首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
2.
DNA damage in chromatin comes in many forms, including single base lesions that induce base excision repair (BER). We and others have shown that the structural location of DNA lesions within nucleosomes greatly influences their accessibility to repair enzymes. Indeed, a difference in the location of uracil as small as one-half turn of the DNA backbone on the histone surface can result in a 10-fold difference in the time course of its removal in vitro. In addition, the cell has evolved several interdependent processes capable of enhancing the accessibility of excision repair enzymes to DNA lesions in nucleosomes, including post-translational modification of histones, ATP-dependent chromatin remodeling and interchange of histone variants in nucleosomes. In this review, we focus on different factors that affect accessibility of BER enzymes to nucleosomal DNA.  相似文献   

3.
The process of base excision repair has been completely reconstituted in vitro and structural and biochemical properties of the component enzymes thoroughly studied on naked DNA templates. More recent work in this field aims to understand how BER operates on the natural substrate, chromatin [1], [2]. Toward this end, a number of researchers, including the Smerdon group, have focused attention to understand how individual enzymes and reconstituted BER operate on nucleosome substrates. While nucleosomes were once thought to completely restrict access of DNA-dependent factors, the surprising finding from these studies suggests that at least some BER components can utilize target DNA bound within nucleosomes as substrates for their enzymatic processes. This data correlates well with both structural studies of these enzymes and our developing understanding of nucleosome conformation and dynamics. While more needs to be learned, these studies highlight the utility of reconstituted BER and chromatin systems to inform our understanding of in vivo biological processes.  相似文献   

4.
Exposure to ionizing radiation can produce multiple, clustered oxidative lesions in DNA. The near simultaneous excision of nearby lesions in opposing DNA strands by the base excision repair (BER) enzymes can produce double-strand DNA breaks (DSBs). This attempted BER accounts for many of the potentially lethal or mutagenic DSBs that occur in vivo. To assess the impact of nucleosomes on the frequency and pattern of BER-dependent DSB formation, we incubated nucleosomes containing oxidative damages in opposing DNA strands with selected DNA glycosylases and human apurinic/apyrimidinic endonuclease 1. Overall, nucleosomes substantially suppressed DSB formation. However, the degree of suppression varied as a function of (i) the lesion type and DNA glycosylase tested, (ii) local sequence context and the stagger between opposing strand lesions, (iii) the helical orientation of oxidative lesions relative to the underlying histone octamer, and (iv) the distance between the lesion cluster and the nucleosome edge. In some instances the binding of a BER factor to one nucleosomal lesion appeared to facilitate binding to the opposing strand lesion. DSB formation did not invariably lead to nucleosome dissolution, and in some cases, free DNA ends resulting from DSB formation remained associated with the histone octamer. These observations explain how specific structural and dynamic properties of nucleosomes contribute to the suppression of BER-generated DSBs. These studies also suggest that most BER-generated DSBs will occur in linker DNA and in genomic regions associated with elevated rates of nucleosome turnover or remodeling.  相似文献   

5.
In eukaryotes, base excision repair (BER) is responsible for the repair of oxidatively generated lesions. The mechanism of BER on naked DNA substrates has been studied in detail, but how it operates on chromatin remains unclear. Here we have studied the mechanism of BER by introducing a single 8-oxo-7,8-dihydroguanine (8-oxoG) lesion in the DNA of reconstituted positioned conventional and histone variant H2A.Bbd nucleosomes. We found that 8-oxoguanine DNA glycosylase, apurinic/apyrimidinic endonuclease, and polymerase beta activities were strongly reduced in both types of nucleosomes. In conventional nucleosomes SWI/SNF stimulated the processing of 8-oxoG by each one of the three BER repair factors to efficiencies similar to those for naked DNA. Interestingly, SWI/SNF-induced remodeling, but not mobilization of conventional nucleosomes, was required to achieve this effect. A very weak effect of SWI/SNF on the 8-oxoG BER removal in H2A.Bbd histone variant nucleosomes was observed. The possible implications of our data for the understanding of in vivo mechanisms of BER are discussed.  相似文献   

