首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The mechanisms that allow to circumvent replicative stress, and to resume DNA synthesis are poorly understood in Bacillus subtilis. To study the role of the diadenylate cyclase DisA and branch migration translocase (BMT) RadA/Sms in restarting a stalled replication fork, we nicked and broke the circular chromosome of an inert mature haploid spore, damaged the bases, and measured survival of reviving spores. During undisturbed ripening, nicks and breaks should be repaired by pathways that do not invoke long-range end resection or genetic exchange by homologous recombination, after which DNA replication might be initiated. We found that DNA damage reduced the viability of spores that lacked DisA, BMT (RadA/Sms, RuvAB or RecG), the Holliday junction resolvase RecU, or the translesion synthesis DNA polymerases (PolY1 or PolY2). DisA and RadA/Sms, in concert with RuvAB, RecG, RecU, PolY1 or PolY2, are needed to bypass replication-blocking lesions. DisA, which binds to stalled or reversed forks, did not apparently affect initiation of PriA-dependent DNA replication in vitro. We propose that DisA is necessary to coordinate responses to replicative stress; it could help to circumvent damaged template bases that otherwise impede fork progression.  相似文献   

2.
Bacillus subtilis radA is epistatic to disA and recA genes in response to methyl methane sulfonate- and 4-nitroquinoline-1-oxide-induced DNA damage. We show that ΔradA cells were sensitive to mitomycin C- and H2O2-induced damage and impaired in natural chromosomal transformation, whereas cells lacking DisA were not. RadA/Sms mutants in the conserved H1 (K104A and K104R) or KNRFG (K255A and K255R) motifs fail to rescue the sensitivity of ΔradA in response to the four different DNA damaging agents. A RadA/Sms H1 or KNRFG mutation impairs both chromosomal and plasmid transformation, but the latter defect was suppressed by inactivating RecA. RadA/Sms K255A, K255R and wild type RadA/Sms reduced the diadenylate cyclase activity of DisA, whereas RadA/Sms K104A and K104R blocked it. Single-stranded and Holliday junction DNA are preferentially bound over double-stranded DNA by RadA/Sms and its variants. Moreover, RadA/Sms ATPase activity was neither stimulated by a variety of DNA substrates nor by DisA. RadA/Sms possesses a 5´→3´ DNA helicase activity. The RadA/Sms mutants neither hydrolyze ATP nor unwind DNA. Thus, we propose that RadA/Sms has two activities: to modulate DisA and to promote RecA-mediated DNA strand exchange. Both activities are required to coordinate responses to replicative stress and genetic recombination.  相似文献   

3.
Double-strand break repair involves the formation of Holliday junction (HJ) structures that need to be resolved to promote correct replication and chromosomal segregation. The molecular mechanisms of HJ branch migration and/or resolution are poorly characterized in Firmicutes. Genetic evidence suggested that the absence of the RuvAB branch migration translocase and the RecU HJ resolvase is synthetically lethal in Bacillus subtilis, whereas a recU recG mutant was viable. In vitro RecU, which is restricted to bacteria of the Firmicutes phylum, binds HJs with high affinity. In this work we found that RecU does not bind simultaneously with RecG to a HJ. RuvB by interacting with RecU bound to the central region of HJ DNA, loses its nonspecific association with DNA, and re-localizes with RecU to form a ternary complex. RecU cannot stimulate the ATPase or branch migration activity of RuvB. The presence of RuvB·ATPγS greatly stimulates RecU-mediated HJ resolution, but the addition of ATP or RuvA abolishes this stimulatory effect. A RecU·HJ·RuvAB complex might be formed. RecU does not increase the RuvAB activities but slightly inhibits them.  相似文献   

