首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Faizul Haq 《农业工程》2018,38(1):15-20
This paper communicates an analytical exploration of the vegetation above tree line in Nandiar valley western Himalayas with respect to climatic, edaphic and topographic factors. The alpine pasture stretches above the tree limits between elevations of 2850–3800 m. Thirteen stands were selected on the basis of physiognomy of vegetation in 2014–15. The leading life form and leaf spectra were therophytes and microphyll respectively. Four plant communities were identified through two ways indicator species analysis at cut level 2. Bray-Curtis ordination showed that maximum stands have common species. Detrended correspondence analysis grouped species having similar habitats in ordination space. Canonical correspondence analysis constrained species along different environmental variables. The significant result were contribution by phosphorous (P = 0.01) and wind speed (P = 0.08). Few plant species like Betula utilis and Podophyllum emodi are threatened due to its medicinal collection. The alpine pasture of Nandiar valley is under severe stress due to anthropogenic and grazing factors. Overall, this research article call for greater attention to the types of conservation actives occurring and the ways they are working together to protect and recover the global alpine biodiversity.  相似文献   

2.
QuestionsDoes the plant species composition of Thandiani sub Forests Division (TsFD) correlate with edaphic, topographic and climatic variables? Is it possible to identify different plant communities in relation to environmental gradients with special emphasis on indicator species? Can this approach to vegetation classification support conservation planning?LocationThandiani sub Forests Division, Western Himalayas.MethodsQuantitative and qualitative characteristics of species along with environmental variables were measured using a randomly stratified design to identify the major plant communities and indicator species of the Thandiani sub Forests Division. Species composition was recorded in 10 × 2.5 × 2 and 0.5 × 0.5 m square plots for trees, shrubs and herbs, respectively. GPS, edaphic and topographic data were also recorded for each sample plot. A total of 1500 quadrats were established in 50 sampling stations along eight altitudinal transects encompassing eastern, western, northern and southern aspects (slopes). The altitudinal range of the study area was 1290 m to 2626 m above sea level using. The relationships between species composition and environmental variables were analyzed using Two Way Cluster Analysis (TWCA) and Indicator Species Analysis (ISA) via PCORD version 5.ResultsA total of 252 plant species belonging to 97 families were identified. TWCA and ISA recognized five plant communities. ISA additionally revealed that mountain slope aspect, soil pH and soil electrical conductivity were the strongest environmental factors (p  0.05) determining plant community composition and indicator species in each habitat. The results also show the strength of the environment-species relationship using Monte Carlo procedures.ConclusionsAn analysis of vegetation along an environmental gradient in the Thandiani sub Forests Division using the Braun-Blanquet approach confirmed by robust tools of multivariate statistics identified indicators of each sort of microclimatic zones/vegetation communities which could further be used in conservation planning and management not only in the area studied but in the adjacent regions exhibit similar sort of environmental conditions.  相似文献   

3.
The present study was conducted to elaborate vegetation composition structure to analyze role of edaphic and topographic factors on plant species distribution and community formation during 2013–14. A mixture of quadrat and transect methods were used. The size of quadrat for trees shrubs and herbs were 10 × 5, 5 × 2, 1 × 1 meter square respectively. Different phytosociological attribute were measured at each station. Primary results reported 123 plant species belong to 46 families. Asteraceae and Lamiaceae were dominant families with 8 species each. PCORD version 5 were used for Cluster and Two Way Cluster Analyses that initiated 4 plant communities within elevation range of 529–700 m from sea level. Indicator species analyses (ISA) were used to identify indicator species of each community. CANOCO Software (version 4.5) was used to measure the influence of edaphic and topographic variables on species composition, diversity and community formation. Whereas Canonical Correspondence Analysis (CCA) was used to measure the effect of environmental variables which showed elevation and aspect were the stronger environmental variable among topographic and CaCO3 contents, electric conductivity, soil pH were the stronger edaphic factors in determination of vegetation and communities of the Bheer Hills. Grazing pressure was one of the main anthropogenic factors in this regard.  相似文献   