6.
DNA damaging agents are a constant threat to genomes in both the nucleus and the mitochondria. To combat this threat, a suite of DNA repair pathways cooperate to repair numerous types of DNA damage. If left unrepaired, these damages can result in the accumulation of mutations which can lead to deleterious consequences including cancer and neurodegenerative disorders. The base excision repair (BER) pathway is highly conserved from bacteria to humans and is primarily responsible for the removal and subsequent repair of toxic and mutagenic oxidative DNA lesions. Although the biochemical steps that occur in the BER pathway have been well defined, little is known about how the BER machinery is regulated. The budding yeast, Saccharomyces cerevisiae is a powerful model system to biochemically and genetically dissect BER. BER is initiated by DNA N-glycosylases, such as S. cerevisiae Ntg1. Previous work demonstrates that Ntg1 is post-translationally modified by SUMO in response to oxidative DNA damage suggesting that this modification could modulate the function of Ntg1. In this study, we mapped the specific sites of SUMO modification within Ntg1 and identified the enzymes responsible for sumoylating/desumoylating Ntg1. Using a non-sumoylatable version of Ntg1, ntg1ΔSUMO, we performed an initial assessment of the functional impact of Ntg1 SUMO modification in the cellular response to DNA damage. Finally, we demonstrate that, similar to Ntg1, the human homologue of Ntg1, NTHL1, can also be SUMO-modified in response to oxidative stress. Our results suggest that SUMO modification of BER proteins could be a conserved mechanism to coordinate cellular responses to DNA damage.  相似文献   

7.
Although DNA in eukaryotes is packaged in nucleosomes, it remains vulnerable to oxidative damage that can result from normal cellular metabolism, ionizing radiation, and various chemical agents. Oxidatively damaged DNA is repaired in a stepwise fashion via the base excision repair (BER) pathway, which begins with the excision of damaged bases by DNA glycosylases. We reported recently that the human DNA glycosylase hNTH1 (human Endonuclease III), a member of the HhH GpG superfamily of glycosylases, can excise thymine glycol lesions from nucleosomes without requiring or inducing nucleosome disruption; optimally oriented lesions are excised with an efficiency approaching that seen for naked DNA [1]. To determine if this property is shared by human DNA glycoylases in the Fpg/Nei family, we investigated the activity of NEIL1 on defined nucleosome substrates. We report here that the cellular concentrations and apparent kcat/KM ratios for hNTH1 and NEIL1 are similar. Additionally, after adjustment for non-specific DNA binding, hNTH1 and NEIL1 proved to have similar intrinsic activities toward nucleosome substrates. However, NEIL1 and hNTH1 differ in that NEIL1 binds undamaged DNA far more avidly than hNTH1. As a result, hNTH1 is able to excise both accessible and sterically occluded lesions from nucleosomes at physiological concentrations, while the high non-specific DNA affinity of NEIL1 would likely hinder its ability to process sterically occluded lesions in cells. These results suggest that, in vivo, NEIL1 functions either at nucleosome-free regions (such as those near replication forks) or with cofactors that limit its non-specific binding to DNA.  相似文献   

8.
Base excision repair (BER) is a critical pathway in cellular defense against endogenous or exogenous DNA damage. This elaborate multistep process is initiated by DNA glycosylases that excise the damaged base, and continues through the concerted action of additional proteins that finally restore DNA to the unmodified state. BER has been subject to detailed biochemical analysis in bacteria, yeast and animals, mainly through in vitro reproduction of the entire repair reaction in cell‐free extracts. However, an understanding of this repair pathway in plants has consistently lagged behind. We report the extension of BER biochemical analysis to plants, using Arabidopsis cell extracts to monitor repair of DNA base damage in vitro. We have used this system to demonstrate that Arabidopsis cell extracts contain the enzymatic machinery required to completely repair ubiquitous DNA lesions, such as uracil and abasic (AP) sites. Our results reveal that AP sites generated after uracil excision are processed both by AP endonucleases and AP lyases, generating either 5′‐ or 3′‐blocked ends, respectively. We have also found that gap filling and ligation may proceed either through insertion of just one nucleotide (short‐patch BER) or several nucleotides (long‐patch BER). This experimental system should prove useful in the biochemical and genetic dissection of BER in plants, and contribute to provide a broader picture of the evolution and biological relevance of DNA repair pathways.  相似文献   