4.
Bacillus subtilis mutants classified within the epsilon (ruvA, DeltaruvB, DeltarecU, and recD) and eta (DeltarecG) epistatic groups, in an otherwise rec+ background, render cells impaired in chromosomal segregation. A less-pronounced segregation defect in DeltarecA and Deltasms (DeltaradA) cells was observed. The repair deficiency of addAB, DeltarecO, DeltarecR, recH, DeltarecS, and DeltasubA cells did not correlate with a chromosomal segregation defect. The sensitivity of epsilon epistatic group mutants to DNA-damaging agents correlates with ongoing DNA replication at the time of exposure to the agents. The Deltasms (DeltaradA) and DeltasubA mutations partially suppress the DNA repair defect in ruvA and recD cells and the segregation defect in ruvA and DeltarecG cells. The Deltasms (DeltaradA) and DeltasubA mutations partially suppress the DNA repair defect of DeltarecU cells but do not suppress the segregation defect in these cells. The DeltarecA mutation suppresses the segregation defect but does not suppress the DNA repair defect in DeltarecU cells. These results result suggest that (i) the RuvAB and RecG branch migrating DNA helicases, the RecU Holliday junction (HJ) resolvase, and RecD bias HJ resolution towards noncrossovers and that (ii) Sms (RadA) and SubA proteins might play a role in the stabilization and or processing of HJ intermediates.  相似文献   

5.
The bacterium Bacillus subtilis produces the DNA integrity scanning protein (DisA), a checkpoint protein that delays sporulation in response to DNA damage. DisA scans the chromosome and pauses at sites of DNA lesions. Structural analysis showed that DisA synthesizes the small molecule cyclic diadenosine monophosphate (c-di-AMP). Here, we demonstrate that the intracellular concentration of c-di-AMP rises markedly at the onset of sporulation in a DisA-dependent manner. Furthermore, exposing sporulating cells to DNA-damaging agents leads to a global decrease in the level of this molecule. This drop was associated with stalled DisA complexes that halt c-di-AMP production and with increased levels of the c-di-AMP-degrading enzyme YybT. Reduced c-di-AMP levels cause a delay in sporulation that can be reversed by external supplementation of the molecule. Thus, c-di-AMP acts as a secondary messenger, coupling DNA integrity with progression of sporulation.  相似文献   

6.
The RadA/Sms protein is a RecA‐related protein found universally in eubacteria and plants, implicated in processing of recombination intermediates. Here we show that the putative Zn finger, Walker A motif, KNRXG motif and Lon protease homology domain of the Escherichia coli RadA protein are required for DNA damage survival. RadA is unlikely to possess protease activity as the putative active site serine is not required. Mutants in RadA have strong synergistic phenotypes with those in the branch migration protein RecG. Sensitivity of radA recG mutants to azidothymidine (AZT) can be rescued by blocking recombination with recA or recF mutations or by overexpression of RuvAB, suggesting that lethal recombination intermediates accumulate in the absence of RadA and RecG. Synthetic genetic interactions for survival to AZT or ciprofloxacin exposure were observed between RadA and known or putative helicases including DinG, Lhr, PriA, Rep, RuvAB, UvrD, YejH and YoaA. These represent the first affected phenotypes reported for Lhr, YejH and YoaA. The specificity of these effects sheds new light on the role of these proteins in DNA damage avoidance and repair and implicates a role in replication gap processing for DinG and YoaA and a role in double‐strand break repair for YejH.  相似文献   

7.
We have found that SMC-like RecN protein, RecF and RecO proteins that are involved in DNA recombination play an important role in DNA double-strand break (DSB) repair in Bacillus subtilis. Upon induction of DNA DSBs, RecN, RecO and RecF localized as a discrete focus on the nucleoids in a majority of cells, whereas two or three foci were rarely observed. RecN, RecO and RecF co-localized to the induced foci, with RecN localizing first, while RecO localized later, followed by RecF. Thus, three repair proteins were differentially recruited to distinct sites on the nucleoids, potentially constituting active DSB repair centres (RCs). RecF did not form regular foci in the absence of RecN and failed to form any foci in recO cells, demonstrating a central role for RecN and RecO in initializing the formation of RCs. RecN/O/F foci were detected in recA, recG or recU mutant cells, indicating that the proteins act upstream of proteins involved in synapsis or post-synapsis. In the absence of exogenous DNA damage, RCs were rare, but they accumulated in recA and recU cells, suggesting that DSBs occur frequently in the absence of RecA or RecU. The results suggest a model in which RecN that forms multimers in solution and high-molecular-weight complexes in cells containing DSBs initiates the formation of RCs that mediate DSB repair with the homologous sister chromosome, which presents a novel concept for DSB repair in prokaryotes.  相似文献   

