements. We find that scrubland species seem to be favoured by encroachment of woody vegetation, as they are able to explore and use the wooded matrix; however specialist species are restricted to open patches and are sensitive to a reduction in patch size. This allows us to predict how different species can exhibit a different sensitivity to habitat fragmentation.  相似文献   

18.
Using the assessments of conservation status of flora and fauna, we discuss declining species in semi-natural field margins and stress the importance of these vanishing habitats. Seventy field margins in the diverse farmland of SW Poland were investigated with regard to their vascular plants, bryophytes and breeding birds. We checked the occurrence of threatened and conservation concern species, i.e. those listed in local, national or European threatened species lists, and birds with an unfavorable conservation status in Europe. Of a total of 673 species, 18 classified as threatened were recorded: 12 vascular plants (2.2 % of the total number of species), five bryophytes (5.6 %), and one bird species (2.0 %). Threatened plants occurred in 18.6 % of study plots, bryophytes in 20.0 % and birds in 12.9 %. Eleven bird species, noted in 95.7 % of study plots, had an unfavorable conservation status in Europe. Increasing volumes of trees and shrubs significantly increased the overall richness in each taxa. In percentage terms the occurrence of focal species in all three taxa tended to be higher in shrubby than in herbaceous and tree-lined margins. Our data demonstrate that field margins in Central European arable farmland regularly support rare and threatened species, and therefore deserve greater conservation efforts. Red lists along with alternative listing approaches can be employed to evaluate the biodiversity of fine-scale habitats, but their applicability depends on the taxonomic group and geographical scale of the lists, reflecting different conservation priorities.  相似文献   

19.
In this work, I tested the premise that the distribution of a group of few common bird species can be used to predict bird species hotspots in Central Italy. The data on bird observations were collected on 530 sampled sites (150 in cultivated, 150 in forest, 150 in grassland and 80 in urban and peri-urban environments). In each environment, sampled sites with values of bird species richness in the upper than third quartile were classified as high species richness spots (HSRS), while sites with lower bird species richness were classified as non-HSRS (binary classification system).Generalized Linear Models (GLM) were applied using HSRS or non-HSRS as binomial response variable and bird species occurrence was used as the predictor variable. All selected models showed “fair” or “good” capacities to predict the avian hotspots, using only few common birds (4–6) species. However, bird species selected as predictors were different on each environment. In more natural environments (grassland, forest), specialist species were selected, while in most disturbed environments (cultivated and urban) both generalist and specialist species were selected. The results are in agreement with other studies which show how homogenization of bird communities is strongly correlated to landscape disturbance. The findings supports the hypothesis that indicators have to incorporate both specialists and generalist’s species simultaneously. Furthermore, the groups of birds selected as surrogates are easy to detect and this makes it possible to involve citizen-science programmes in obtain data. This approach can be a cheap and efficient and can help to significantly speed up the process of assessing ecosystems that might be under threat.  相似文献   

20.
Recent studies show differences in population trends between groups of species occupying different habitats. In Czech birds, as well as in many other European countries, populations of forest species have increased, whereas populations of farmland species have declined. The aim of our study was to test whether population trends of particular species were related to finer bird-habitat associations within farmland and forest birds. We assessed bird-habitat associations using canonical correspondence analysis based on data from a 400 km long transect across the Czech Republic. We calculated population trends of 62 bird species using log-linear models based on data from a large-scale annual monitoring scheme, which covers the time series from 1982 to 2005. Within forest birds, species with a closer association with lowland broad-leaved forest have had more positive population trends, whereas species with a closer association with montane and coniferous forest revealed more negative population trends. We attribute these opposite trends to the gradual replacement of coniferous forests by deciduous ones, which took place in the Czech Republic during recent decades. Our analyses revealed a hump-shaped relationship within farmland birds, species most closely associated with farmland habitat revealing the most negative trends, whereas species with intermediate association to farmland habitat showed the most positive population trends. Such a pattern can be explained by the abandonment of previously cultivated areas followed by the spread of unmanaged meadows and scrubland. Changes in quantity or quality of preferred habitats may thus represent major drivers of observed bird population changes.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号