9.
Each day, approximately 20,000 oxidative lesions form in the DNA of every nucleated human cell. The base excision repair (BER) enzymes that repair these lesions must function in a chromatin milieu. We have determined that the DNA glycosylase hNTH1, apurinic endonuclease (APE), and DNA polymerase β (Pol β), which catalyze the first three steps in BER, are able to process their substrates in both 601- and 5S ribosomal DNA (rDNA)-based nucleosomes. hNTH1 formed a discrete ternary complex that was displaced by the addition of APE, suggesting an orderly handoff of substrates from one enzyme to the next. In contrast, DNA ligase IIIα-XRCC1, which completes BER, was appreciably active only at concentrations that led to nucleosome disruption. Ligase IIIα-XRCC1 was also able to bind and disrupt nucleosomes containing a single base gap and, because of this property, enhanced both its own activity and that of Pol β on nucleosome substrates. Collectively, these findings provide insights into rate-limiting steps that govern BER in chromatin and reveal a unique role for ligase IIIα-XRCC1 in enhancing the efficiency of the final two steps in the BER of lesions in nucleosomes.  相似文献   

10.
Repair of UV lesions in nucleosomes--intrinsic properties and remodeling   总被引:2,自引:0,他引:2  
Thoma F 《DNA Repair》2005,4(8):855-869
Nucleotide excision repair and reversal of pyrimidine dimers by photolyase (photoreactivation) are two major pathways to remove UV-lesions from DNA. Here, it is discussed how lesions are recognized and removed when the DNA is condensed into nucleosomes. During the recent years it was shown that nucleosomes inhibit photolyase and excision repair in vitro and slow down repair in vivo. The correlation of DNA-repair rates with nucleosome positions in yeast suggests that intrinsic properties of nucleosomes such as mobility and transient unwrapping of nucleosomal DNA facilitate damage recognition. Moreover, it was shown that nucleosome remodeling activities can act on UV-damaged DNA in vitro and facilitate repair suggesting that random remodeling of chromatin might contribute to damage recognition in vivo. Recent work on nucleosome structure and mobility is included to evaluate how nucleosomes accommodate DNA lesions and how nucleosome mobility and remodeling can take place on damaged DNA.  相似文献   

11.
DNA tandem lesions are comprised of two contiguously damaged nucleotides. This subset of clustered lesions is produced by a variety of oxidizing agents, including ionizing radiation. Clustered lesions can inhibit base excision repair (BER). We report the effects of tandem lesions composed of a thymine glycol and a 5'-adjacent 2-deoxyribonolactone (LTg) or tetrahydrofuran abasic site (FTg). Some BER enzymes that act on the respective isolated lesions do not accept the tandem lesion as a substrate. For instance, endonuclease III (Nth) does not excise thymine glycol (Tg) when it is part of either tandem lesion. Similarly, endonuclease IV (Nfo) does not incise L or F when they are in tandem with Tg. Long-patch BER overcomes inhibition by the tandem lesion. DNA polymerase beta (Pol beta) carries out strand displacement synthesis, following APE1 incision of the abasic site. Pol beta activity is enhanced by flap endonuclease (FEN1), which cleaves the resulting flap. The tandem lesion is also incised by the bacterial nucleotide excision repair system UvrABC with almost the same efficiency as an isolated Tg. These data reveal two solutions that DNA repair systems can use to counteract the formation of tandem lesions.  相似文献   

12.
13.
We calculate from published levels of endogenous base lesions that our cells constantly generate and excise during base excision repair (BER) about one million lesions per day. Repair glycosylases may also non-specifically excise an additional number of undamaged bases. The resulting abasic sites are repaired daily by BER. The fidelity of polymerase-beta is 2.4 × 10−5 and one must postulate additional fidelity mechanisms in the BER complex to explain the low mutation rate of resting cells. Any strategy which constitutively increases glycosylase activity to prevent endogenous lesions from entering S-phase and becoming mutations will also serve to increase the number of mutations per day caused by non-specific excision of normal undamaged bases. The best break-even strategy for reducing endogenous lesion-induced mutations is clearly not one of avid repair. Lower organisms from bacteriophage to fungi have adopted strategies to generate 0.0033 consequential mutations per cell division, no more and no less. Strategies such as down regulating glycosylase activity outside of S-phase to reduce time-dependent mutation frequency while leaving lesion replication-induced mutation frequency unchanged are discussed.  相似文献   

