首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The ability of the Diffusive Gradients in Thin Films (DGT) technique and two other established testing methods (Colwell, resin) to predict wheat responsiveness to applied P from 35 field trials across southern Australia was investigated. Regression analysis of relative early dry matter production and grain yield responses demonstrated that the DGT method predicted plant responsiveness to applied P more accurately than Colwell P and resin P at sites where maximum yields were reached with P rates used (20 out of 35). The measured concentration in soils at the DGT surface, CDGT, explained 74% of the variation in response for both early dry matter and grain, compared to 7% for early dry matter and 35% for grain using the resin P method. No significant relationships could be obtained for Colwell P although modifying the Colwell test data using Phosphorus Buffering Index resulted in a correct response prediction for 11 of the 20 field sites compared to 18 for DGT and 14 for resin P. These observations suggest that the DGT technique can assess plant available P in soils with significantly greater accuracy than traditional soil P testing methods. The critical P threshold, expressed as CDGT, was 255 μg L?1 for early dry matter and 66 μg L?1 for grain.  相似文献   

2.
The recession of the water level of Lake Naivasha has incrementally exposed land surfaces creating a chronosequential transect representing durations of 1–30 years of exposure to grazing. This chronosequence provides a unique model to study the effects of land use duration on resource availability and resource base quality. Particularly, pasture quality changes in the riparian land of tropical fresh water lakes have so far not been studied. We assessed the effect of the duration of exposure to grazing on the biomass production, crude protein content and energy quality of pastures in a 4 × 4 latin square design (4 chronosequence positions × 4 soil types). Species composition was recorded and biomass was sampled at monthly intervals from February to August 2011. Soil moisture was recorded using frequency domain reflectometry sensors. Vegetation samples were analyzed for dry matter, nitrogen and metabolizable energy. Increased land use duration favored a shift in species dominance from Pennisetum clandestinum to Cynodon plectostachyus, which was associated with a reduction in dry matter yield and increased plant nitrogen content. All measured variables tended to be higher in soils formed on alluvial than in those formed on lacustrine deposits. Increased soil N and gravimetric moisture content stimulated biomass accumulation. The crude protein yield and metabolizable energy changed with phenological stages of the pasture and declined significantly towards maturity (seed setting of grasses). Continuous grazing and reduced soil moisture content, both during low rainfall and increased distance from the lake shore, affected the composition of pasture grasses as well as forage yield and quality. This may thus differentially affect the suitability of the riparian land as pasture ground and feed resource area for grazing animals.  相似文献   

3.

Aims

Phytomanagement of metal-polluted soils requires information on plant responses to metal availability in soil, but the predictability of metal accumulation in plant shoots and/or roots may be limited by metal toxicity and inherent shortfalls of the bioavailability assays.

Methods

We measured the uptake of Cd and Zn in a Salix smithiana clone grown in a pot experiment on soils with different characteristics and metal availabilities, determined by conventional soil single extractions (0.05 M Na2-EDTA and 1 M NH4NO3), soil solution obtained by centrifugation, and diffusive gradients in thin films (DGT). The Cd and Zn phytoavailability after a 2-year phytoextraction by willow was assessed by metal accumulation in the straw of the following barley culture.

Results

The phytoextraction efficiency was largest on a moderately polluted acid soil. Biomass and shoot Zn concentrations of S. smithiana were better predicted by DGT-measured Zn concentrations in soil solution (C DGT) than by Zn concentrations in the soil solution and extractable soil fractions. The weaker correlation for Cd in shoots may be related to relative Cd enrichment in the plant tissues. The metal accumulation in barley straw was unaffected or increased after a 2-year phytoextraction.

Conclusions

The shoot Zn and Cd removal of the tested Salix clone can be predicted by C DGT concentrations and is highest on either calcareous or moderately polluted acid soils. Single extraction with NH4NO3 and the C DGT value of Cd were not able to predict shoot Cd removal on the tested soils. Only shoot removal of Zn was predicted fairly well by the C DGT value.  相似文献   

4.
The series of complexes [Co(Q)2(bpy)]n (n = ?1, 0, +1) that can be derived by partial reduction or oxidation of complex 1, ls-Co(III) has been synthesized and studied. The results support the theoretical calculations which pointed to an intervalence transfer (IT) from the Cat2? to the SQ? ligand rather than a LMCT transition as the origin for the low-energy band transition centered at 2500 nm observed for 1, ls-Co(III).  相似文献   