8.
To reveal mechanisms of DNA damage checkpoint initiation, we structurally and biochemically analyzed DisA, a protein that controls a Bacillus subtilis sporulation checkpoint in response to DNA double-strand breaks. We find that DisA forms a large octamer that consists of an array of an uncharacterized type of nucleotide-binding domain along with two DNA-binding regions related to the Holliday junction recognition protein RuvA. Remarkably, the nucleotide-binding domains possess diadenylate cyclase activity. The resulting cyclic diadenosine phosphate, c-di-AMP, is reminiscent but distinct from c-di-GMP, an emerging prokaryotic regulator of complex cellular processes. Diadenylate cyclase activity is unaffected by linear DNA or DNA ends but strongly suppressed by branched nucleic acids such as Holliday junctions. Our data indicate that DisA signals DNA structures that interfere with chromosome segregation via c-di-AMP. Identification of the diadenylate cyclase domain in other eubacterial and archaeal proteins implies a more general role for c-di-AMP in prokaryotes.  相似文献   

9.
Cyclic di-AMP has been recognized as a ubiquitous second messenger involved in the regulation of bacterial signal transduction. However, little is known about the control of its synthesis and its physiological role in bacteria. In this study, we report a novel mechanism of control of c-di-AMP synthesis and its effects on bacterial growth in Mycobacterium smegmatis. We identified a DisA homolog in M. smegmatis, MsDisA, as an enzyme involved in c-di-AMP synthesis. Furthermore, MsRadA, a RadA homolog in M. smegmatis was found to act as an antagonist of the MsDisA protein. MsRadA can physically interact with MsDisA and inhibit the c-di-AMP synthesis activity of MsDisA. Overexpression of MsdisA in M. smegmatis led to cell expansion and bacterial aggregation as well as loss of motility. However, co-expression of MsradA and MsdisA rescued these abnormal phenotypes. Furthermore, we show that the interaction between RadA and DisA and its role in inhibiting c-di-AMP synthesis may be conserved in bacteria. Our findings enhance our understanding of the control of c-di-AMP synthesis and its physiological roles in bacteria.  相似文献   

10.
RadA/Sms is a highly conserved eubacterial protein that shares sequence similarity with both RecA strand transferase and Lon protease. We examined mutations in the radA/sms gene of Escherichia coli for effects on conjugational recombination and sensitivity to DNA-damaging agents, including UV irradiation, methyl methanesulfonate (MMS), mitomycin C, phleomycin, hydrogen peroxide, and hydroxyurea (HU). Null mutants of radA were modestly sensitive to the DNA-methylating agent MMS and to the DNA strand breakage agent phleomycin, with conjugational recombination decreased two- to threefold. We combined a radA mutation with other mutations in recombination genes, including recA, recB, recG, recJ, recQ, ruvA, and ruvC. A radA mutation was strongly synergistic with the recG Holliday junction helicase mutation, producing profound sensitivity to all DNA-damaging agents tested. Lesser synergy was noted between a mutation in radA and recJ, recQ, ruvA, ruvC, and recA for sensitivity to various genotoxins. For survival after peroxide and HU exposure, a radA mutation surprisingly suppressed the sensitivity of recA and recB mutants, suggesting that RadA may convert some forms of damage into lethal intermediates in the absence of these functions. Loss of radA enhanced the conjugational recombination deficiency conferred by mutations in Holliday junction-processing function genes, recG, ruvA, and ruvC. A radA recG ruv triple mutant had severe recombinational defects, to the low level exhibited by recA mutants. These results establish a role for RadA/Sms in recombination and recombinational repair, most likely involving the stabilization or processing of branched DNA molecules or blocked replication forks because of its genetic redundancy with RecG and RuvABC.  相似文献   