4.
Phytosociological attributes of plant species and associated environmental factors were measured in order to identify the environmental gradients of major plant communities in the Naran Valley, Himalayas. The valley occupies a distinctive geographical setting on the edge of the Western Himalaya near the Hindukush range and supports a high biodiversity; pastoralism is the main land use. There have been no previous quantitative ecological studies in this region. This study was undertaken to (i) analyze and describe vegetation using classification and ordination techniques, (ii) identify environmental gradients responsible for plant community distributions and (iii) assess the anthropogenic pressures on the vegetation and identify priorities for conservation. Phytosociological characteristics of species were measured alongside environmental variables. A total of 198 species from 68 families were quantified at 144 stations along 24 transects across an elevation range of 2450–4100 m. Correspondence Analysis techniques i.e., Detrended Correspondence Analysis (DCA) and Canonical Correspondence Analysis (CCA) were used to determine vegetation–environment relationships. Results show vegetation changes with altitude from moist-cool temperate communities characterized by woody species, to more dry-cold subalpine and alpine herbaceous communities. Plant species diversity is optimal at middle altitudes (2800–3400 m); at lower altitudes (2400–2800 m) it is reduced by anthropogenic impacts and at higher altitudes (3400–4100 m) by shallow soils and high summer grazing pressure. A large number of plant species of conservation concern were identified in the study and an assessment made of the main threats to their survival.  相似文献   

5.
The floristic composition and species diversity of the germinable soil seed bank were studied in three different habitats (desert salinized land, desert wadi, and reclaimed land) in the Eastern Desert of Egypt. Moreover, the degree of similarity between the seed bank and the above-ground vegetation was determined. The seed bank was studied in 40 stands representing the three habitats. Ten soil samples (each 25 × 20 cm and 5 cm depth) were randomly taken per stand. The seed bank was investigated by the seedling emergence method. Some 61 species belonging to 21 families and 54 genera were identified in the germinable seed bank. The recorded species include 43 annuals and 18 perennials. Ordination of stands by Detrended Correspondence Analysis (DCA) indicates that the stands of the three habitats are markedly distinguishable and show a clear pattern of segregation on the ordination planes. This indicates variations in the species composition among habitats. The results also demonstrate significant associations between the floristic composition of the seed bank and edaphic factors such as CaCO3, electrical conductivity, organic carbon and soil texture. The reclaimed land has the highest values of species richness, Shannon-index of diversity and the density of the germinable seed bank followed by the habitats of desert wadi and desert salinized land. Motyka’s similarity index between the seed bank and the above-ground vegetation is significantly higher in reclaimed land (75.1%) compared to desert wadi (38.4%) and desert salinized land (36.5%).  相似文献   

6.
The aim of this study was to identify the main weed communities in Al-Jouf province in northern Saudi Arabia. Moreover, the composition and diversity of these communities were studied in relation to soil variables and crop type. Some 54 stands representing olive orchards, date palm orchards, wheat crop and watermelon crop were studied, using ten quadrats (1 × 1 m) per stand. A total of 71 species belonging to 22 families and 61 genera were observed. The classification of vegetation using the Two Way Indicator Species Analysis (TWINSPAN) resulted in the recognition of four vegetation groups representing wheat crop, orchards in winter season, orchards in summer season and watermelon crop. These results suggested the importance of both crop and season for the formation of weed community. Detrended Correspondence Analysis (DCA) showed that these groups are clearly distinguished by the first two DCA axes. The species richness was higher in both olive and date palm orchards than in wheat and watermelon crops. This pattern of species richness could be related to farm management practices and habitat micro-heterogeneity. Soil electrical conductivity, organic carbon and soil texture showed significant correlations with species richness and the cover values of some dominant species, suggesting the significant role of soil characteristics in weed community structure and diversity.  相似文献   

7.
Weeds are unwanted plant species growing in ordinary environment. In nature there are a total of 8000 weed species out of which 250 are important for agriculture world. The present study was carried out on weed species composition and distribution pattern with special reference to edaphic factor and farming practices in maize crop of District Mardan during the months of August and September, 2014. Quadrates methods were used to assess weed species distribution in relation to edaphic factor and farming practices. Phytosociological attributes such as frequency, relative frequency, density, relative density and Importance Values were measured by placing 9 quadrates (1 × 1 m2) randomly in each field. Initial results showed that the study area has 29 diverse weed species belonging to 27 genera and 15 families distributed in 585 quadrats. Presence and absence data sheet of 29 weed species and 65 fields were analyzed through PC-ORD version 5. Cluster and Two Way Cluster Analyses initiated four different weed communities with significant indicator species and with respect to underlying environmental variables using data attribute plots. Canonical Correspondence Analyses (CCA) of CANOCO software version 4.5 was used to assess the environmental gradients of weed species. It is concluded that among all the edaphic factors the strongest variables were higher concentration of potassium, organic matter and sandy nature of soil. CCA plots of both weed species and sampled fields based on questionnaire data concluded the farming practices such as application of fertilizers, irrigation and chemical spray were the main factors in determination of weed communities.  相似文献   