5.
The present study was conducted to (i) investigate parameters influencing the fluxes of the greenhouse gas methane (CH4) in Danish riparian wetlands with contrasting vegetation characteristics and (ii) develop models relating CH4 emissions to soil and/or vegetation parameters integrating the spatial and temporal variability in the fluxes. Fluxes of CH4 were monitored in 12 wetland plots over a year using static chambers, yielding a dataset with more than 800 measured fluxes of CH4. Yearly emissions of CH4 ranged from −0.2 to 38.3 g CH4-C m−2 year−1, and significant effects of groundwater level, soil temperature (10 cm depth), peat depth, sulfate, nitrate, and soil carbon content were found. Two methods based on easily available environmental parameters to estimate yearly CH4 emissions from riparian wetlands are presented. The first uses a generalized linear model (GLM) to predict yearly CH4 emissions based on the humidity preference of vegetation (Ellenberg-F), peat depth and degree of humification of the peat (von Post index). The second method relies solely on plant species composition and uses weighted-average regression and calibration to link the vegetation assemblage to yearly CH4 emission. Both models gave reliable predictions of the yearly CH4 fluxes in riparian wetlands (modeling efficiency > 0.35). Our findings support the use of vegetation, possibly in combination with some soil parameters such as peat depth, as indicator of CH4 emission in wetlands.  相似文献   

6.
The physiological reasons associated with differential sensitivity of C3 and C4 plant species to soil compaction stress are not well explained and understood. The responses of growth characteristics, changes in leaf water potential and gas exchange in maize and triticale to a different soil compaction were investigated. In the present study seedlings of triticale and maize, representative of C3 and C4 plants were subjected to low (L – 1.10 g cm−3), moderate (M – 1.34 g cm−3) and severe (S – 1.58 g cm−3) soil compaction level. Distinct differences in distribution of roots in the soil profile were observed. Plants of treatments M or S in comparison to treatment L, showed a decrease in leaf number, dry mass of stem, leaves and roots, and an increase in the shoot to root ratio. A drastic decrease in root biomass in M and S treatments in the soil profile on depth from 15 to 40 cm was observed. Any level of soil compaction did not influence the number of seminal and seminal-adventitious roots but decreased their length. The number and total length of nodal roots decreased with compaction. Changes of growth traits in M and S treatments in comparison to the L were greater for maize than for triticale and were accompanied by daily changes in water potential (ψ) and gas exchange parameters (PN, E, gs). Differences between M and S treatments in daily changes in ψ for maize were in most cases statistically insignificant, whereas for triticale, they were statistically significant. Differences in the responses of maize and triticale to soil compaction were found in PN, E and gs in particular for the measurements taken at 12:00 and 16:00. The highest correlation coefficients were obtained for the relationship between leaf water potential and stomatal conductance, both for maize and triticale, which indicates the close association between stomata behavior and changes in leaf water status.  相似文献   

7.
Meat production puts larger demands on water and land and results in larger greenhouse gas emissions than alternative forms of food. This study uses footprint indicators, the water, land and carbon footprint, to assess natural resources use and greenhouse gas emissions for sheep and chicken meat produced in Tunisia in different farming systems in the period 1996–2005. Tunisia is a water-scarce country with large areas of pasture for sheep production. Poultry production is relatively large and based on imported feed. The farming systems considered are: the industrial system for chicken, and the agro-pastoral system using cereal crop-residues, the agro-pastoral system using barley and the pastoral system using barley for sheep. Chicken meat has a smaller water footprint (6030 litre/kg), land footprint (9 m2/kg) and carbon footprint (3 CO2-eq/kg) than sheep meat (with an average water footprint of 18900 litre/kg, land footprint of 57 m2/kg, and carbon footprint of 28 CO2-eq/kg). For sheep meat, the agro-pastoral system using cereal crop-residues is the production system with smallest water and land footprints, but the highest carbon footprint. The pastoral system using barley has larger water and land footprints than the agro-pastoral system using barley, but comparable carbon footprint.  相似文献   