11.
The DNA recombination and repair machineries of Mycoplasma genitalium and Mycoplasma pneumoniae differ considerably from those of gram-positive and gram-negative bacteria. Most notably, M. pneumoniae is unable to express a functional RecU Holliday junction (HJ) resolvase. In addition, the RuvB homologues from both M. pneumoniae and M. genitalium only exhibit DNA helicase activity but not HJ branch migration activity in vitro. To identify a putative role of the RuvA homologues of these mycoplasmas in DNA recombination, both proteins (RuvA(Mpn) and RuvA(Mge), respectively) were studied for their ability to bind DNA and to interact with RuvB and RecU. In spite of a high level of sequence conservation between RuvA(Mpn) and RuvA(Mge) (68.8% identity), substantial differences were found between these proteins in their activities. First, RuvA(Mge) was found to preferentially bind to HJs, whereas RuvA(Mpn) displayed similar affinities for both HJs and single-stranded DNA. Second, while RuvA(Mpn) is able to form two distinct complexes with HJs, RuvA(Mge) only produced a single HJ complex. Third, RuvA(Mge) stimulated the DNA helicase and ATPase activities of RuvB(Mge), whereas RuvA(Mpn) did not augment RuvB activity. Finally, while both RuvA(Mge) and RecU(Mge) efficiently bind to HJs, they did not compete with each other for HJ binding, but formed stable complexes with HJs over a wide protein concentration range. This interaction, however, resulted in inhibition of the HJ resolution activity of RecU(Mge).  相似文献   

12.
The RecU Holliday junction (HJ)-resolving enzyme is highly conserved in the Firmicutes phylum of bacteria. In Bacillus subtilis, the recU gene has two putative initiation codons, at positions 1 and 33. In rec+ cells, only the full-length RecU polypeptide (206 residues, 23.9 kDa) was detected even after different stress treatments. To address the relevance of the flexible N-terminus, we constructed mutant variants. Experiments in vivo revealed that recUΔ1-32 (which initiates at Met33 and encodes RecUΔ1-32) and recU31 (the conserved Arg31 residue was substituted with alanine to give RecUR31A) are genuine RecU mutants, rendering cells impaired in DNA repair and chromosomal segregation. RecU has three activities: It (i) cleaves HJs, (ii) anneals complementary strands and (iii) modulates RecA activities. RecUR31A binds and cleaves HJ DNA in vitro as efficiently as wild-type RecU, but RuvB·ATPγS·Mg2+ fails to stimulate the RecUR31A cleavage reaction. In contrast, RecUΔ1-32 forms unstable complexes with DNA and fails to cleave HJs. RecU and its variants are capable of promoting DNA strand annealing and exert a negative effect on deoxy-ATP-dependent RecA-mediated DNA strand exchange. This study shows that the flexible N-terminus of RecU is essential for protein activity.  相似文献   