8.
We studied how plant species distribution was regulated by the relationships between vegetation and soil factors on the southwestern coast of South Korea. Vegetation was classified using two-way indicator species analysis (TWINSPAN), thereby producing four vegetation groups that were linked to three habitat types. Two ordination techniques —; detrended correspondence analysis (DCA) and canonical correspondence analysis (CCA) —; were applied to examine the relationships between vegetation and 12 edaphic factors, including soil pH, water and osmotic potentials, moisture content, electrical conductivity, Cl and Na+ contents, total Kjeldahl nitrogen, and contents of organic matter, sand, silt, and clay. Results were similar for both types of evaluations. According to DCA and CCA, the 23 communities tended to cluster into three types: salt swamp, salt marsh, and sand dune. The first two canonical axes accounted for 14.9% of the community-soil factor relationship among communities. As identified via CCA, the main gradients were soil-water relations and soil texture.  相似文献   

9.
Plant species composition patterns and vegetation types were investigated along Elevational Gradients in Al Baha region, Saudi Arabia. Sandy plain, wadis, drainage lines, rocky outcrops, hills and fallow lands occur over a wide geographic range encompassing variation in plant species and communities among these different ecological sites. To provide a quantitatively based classification of the vegetation we used Multi Variant Statistical Package (MVSP) software, followed by the re-arrangement of a matrix of the similar plant species in rows and similar sample sites in columns. Plant density and environmental variables were measured and recorded in each quadrat. Two-way indicator species analysis and Canonical Correspondence Analysis (CCA) were used to analyze the relationships between vegetation and environmental variables, while Arc Map was used to analyze the pattern of plant species density. A total of 59 sample plots (25 × 25 m), stratified, randomly-placed relevés were collected in Al Baha region, along a cross section running from south-west to north-west. About 190 plant species belonging to 59 families were recognized. This study showed that these plant species formed 15 vegetation types that primarily correspond mainly to different combinations of elevation, and topography. The study concluded that this research has provided the first quantitative and systematic survey of the vegetation in Al Baha region.  相似文献   

10.
The main aim of this paper was to study the responses of mountain plants in relation to the time of snowmelt. Three mountain areas situated along an oceanic–continental gradient were selected as study sites, and the sample plots ranged from 182 m below to 473 m above the climatic forest limit. In total, 185 quadrats (2 m × 2 m), stratified to include only oligotrophic and mesotrophic mountain vegetation types, were selected to represent a topographic range along altitudinal gradients. In each quadrat, the percentage groundcover of the species was recorded. From the beginning of April until July 2004, snow thickness was monitored, and the Julian day when the snow had completely melted was determined for all plots. The relationship between species abundances and Julian day of snowmelt were analysed by two different numerical methods: (1) relative values for species optimum and tolerance were given by Detrended Canonical Correspondence Analysis (DCCA) with Julian day of snowmelt as the constraining variable. (2) Species responses were modelled by Generalized Linear Models (GLM). For species with significant unimodal responses, optimum and tolerance were calculated. For species with significant linear models, different species response models were identified by the regression intercepts. One hundred and twenty six species (taxa) were tested, and 103 evidenced statistically significant (p < 0.05) distribution responses. Several common alpine plants had a distribution that appeared to be independent of snow. On the basis of the results of the numerical methods, the species were separated into nine Snow Indicator (SI) classes, as a parallel to the Ellenberg indicator values. The species’ SI values were used to calculate weighted average SI values to examine the relationships between previously described plant communities and vegetation transects which experience different snow conditions.  相似文献   