8.
Phosphorus (P) release from wetland soils to overlying waters is important to consider when restoring wetland hydrology. Soil physicochemical characteristics influence P dynamics between underlying soil and overlying water. Our study initially characterized wetland and surrounding upland soils prior to flooding. Deep marsh wetland soils had greater moisture content, soil organic matter, nitrogen (N), P, and lower bulk density than surrounding upland pasture soils, which indicates a nutrient concentration gradient between wetland and upland soils. To determine the short-term P dynamics between soils and overlying water, we conducted four laboratory soil water core studies during a 15-month period. Surface soils (0-10 cm) collected October 2005, February 2006, October 2006 and December 2006 from wetlands and their surrounding uplands within cow-calf grazed pastures were flooded for 7 days, and we measured P release from soil to overlying water. Phosphorus release rates from wetland (deep marsh and shallow marsh) and upland soils were similar. Values ranged between ?20 mg m?2 d?1 (retention) and 77 mg m?2 d?1 (release). There was a significant, although weak, negative linear relationship between P release from deep marsh soils and hydroperiod. Thus, it may be important for land managers to consider increasing hydroperiod of wetland soils to decrease P release and increase retention. In addition, there was a significant negative exponential relationship between P release and days since deep marsh soil inundation. This suggests that to decrease P release from soils, soils should be wet rather than dry for prolonged periods, prior to flooding. We found significant relationships between P release from upland soils and their nutrient content (N, P and carbon). Reducing nutrient content in upland soils may help reduce the magnitude of P release from soil.  相似文献   

9.
《农业工程》2014,34(1):66-71
Burned and unburned mineral soils (0–10 cm) from a 40-year-old Chinese fir (Cunninghamia lanceolata) forest in Nanping, Fujian, China were incubated for 90 days at different temperatures (25 °C and 35 °C) and humidity [25%, 50%, and 75% of water holding capacity (WHC)] conditions. Carbon (C) mineralization of all soils was determined using CO2 respiration method. The results showed that CO2 evolution rates of the burned and control soils exhibited similar temporal patterns, and similar responses to temperature and moisture. CO2 evolution rates for all soil samples decreased with incubation time. At different humidity conditions, average rate of C mineralization and cumulative mineralized C from burned and control soils were significantly higher at 35 °C than at 25 °C. This implied that C mineralization was less sensitive to soil moisture than to temperature. In both soils at 25 °C or 35 °C, the amount of soil evolved CO2 over the 90 days incubation increased with increasing moisture content from 25% to 75% WHC. A temperature coefficient (Q10) varied with soil moisture contents. The maximum values recorded for Q10 were 1.7 in control soil and 1.6 in burned soil both at 25% WHC. However, there were no significant differences in Q10 values between the control and burned soils over all moisture ranges (P > 0.05). The data of cumulative C–CO2 released from control and burned soils were fitted to two different kinetic models. The two simultaneous reactions model described mineralization better than the first-order exponential model, which reflected the heterogeneity of substrate quality. Based on these results, it is possible to conclude that temperature and moisture are important in the controls of C mineralization, and the combined effects of these variables need to be considered to understand and predict the response of CO2 release in subtropical ecosystems to climate change.  相似文献   

10.
Improving crop water productivity is necessary for ensuring food and ecological security. To quantify the water utilization in grain production from multiple perspectives, gross inflow water productivity (WPg), generalized water productivity (WPu), evapotranspiration water productivity (WPET) and irrigation water productivity (WPI) were screened in this study. Then, we calculated and analyzed the temporal and spatial variation of the water productivity indices (WPs) in the irrigated land of 31 provinces of China based on the data collected from 459 irrigation districts. The results show that the national values of the four indices were 0.694, 0.860, 1.314, and 1.361 kg/m3, and almost all of the provincial WPs increased from 1998 to 2010. The Moran's I analysis shows all of the WP indices were significantly clustered, both globally and locally, in the study years. WPs of the provinces in and around Huang-Huai-Hai Plain are high, while provinces in the northeast, south of the Yangtze River and the northwest of China showed lower water use efficiency. There is a large difference among the four indices in the scientific connotation and numerical performance, and the degree of the spatial difference was WPI > WPET > WPu > WPg. It is necessary to promote WP in the irrigated land of China, and the provinces in the northeast should be chosen as the key regions to develop water-saving agriculture because of the high production of grain and the low value of WP. Policy decision-making based on the spatial pattern of WP and their relationships among indices for specified regions are also discussed in this paper.  相似文献   