13.
Lovett ST 《DNA Repair》2006,5(12):1421-1427
Difficulties in replication can lead to breakage of the fork. Recombinational reactions restore the integrity of the fork through strand-invasion of the broken chromosome with its sister. If this occurs in the context of repeated DNA sequences, genetic rearrangements can result. We have proposed that this process accounts for stimulation of chromosomal rearrangements by mutations in Escherichia coli's replicative DNA helicase, DnaB. At its permissive temperature for growth, a dnaB107 mutant is a 1000-fold more likely to experience a deletion of a 787bp tandem repeated segment inserted in the E. coli chromosome than is a wild-type strain. We have previously shown that enhanced deletion in a dnaB107 strain is reduced in recA, recB and recG102 (formerly known as radC102) derivatives. Here I show that this enhanced recombination is dependent on other factors: the RuvA Holliday junction helicase, the RecJ single-strand DNA exonuclease, the RadA/Sms RecA-paralog protein of unknown function and, surprisingly, the DinB translesion polymerase. The requirement for these factors in DnaB-stimulated rearrangements is much greater than that observed for recombinational events such as P1 transduction. This may be because strand invasion into the repeats limits the extent of heteroduplex DNA that can be formed in the initial stage of recombination. I propose that RadA, RecG and RuvAB are critically required to stabilize the strand-invasion intermediate and that DinB polymerase extends the invading 3' strand to aid in re-initiation. The role of DinB in bacteria may be analogous to translesion DNA polymerase eta in eukaryotes, recently shown to aid recombination.  相似文献   

14.
Visualization of topoisomerases in live Bacillus subtilis cells showed that Topo I, Topo IV, and DNA gyrase differentially localize on the nucleoids but are absent at cytosolic spaces surrounding the nucleoids, suggesting that these topoisomerases interact with many regions of the chromosome. While both subunits of Topo IV were uniformly distributed throughout the nucleoids, Topo I and gyrase formed discrete accumulations, or foci, on the nucleoids in a large fraction of the cells, which showed highly dynamic movements. Three-dimensional time lapse microscopy showed that gyrase foci accumulate and dissipate within a 1-min time scale, revealing dynamic assembly and disassembly of subcellular topoisomerase centers. Gyrase centers frequently colocalized with the central DNA replication machinery, suggesting a major role for gyrase at the replication fork, while Topo I foci were frequently close to or colocalized with the structural maintenance of chromosomes (SMC) chromosome segregation complex. The findings suggest that different areas of supercoiling exist on the B. subtilis nucleoids, which are highly dynamic, with a high degree of positive supercoiling attracting gyrase to the replication machinery and areas of negative supercoiling at the bipolar SMC condensation centers recruiting Topo I.  相似文献   

15.
Protein degradation in bacteria plays a dynamic and critical role in the cellular response to environmental stimuli such as heat shock and DNA damage and in removing damaged proteins or protein aggregates. Escherichia coli recN is a member of the structural maintenance of chromosomes family and is required for DNA double strand break (DSB) repair. This study shows that RecN protein has a short half-life and its degradation is dependent on the cytoplasmic protease ClpXP and a degradation signal at the C terminus of RecN. In cells with DNA DSBs, green fluorescent protein-RecN localized in discrete foci on nucleoids and formed visible aggregates in the cytoplasm, both of which disappeared rapidly in wild-type cells when DSBs were repaired. In contrast, in DeltaclpX cells, RecN aggregates persisted in the cytoplasm after release from DNA damage. Furthermore, analysis of cells experiencing chronic DNA damage revealed that proteolytic removal of RecN aggregates by ClpXP was important for cell viability. These data demonstrate that ClpXP is a critical factor in the cellular clearance of cytoplasmic RecN aggregates from the cell and therefore plays an important role in DNA damage tolerance.  相似文献   

16.
The RecU protein from Mycoplasma genitalium, RecU(Mge), is a 19.4-kDa Holliday junction (HJ) resolvase that binds in a nonspecific fashion to HJ substrates and, in the presence of Mn(2+), cleaves these substrates at a specific sequence (5'-G/TC↓C/TTA/GG-3'). To identify amino acid residues that are crucial for HJ binding and/or cleavage, we generated a series of 16 deletion mutants (9 N- and 7 C-terminal deletion mutants) and 31 point mutants of RecU(Mge). The point mutations were introduced at amino acid positions that are highly conserved among bacterial RecU-like sequences. All mutants were purified and tested for the ability to bind to, and cleave, HJ substrates. We found the five N-terminal and three C-terminal amino acid residues of RecU(Mge) to be dispensable for its catalytic activities. Among the 31 point mutants, 7 mutants were found to be inactive in both HJ binding and cleavage. Interestingly, in 12 other mutants, these two activities were uncoupled; while these proteins displayed HJ-binding characteristics similar to those of wild-type RecU(Mge), they were unable to cleave HJ substrates. Thus, 12 amino acid residues were identified (E11, K31, D57, Y58, Y66, D68, E70, K72, T74, K76, Q88, and L92) that may play either a direct or indirect role in the catalysis of HJ resolution.  相似文献   