11.
High mountain grasslands offer multiple goods and services to society but are severely threatened by improper land use practices such as abandonment or rapid intensification. In order to reduce abandonment and strengthen the common extensive agricultural practice a sustainable land use management of high mountain grasslands is needed. A spatially detailed yield assessment helps to identify possible meadows or, on the contrary, areas with a low carrying capacity in a region, making it easier to manage these sites. Such assessments are rarely available for remote and inaccessible areas. Remotely sensed vegetation indices are able to provide valuable information on grassland properties. These indices tend, however, to saturate for high biomass. This affects their applicability to assessments of high-yield grasslands.The main aim of this study was to model a spatially explicit grassland yield map and to test whether saturation issues can be tackled by consideration of plant species composition in the modelling process. The high mountain grassland of the subalpine belt (1800 – 2500 m a.s.l.) in the Kazbegi region, Greater Caucasus, Georgia, was chosen as test site for its strong species composition and yield gradients.We first modelled the species composition of the grassland described as metrically scaled gradients in the form of ordination axes by random forest regression. We then derived vegetation indices from Rapid Eye imagery, and topographic variables from a digital elevation model, which we used together with the multispectral bands as predictive variables. For comparison, we performed two yield models, one excluding the species composition maps and one including the species composition map as predictors. Moreover, we performed a third individual model, with species composition as predictors and a split dataset, to produce the final yield map.Three main grassland types were found in the vegetation analysis: Hordeum violaceum-meadows, Gentianella caucasea-grassland and Astragalus captiosus-grassland. The three random forest regression models for the ordination axes explained 64%, 33% and 46% of the variance in species composition. Independent validation of modelled ordination scores against a validation data set resulted in an R2 of 0.64, 0.32 and 0.46 for the first, second and third axes, respectively. The model based on species composition resulted in a R2 = 0.55, whereas the benchmark model showed weaker relationships between yield and the multispectral reflectance, vegetation indices, and topographical parameters (R2 = 0.42). The final random forest yield model used to derive the yield map resulted in 62% variance explained and an R2 = 0.64 between predicted and observed biomass. The results further indicate that high yields are generally difficult to predict with both models.The benefit of including a species composition map as a predictor variable for grassland yield lies in the preservation of ecologically meaningful features, especially the occurrence of high yielding vegetation type of Hordeum violaceum meadows is depicted accurately in the map. Even though we used a gradient based design, sharp boundaries or immediate changes in productivity were visible, especially in small structures such as arable fields or roads (Fig. 6b), making it a valuable tool for sustainable land use management. The saturation effect however, was mitigated by using species composition as predictor variables but is still present at high yields.  相似文献   

12.
The current analyses of vegetation were aimed to study the different effects of environmental variables and plant species and communities interaction to these variables, identified threats to local vegetation and suggestion for remedial measures in the Mount Eelum, Swat, Pakistan. For assessment of environmental variability quantitative ecological techniques were used through quadrats having sizes of 2 × 2, 5 × 5 and 10 × 10 m2 for herbs, shrubs and trees respectively. Result of the present study revealed 124 plant species in the study area. Canonical Correspondence Analysis (CCA) was used to analyze the ecological gradient of vegetation. The environmental data and species abundance were used in CANOCO software version 4.5. The presence absence data of plant species were elaborated with Cluster and Two Way Cluster Analysis techniques using PC-ORD version 5 to show different species composition that resulted in five plant communities. Findings indicate that elevation, aspect and soil texture are the strongest variables that have significant effect on species composition and distribution of various communities shown with P value 0.0500. It is recommended to protect and use sensibly whole of the Flora normally and rare species particularly in the region.  相似文献   

13.
历山自然保护区猪尾沟森林群落植被格局及环境解释   总被引:43,自引:6,他引:43  
张峰  张金屯 《生态学报》2003,23(3):421-427
应用TWINSPAN、DCA和DCCA,从植物种,植物群落与环境的生态关系方面,研究历山自然保护区猪尾沟森林群落的植被分布格局,并给予合理的环境解释。结果如下:(1)采用TWINSPAN数量分类方法,将植被划分为9个群落类型。(2)对于特定的研究区域猪尾沟,制约森林群落类型,植物种分布格局的主要因素是海拔梯度,即水、热两个环境因子。(3)DCCA排序图明显反映出排序轴的生态意义,第一轴基本上突出反映了各植物群落所在环境的海拔梯度,即热量因素,沿第一轴从左到右,海拔逐渐升高,植物群落或植物种对热量要求降低;第二轴主要表现了各植物群落或植物种所在环境的坡度,坡向,即水分和光照因素,沿第二轴从下到上,坡度渐缓,坡向渐向阳。  相似文献   