11.
Zhao D  Li F  Wang R S 《农业工程》2012,32(3):144-149
Soil microbes are affected by various abiotic and biotic factors in urban ecosystem due to land use change. The effects of different land use patterns on soil microbial properties and soil quality are, however, largely unknown. This study compared soil nutrient status, microbial biomass nitrogen and enzyme activities under five different land use patterns—nature forest, park, farmland, street green, and roadside tree sites at various soil depths in Beijing, China. The results showed that soil properties were significantly affected by urban land use patterns and soil depths in the urban environment. Compared to forest sites, soil nutrients were markedly decreased in other land use patterns, except the highest soil organic matter content in roadside tree sites in 0–10 cm soil layer. Soil microbial biomass nitrogen showed the order as follows: nature forest > park > farmland > street green > roadside tree in 0–10 cm soil layer, and it decreased along with the soil depth gradient. Furthermore, urease activity was highest in nature forest and lowest in street green and roadside tree soils in each depth, while the activity of protease ranged between 0.84 and 3.94 mg g?1 with the peak appeared in roadside tree at 30–40 cm soil layers. Nitrate reductase activity was also extremely higher in street green than other land use patterns. Correlation analyses suggested that change of soil microbial biomass and enzyme activity in different land use patterns were mainly controlled by nutrient availability and soil fertility in urban soils.  相似文献   

12.
《Inorganica chimica acta》2006,359(4):1121-1128
Crystal structures of a kind of cyclohexyl-cobaldioxime coenzyme B12 model compounds RCo(chgH)2L (R = CH3, C2H5 or C3H7, L = pyridine or H2O, chgH = 1,2-cyclohexanedione dioxime) at room and low temperatures have been determined. The results for C2H5Co(chgH)2py (1) indicate that its crystal unit parameters vary with temperatures, and two sides of cyclohexyls on the equatorial plane assume disorder accompanying a temperature dependent conformation occupation change. Interestingly, there has been observed a proton shift from one chgH ligand to the other one for 1 when the temperature decreases. Whilst a similar chair-form configuration with disordered chgH is found at 293 K for CH3Co(chgH)2py (2), C2H5Co(chgH)2H2O (3), and C3H7Co(chgH)2H2O (4), respectively. In addition, molecular and crystal packing structures, as well as thermal decomposition properties of the four complexes are investigated and compared with other cobaloxime models.  相似文献   

13.
The performance of up-flow anaerobic sludge blanket (UASB) in combination with down-flow hanging sponge (DHS) system for sewage treatment at an average wastewater temperature of 15 °C has been investigated for 6 months. The results showed that a combined system operated at a total HRT of 10.7 h and total SRT of 88 days represents a cost effective sewage treatment process. The average CODtotal and BOD5 total concentrations measured in the final effluent of the total system (UASB + DHS) amounted to 43 and 3.0 mg/l, respectively, corresponding to the overall removal efficiency of 90% for CODtotal and 98% for BOD5 total. The total process provided a final effluent containing a low concentration of 12 mg/l for TSS.Eighty-six percent of ammonia was eliminated at space loading rate of 1.6 kg COD/m3 d and HRT of 2.7 h. The calculated nitrification rate of the DHS system according to the nitrate and nitrite production amounted to 0.18 kg/m3 d. The removal of F. coliform in the UASB reactor only amounted to 0.86 log10. On the other hand, the F. coliform concentration dropped substantially, i.e. by 2.6 log10 in the DHS system resulting only 2.7 × 103/100 ml in the final effluent.The calculated average sludge production for UASB operated at an HRT of 8.0 h amounted to 30 g TSS/d, corresponding to sludge yield coefficient of 0.2 g TSS/g total COD removed, while it was indeed very low only 6.0 g TSS/d corresponding to sludge yield coefficient of 0.09 g TSS/g total COD removed, for DHS system.The DHS profile results revealed that in the first and second segment of DHS system, the CODtotal, BOD5 total and TSS was eliminated, followed by the oxidation of ammonia in the next segments.  相似文献   

