首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到2条相似文献,搜索用时 0 毫秒
1.
This paper analyzes the spatiotemporal variation and the causes of seabird bycatch by the Uruguayan pelagic longline fleet in a region of the Atlantic Ocean where the world’s highest historical rates of seabird bycatch were recorded. The study is based on data obtained by the Uruguayan Observers Program in 29 trips, conducted from 1998 to 2004, totalling about 648,000 hooks. The bird capture per unit of effort (BCPUE) for the studied period was 0.42 birds/1,000 hooks. The highest BCPUE values were recorded in the period May–November. Three zones were identified, with BCPUEs of 2.50 birds/1,000 hooks (very high); 0.78 birds/1,000 hooks (high) and 0.04 birds/1,000 hooks (low). Though these BCPUE values are lower than those historically reported, some are still high in global terms. Night setting was found to be effective in reducing seabird bycatch, but it is necessary to implement additional measures as seabirds have access to bait also by night, especially during the more luminous moon phases.  相似文献   

2.
Operational interactions between odontocetes (i.e., toothed whales) and longline gear are a global phenomenon that may threaten the conservation of odontocete populations and the economic viability of longline fisheries. This review attempts to define the issue, summarize the trends and geographical extent of its occurrence over the last half century, explore the potential impact on odontocetes and on fisheries, and describe potential acoustic and physical mitigation solutions. Reports of odontocete bycatch rates are highly variable (between 0.002 and 0.231 individuals killed per set) and at least 20 species may be involved. Information about marine mammal population size, migration patterns and life history characteristics are scarce, although at least one population may be in decline due to losses attributable to longline bycatch. Information about the financial impact of depredation on pelagic longline fisheries is also scarce, although estimates of daily fleet‐wide losses range between US$1,034 and US$8,495 (overall fleet income was not reported). Such biological and financial losses may be unsustainable. Recent developments in acoustic and physical mitigation technologies have yielded mixed results. Acoustic mitigation technologies have no moving parts, although require complex electronics. To date, they are insufficiently developed and their efficacy has been difficult to assess. Physical mitigation technologies generally require complex moving parts, although they are relatively simple to develop and assess. Further development and testing remains necessary before widespread implementation would be possible. Development of these approaches should be prioritized and a “toolbox” of various strategies and solutions should be compiled, because a single panacea to the problem is unlikely to emerge.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号