14.
Few studies have investigated insect ensembles, i.e. phylogenetically bounded groups of species that use a similar set of resources within a community. The zonation of dune vegetation makes these ecosystems ideal for the study of insect ensembles in a short space. In this study, we investigated if the tenebrionid beetles forming an ensemble on a dune zonation showed variations in community organization (relative abundances and species diversity) in different but spatially associated biotopes defined by different plant communities. Three biotopes (corresponding to European Commission habitat 2110, 2120 and 2230) of a well-preserved Mediterranean dune were sampled using square plots of 2 × 2 m at three places. To investigate if there was some association between species and habitat we applied a χ2 test. Variations in community structure parameters were investigated using Shannon index. The three biotopes host tenebrionid communities with similar species composition and overall abundances, confirming that they form a single ensemble. However, tenebrionid species are differently associated with different biotopes along the zonation, with some species occurring with different proportions among the biotopes. A local selection process can be postulated as a mechanism responsible for these differences.  相似文献   

15.
Nature conservation and ecological restoration crucially depends on the knowledge about spatial patterns of plant species that control habitat conversion and disturbance regimes. Especially, species abundances are capable of indicating early development tendencies for setting habitat management strategies. This study demonstrates the transfer of field spectroscopy to hyperspectral imagery to map multiple plant species abundances in an open dryland area using two imaging spectrometers in two different phenological phases. We show that species abundances can partially be described by multiple gradients forming different coordinates in a contour map. For this purpose, species abundances were projected into an ordination space using non-metric multidimensional scaling and subsequent spatial interpolation. It was demonstrated that different gradients can be modeled in a Partial Least Squares regression framework resulting in distinct spectral features for certain gradient directions. We combine both objectives in a multiobjective NSGA-II procedure to maximize the quantitative determination of species abundance in ordination and spectral predictability in related field spectra, simultaneously. NSGA-II was finally used to select optimal spectral models for n = 35 single species that were transferred to hyperspectral imagery for mapping purpose. We can show that abundance predictabilities can be evaluated on the basis of individual model performances that hold different spectral features for each species in a designated phenological phase. Finally, we present spatially explicit multi-species maps for the best n = 18 and abundance maps for n = 8 models that could be linked to patterns of species richness, coexistence, succession stages and habitat type conditions.  相似文献   

16.
We examined the relationships between an index of wetland habitat quality and disturbance (ORAM score) and an index of vascular plant integrity (VIBI-FQ score) with moss species richness and a moss quality assessment index (MQAI) in 45 wetlands in three vegetation types in Ohio, USA. Species richness of mosses and MQAI were positively associated with ORAM and VIBI-FQ scores. VIBI-FQ score was a better predictor of both moss species richness and MQAI than was either ORAM score or vegetation type. This result was consistent with the strict microhabitat requirements for many moss species, which may be better assessed by VIBI-FQ than ORAM. Probability curves as a function of VIBI-FQ score were then generated for presence of groups of moss species having the same degree of fidelity to substrate and plant communities relative to other species in the moss flora (coefficients of conservatism, CCs). Species having an intermediate- or high degree of fidelity to substrate and plant communities (i.e., species with CC  5) had a 50% probability of presence (P50) and 90% probability of presence (P90) in wetlands with intermediate- and high VIBI-FQ scores, respectively. Although moss species richness, probability of presence of species based on CC, and MQAI may reflect wetland habitat quality, the 95% confidence intervals around P50 and P90 values may be too wide for regulatory use. Moss species richness, MQAI, and presence of groups of mosses may be more useful for evaluating moss habitat quality in wetlands than a set of “indicator species.”  相似文献   