14.
The aim of this study was to determine the effects of catchment and riparian stream buffer-wide urban and non-urban land cover/land use (LC/LU) on total nitrogen (TN) and total phosphorus (TP) runoff to the Chesapeake Bay. The effects of the composition and configuration of LC/LU patches were explored in particular. A hybrid-statistical-process model, the SPAtially Referenced Regression On Watershed attributes (SPARROW), was calibrated with year 1997 watershed-wide, average annual TN and TP discharges to Chesapeake Bay. Two variables were predicted: (1) yield per unit watershed area and (2) mass delivered to the upper estuary. The 166,534 km2 watershed was divided into 2339 catchments averaging 71 km2. LC/LU was described using 16 classes applied to both the catchments and also to riparian stream buffers alone. Seven distinct landscape metrics were evaluated. In all, 167 (TN) and 168 (TP) LC/LU class metric combinations were tested in each model calibration run. Runs were made with LC/LU in six fixed riparian buffer widths (31, 62, 125, 250, 500, and 1000 meters (m)) and entire catchments. The significance of the non-point source type (land cover, manure and fertilizer application, and atmospheric deposition) and factors affecting land-to-water delivery (physiographic province and natural or artificial land surfaces) was assessed. The model with a 31 m riparian stream buffer width accounted for the highest variance of mean annual TN (r2 = 0.9366) and TP (r2 = 0.7503) yield (mass for a specified time normalized by drainage area). TN and TP loadings (mass for a specified time) entering the Chesapeake Bay were estimated to be 1.449 × 108 and 5.367 × 106 kg/yr, respectively. Five of the 167 TN and three of the 168 TP landscape metrics were shown to be significant (p-value  0.05) either for non-point sources or land-to-water delivery variables. This is the first demonstration of the significance of riparian LC/LU and landscape metrics on water quality simulation in a watershed as large as the Chesapeake Bay. Land cover metrics can therefore be expected to improve the precision of estimated TN and TP annual loadings to the Chesapeake Bay and may also suggest changes in land management that may be beneficial in control of nutrient runoff to the Chesapeake Bay and similar watersheds elsewhere.  相似文献   

15.
An unusual (H2O)16 cluster in a compound of {[Co(C7H3N2O6)2(H2O)4] · 4H2O}2 1 (where C7H3N2O6 = 3,5-dinitrobenzoic acid (DNB)) has been synthesized and characterized by single-crystal X-ray diffraction, thermogravimetry, infrared spectra, and elemental analysis. The (H2O)16 cluster consists of a decameric water cluster and six water molecules, and plays an important role in stabilizing the structure in 1. We believe that the water structure demonstrated herein brings to light yet another novel mode of the cooperative association of the water molecules, and this discovery is helpful in improving the modeling of some of the unexplained properties of water, and understanding better the structure and behavior of hexadecameric water cluster.  相似文献   

16.
In water-limited ecosystems, an ecologically significant rainfall pulse was defined as a rainfall event that altered both soil water status and plant physiological activity. We developed a new threshold concept of an ecologically effective precipitation pulse (EEPP) applicable to both plant individual and ecosystem scales. The concept was tested in a typical steppe on Inner Mongolia plateau. Two EEPPs, single 3-mm rainfall and 5-mm rainfall, were applied to investigate their effects on soil and plant water status, CO2 assimilation of five species (four C3 plants and one C4 plant), whole-plot soil respiration (Rs), and net ecosystem CO2 exchange (NEE) on 1 June and 28 July 2009, respectively. Both EEPPs increased leaf water potential (Ψl) of all the species, which peaked 1–3 days after rainfall pulses. Soil water content (SWC) in two depths (5 cm and 20 cm) significantly increased after the two EEPPs for 1–3 days. Soil water potential (Ψs) within 20‐cm soil layer in EEPP treatments significantly differed (p < 0.05) from control. Net assimilation rates (Anet) of all C3 plants had a slight increase at the next day after two EEPPs, in contrast to the C4 species. Rs elevated and peaked 1–3 days later after water supply. Ecosystem net CO2 absorption rate rose to maximum value 3 days after the 5-mm pulse on 28 July, higher than the response to 3-mm pulse on June 1. The grassland turned to net emission of CO2 after 3-mm pulse on 28 July. The results supported that there was an ecosystem level threshold for EEPP, and the threshold was temporally variable. It also highlighted the necessity of considering the response threshold of EEPP in rainfall manipulative experiment. In addition, effective rainfall amount was more approriate than total rainfall amount in modeling ecosystem carbon balance.  相似文献   