17.
Bacillus subtilis AddAB, RecS, RecQ, PcrA, HelD, DinG, RecG, RuvAB, PriA and RecD2 are genuine recombinational repair enzymes, but the biological role of RecD2 is poorly defined. A ΔrecD2 mutation sensitizes cells to DNA-damaging agents that stall or collapse replication forks. We found that this ΔrecD2 mutation impaired growth, and that a mutation in the pcrA gene (pcrA596) relieved this phenotype. The ΔrecD2 mutation was not epistatic to ΔaddAB, ΔrecQ, ΔrecS, ΔhelD, pcrA596 and ΔdinG, but epistatic to recA. Specific RecD2 degradation caused unviability in the absence of RecG or RuvAB, but not on cells lacking RecU. These findings show that there is notable interplay between RecD2 and RecG or RuvAB at arrested replication forks, rather than involvement in processing Holliday junctions during canonical double strand break repair. We propose that there is a trade-off for efficient genome duplication, and that recombinational DNA helicases directly or indirectly provide the cell with the means to tolerate chromosome segregation failures.  相似文献   

18.
Summary The effect of beta-arabinofuranosyladenine (araA) on the repair of radiation induced DNA damage, as measured by the DNA unwinding technique, was studied in exponentially growing and plateau-phase CHO-cells after exposure to x-rays. Induction of DNA damage by radiation was found to be similar in exponentially growing and plateau-phase cells. In the absence of araA, repair of radiation induced DNA damage proceeded with similar kinetics in exponentially growing and plateau-phase cells. AraA at concentrations between 0–1500 µM inhibited DNA repair both in exponentially growing and in plateau-phase cells. However, the degree of inhibition was significantly higher (by a factor of 3) in plateau-phase cells. A similar degree of repair inhibition by araA was observed in plateau phase cells treated in their conditioned medium, as well as in plateau phase cells that were transfered in fresh growth medium just before treatment initiation. These results indicate the importance of biochemical parameters associated with alterations in the growth state of the cells for the inhibitory effect of araA and may help in the elucidation of the molecular mechanism(s) underlying repair inhibition by inhibitors of DNA replication.  相似文献   

19.
RecG, belonging to the category of Superfamily-2 plays a vital role in rescuing different kinds of stalled fork. The elemental mechanism of the helicase activity of RecG with several non-homologous stalled fork structures resembling intermediates formed during the process of DNA repair has been investigated in the present study to capture the dynamic stages of genetic rearrangement. The functional characterization has been exemplified through quantifying the response of the substrate in terms of their molecular heterogeneity and dynamical response by employing single-molecule fluorescence methods. An elevated processivity of RecG is observed for the stalled fork where progression of lagging daughter strand is ahead as compared to that of the leading strand. Through precise alteration of its function in terms of unwinding, depending upon the substrate DNA, RecG catalyzes the formation of Holliday junction from a stalled fork DNA. RecG is found to adopt an asymmetric mode of locomotion to unwind the lagging daughter strand for facilitating formation of Holliday junction that acts as a suitable intermediate for recombinational repair pathway. Our results emphasize the mechanism adopted by RecG during its ‘sliding back’ mode along the lagging daughter strand to be ‘active translocation and passive unwinding’. This also provide clues as to how this helicase decides and controls the mode of translocation along the DNA to unwind.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号