17.
《Acta Oecologica》2007,31(2):137-150
We examined the influence of disturbance history on the floristic composition of a single community type in karri forest, south-western Australia. Cover-abundance of 224 plant species and six disturbance and site-based environmental variables were recorded in 91, 20 m × 20 m quadrats. Numerical taxonomic and correlation approaches were used to relate these and 10 plant species-group variables based on origin, growth form and fire response. Ordination revealed no discernable pattern of sites based on floristic composition. However, all 10 species-group variables were significantly correlated with the ordination axes. Species richness within these groups varied with category and with respect to many of the disturbance and site variables. We encountered low diversity of vascular plants at the community level and limited diversity of growth forms. Thus most species were herbs (62.1%) or shrubs (30.3%), and there were no epiphytes and few species of trees or climbers. Although many introduced species were recorded (18.3% of all taxa), virtually all (83%) were herbs that demonstrated little persistence in the community, and there was limited evidence of transformer species. Time-since-fire (and other disturbance) influenced species richness more than the number of recent past fires because of a high proportion of ephemerals associated with the immediate post-fire period. Long-lived shrubs with soil stored seed dominate numerically, and in understorey biomass in comparison with neighboring vegetation types because of their greater flexibility of response following irregular, but intense disturbance events. However, interactions between nutrient status, regeneration mechanisms and community composition may be worthy of further investigation.  相似文献   

18.
The endemic avifauna of Wallacea is of high conservation significance, but remains poorly studied. Identifying priority conservation areas requires a greater understanding of the habitat associations of these bird communities, and of how spatial scale of analysis can influence the interpretation of these associations. This study aims to determine which proxy habitat measures, at which spatial scales of analysis, can provide useful inferential data on the composition of Wallacean forest avifauna. Research was conducted within the Lambusango forest reserve, South-East Sulawesi, using point count surveys to sample avifauna. Habitat properties were characterised in three ways: broad classification of forest type, canopy remotely-sensed response derived from satellite imagery, and in situ measures of vegetation composition and structure. Furthermore, we examined avifauna–habitat relationships at three spatial scales: area (c.400 ha per sample site), transect (c.10 ha) and point (c.0.2 ha). Results demonstrate that broad forest type classifications at an area scale can help to determine conservation value, indicating that primary and old secondary forests are important for supporting many species with lower ecological tolerances, such as large-bodied frugivores. At the transect-scale, significant congruence occurs between bird community composition and several habitat variables derived from vegetation sampling and satellite imagery, particularly tree size, undergrowth density, and Normalised Difference Vegetation Index (NDVI) values; this highlights the importance small scale habitat associations can have on determining α-diversity. Analysis at the point-scale was ineffective in providing proxy indications for avifauna. These findings should be considered when determining future priority conservation areas for Wallacean avifauna.  相似文献   

19.
Forest degradation is leading to widespread negative impacts on biodiversity in South-east Asia. Tropical peat-swamp forests are one South-east Asian habitat in which insect communities, and the impacts of forest degradation on them, are poorly understood. To address this information deficit, we investigated the impacts of forest gaps on fruit-feeding butterflies in the Sabangau peat-swamp forest, Central Kalimantan, Indonesia. Fruit-baited traps were used to monitor butterflies for 3 months during the 2009 dry season. A network of 34 traps (ngap = 17, nshade = 17) was assembled in a grid covering a 35 ha area. A total of 445 capture events were recorded, comprising 384 individuals from 8 species and 2 additional species complexes classified to genera. On an inter-site scale, canopy traps captured higher species richness than understory traps; however, understory traps captured higher diversity within each site. Species richness was positively correlated with percent canopy cover and comparisons of diversity indices support these findings. Coupled with results demonstrating morphological differences in thorax volume and forewing length between species caught in closed-canopy traps vs. those in gaps, this indicates that forest degradation has a profound effect on butterfly communities in this habitat, with more generalist species being favored in disturbed conditions. Further studies are necessary to better understand the influences of macro-habitat quality and seasonal variations on butterfly diversity and community composition in South-east Asian peat-swamp forests.  相似文献   

20.
A pollen study at Survilly (2235m asl, 06° 49′ 12″ E, 45° 59′ 24″ N), a small peatbog located on the Anterne mountain (Upper-Arve Valley, French north-western Alps) highlights the local role of human activities in Holocene vegetation dynamics of the currently treeless subalpine belt and the consecutive resumption of erosion. As early as 8890 cal. years BP (± 122), Pinus cembra grew close to the site. Grasslands without shrubs were established at around 4624 ± 86 cal. years BP. Due to human activities, spruces extended little after 3600 cal. BP. The intense grazing that resulted in the current alpine meadows goes back to 1436 cal. years BP (± 81). After 4624 cal. BP three clay layers show that from this period, the erosion became as active as during the first steps of the colonization of the vegetation prior to 10,050 cal. BP. During peat growth only a millimetre of clay at the end of the 9400–9050 cal. BP climatic event was recorded.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号