17.
The salinity problem is becoming increasingly widespread in arid countries. In semiarid Tunisia about 50% of the irrigated land is considered as highly sensitive to salinization. To avoid the risk of salinization, it is important to control the soil salinity and keep it below plant salinity tolerance thresholds. The objective of the present study was to provide farmers and rural development offices with a tool and methodology for predicting, monitoring of soil salinity for a better agronomical strategy. The experiments were carried out in the highly complex and heterogeneous semiarid Kalâat Landalous irrigated district of Tunisia. The field and laboratory measurements of soil and water properties were conducted in 1989 and 2006 at different observation scales (2900 ha, 1400 ha, 5200 m long transect, and soil profiles). Seventeen years of reclamation of a saline and waterlogged soil led to the reduction of average electrical conductivity of the soil saturated paste extract (ECe), measured at 5 soil depths (from 0 to 2 m) below the plant salt tolerance threshold and the dilution of groundwater salinity from 18.3 to 6.6 dS m−1. The variation in soil salt storage (ΔMss = Mss2006  Mss1989) in the vadose zone was negative, equal to about −145 × 103 ton (≈−50 ton ha−1). During the same period, the salt balance (Siw–Sdw) estimated from the input dissolved salt brought by irrigation water (Siw) and output salts exported by the drainage network (Sdw) was equal to −685 × 106 kg and the Sdw was 945 × 106 kg. Under irrigation and efficient drainage, the soil salinization could be considered as a reversible process. At the transect scale, the high clay content and the exchangeable sodium percentage was negatively correlated to saturated hydraulic conductivity. The textural stratification, observed at soil profile scale, favors accumulation of salt in the soil. Based on the findings related to the multiscale assessment of soil salinity and groundwater properties, soil salinization factors were identified and a soil salinization risk map (SRU) was elaborated. The shallow groundwater constitutes the main risk of soil salinization. This map can be used by both land planners and farmers to make appropriate decisions related to crop production, and soil and water management.  相似文献   

18.
《Inorganica chimica acta》2006,359(5):1427-1434
A new method for the synthesis of metal dithiolenes with alkyl-substituted chelate rings has been investigated. The utility of the protected ene-1,2-dithiolate 3,4-bis-triisopropylsilanyl-sulfanyl-hex-3-ene as a precursor in reactions with metal halide and oxyhalide complexes was examined. Reaction conditions involve a 2:1 or 3:1 mol ratio of reactants in acetonitrile/THF or toluene at 50–80 °C for 24–36 h. Complex formation was observed as a result of Si–S bond cleavage by bound or free halide and oxo ligands. Members of four major structural families of dithiolene complexes were prepared in ca. 25–70% yields, including planar [Ni(S2C2Et2)2], square pyramidal [MI(S2C2Et2)2] (M = Co, Fe), [Fe(py)(S2C2Et2)2]1−, and [ReO(S2C2Et2)2]1−, centrosymmetric [M2(S2C2Et2)4]2− (M = Co, Mn), [M(S2C2Et2)3]1− (M = V, Nb), and trigonal prismatic [M(S2C2Et2)3] (M = Mo, W). Seven X-ray structure proofs are provided. It is concluded that the method is feasible and potentially extendable to other ring substituents, whose primary effects are on solubility and modulation of redox potentials.  相似文献   

19.
The purpose of this study was to investigate the reliability of surface electromyography (sEMG) measurements after submersion (swimming) for 90 min. Isometric maximal voluntary contractions (MVC) on land and in water were collected from eight muscles on the right side of the body in 12 healthy participants (6 women and 6 men). Repeated measures analyses of variance (general linear model ANOVA) showed no significant differences in the peak amplitude MVC scores between land pre and post measurements for all muscles, p > .05. The mean of the Intraclass correlation coefficient (1, 1) for land pre and land post was .985 with (95% Cl = .978–.990), for land pre and water pre .976 (95% Cl = .964–.984) and for land pre and post, water pre and post .981 (95% Cl = .974–.987). Measuring sEMG on land before and after a prolonged submersion is highly reliable without additional waterproofing when using electrodes with 57 mm diameter.  相似文献   

20.
There is a major need to understand the historical condition and chemical/biological functions of the ecosystems following a conversion of wetlands to agricultural functions. To better understand the dynamics of soil total organic carbon (TOC) and phosphorus (P) during beef cattle pastures to wetland reconversion, soil core samples were collected from the beef cattle pasture and from the natural wetland at Plant City, FL, during five summer seasons (2002–2007). The levels of TOC and soil P were significantly affected by changing land use and hydrology. Draining natural wetlands to grazed pastures resulted in very pronounced reduction of TOC from 180.1 to 5.4 g g?1. Cumulative concentrations of total phosphorus (TP) in soils (1134 mg kg?1) under drained condition are two to three times lower than those in soils (2752 mg kg?1) under flooded condition over the periods of land use reconversion. There was a declining trend (r = 0.82**; p  0.01) in total soil P from natural wetland (763 mg kg?1) to altered pastures (340 mg kg?1), largely as organic-bound P (natural wetland, 48%; grazed pastures, 44%; altered pastures, 29%). These results are important in establishing baseline information on soil properties in pasture and wetland prior to restoring and reconverting pasture back to wetland conditions. The results further suggest that changes in soil properties due to changing land use and hydrologic conditions (drying and re-wetting) could be long lasting.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号