14.
During the establishment of an infection, bacterial pathogens encounter oxidative stress resulting in the production of DNA lesions. Majority of these lesions are repaired by base excision repair (BER) pathway. Amongst these, abasic sites are the most frequent lesions in DNA. Class II apurinic/apyrimidinic (AP) endonucleases play a major role in BER of damaged DNA comprising of abasic sites. Mycobacterium tuberculosis, a deadly pathogen, resides in the human macrophages and is continually subjected to oxidative assaults. We have characterized for the first time two AP endonucleases namely Endonuclease IV (End) and Exonuclease III (XthA) that perform distinct functions in M.tuberculosis. We demonstrate that M.tuberculosis End is a typical AP endonuclease while XthA is predominantly a 3′→5′ exonuclease. The AP endonuclease activity of End and XthA was stimulated by Mg2+ and Ca2+ and displayed a preferential recognition for abasic site paired opposite to a cytosine residue in DNA. Moreover, End exhibited metal ion independent 3′→5′ exonuclease activity while in the case of XthA this activity was metal ion dependent. We demonstrate that End is not only a more efficient AP endonuclease than XthA but it also represents the major AP endonuclease activity in M.tuberculosis and plays a crucial role in defense against oxidative stress.  相似文献   

15.
16.
17.
SWI-SNF is an ATP-dependent chromatin remodeling complex that disrupts DNA-histone interactions. Several studies of SWI-SNF activity on mononucleosome substrates have suggested that remodeling leads to novel, accessible nucleosomes which persist in the absence of continuous ATP hydrolysis. In contrast, we have reported that SWI-SNF-dependent remodeling of nucleosomal arrays is rapidly reversed after removal of ATP. One possibility is that these contrasting results are due to the different assays used; alternatively, the lability of the SWI-SNF-remodeled state might be different on mononucleosomes versus nucleosomal arrays. To investigate these possibilities, we use a coupled SWI-SNF remodeling-restriction enzyme assay to directly compare the remodeling of mononucleosome and nucleosomal array substrates. We find that SWI-SNF action causes a mobilization of histone octamers for both the mononucleosome and nucleosomal array substrates, and these changes in nucleosome positioning persist in the absence of continued ATP hydrolysis or SWI-SNF binding. In the case of mononucleosomes, the histone octamers accumulate at the DNA ends even in the presence of continued ATP hydrolysis. On nucleosomal arrays, SWI-SNF and ATP lead to a more dynamic state where nucleosomes appear to be constantly redistributed and restriction enzyme sites throughout the array have increased accessibility. This random positioning of nucleosomes within the array persists after removal of ATP, but inactivation of SWI-SNF is accompanied by an increased occlusion of many restriction enzyme sites. Our results also indicate that remodeling of mononucleosomes or nucleosomal arrays does not lead to an accumulation of novel nucleosomes that maintain an accessible state in the absence of continuous ATP hydrolysis.  相似文献   

18.
19.
20.
Nucleosomes inhibit DNA repair in vitro, suggesting that chromatin remodeling activities might be required for efficient repair in vivo. To investigate how structural and dynamic properties of nucleosomes affect damage recognition and processing, we investigated repair of UV lesions by photolyase on a nucleosome positioned at one end of a 226-bp-long DNA fragment. Repair was slow in the nucleosome but efficient outside. No disruption or movement of the nucleosome was observed after UV irradiation and during repair. However, incubation with the nucleosome remodeling complex SWI/SNF and ATP altered the conformation of nucleosomal DNA as judged by UV photo-footprinting and promoted more homogeneous repair. Incubation with yISW2 and ATP moved the nucleosome to a more central position, thereby altering the repair pattern. This is the first demonstration that two different chromatin remodeling complexes can act on UV-damaged nucleosomes and modulate repair. Similar activities might relieve the inhibitory effect of nucleosomes on DNA repair processes in living cells.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号