首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Natural populations are often exposed to temporally varying environments. Evolutionary dynamics in varying environments have been extensively studied, although understanding the effects of varying selection pressures remains challenging. Here, we investigate how cycling between a pair of statistically related fitness landscapes affects the evolved fitness of an asexually reproducing population. We construct pairs of fitness landscapes that share global fitness features but are correlated with one another in a tunable way, resulting in landscape pairs with specific correlations. We find that switching between these landscape pairs, depending on the ruggedness of the landscape and the interlandscape correlation, can either increase or decrease steady‐state fitness relative to evolution in single environments. In addition, we show that switching between rugged landscapes often selects for increased fitness in both landscapes, even in situations where the landscapes themselves are anticorrelated. We demonstrate that positively correlated landscapes often possess a shared maximum in both landscapes that allows the population to step through sub‐optimal local fitness maxima that often trap single landscape evolution trajectories. Finally, we demonstrate that switching between anticorrelated paired landscapes leads to ergodic‐like dynamics where each genotype is populated with nonzero probability, dramatically lowering the steady‐state fitness in comparison to single landscape evolution.  相似文献   

2.
Although fitness landscapes are central to evolutionary theory, so far no biologically realistic examples for large-scale fitness landscapes have been described. Most currently available biological examples are restricted to very few loci or alleles and therefore do not capture the high dimensionality characteristic of real fitness landscapes. Here we analyze large-scale fitness landscapes that are based on predictive models for in vitro replicative fitness of HIV-1. We find that these landscapes are characterized by large correlation lengths, considerable neutrality, and high ruggedness and that these properties depend only weakly on whether fitness is measured in the absence or presence of different antiretrovirals. Accordingly, adaptive processes on these landscapes depend sensitively on the initial conditions. While the relative extent to which mutations affect fitness on their own (main effects) or in combination with other mutations (epistasis) is a strong determinant of these properties, the fitness landscape of HIV-1 is considerably less rugged, less neutral, and more correlated than expected from the distribution of main effects and epistatic interactions alone. Overall this study confirms theoretical conjectures about the complexity of biological fitness landscapes and the importance of the high dimensionality of the genetic space in which adaptation takes place.  相似文献   

3.
The traditional way of tackling discrete optimization problems is by using local search on suitably defined cost or fitness landscapes. Such approaches are however limited by the slowing down that occurs when the local minima that are a feature of the typically rugged landscapes encountered arrest the progress of the search process. Another way of tackling optimization problems is by the use of heuristic approximations to estimate a global cost minimum. Here, we present a combination of these two approaches by using cover-encoding maps which map processes from a larger search space to subsets of the original search space. The key idea is to construct cover-encoding maps with the help of suitable heuristics that single out near-optimal solutions and result in landscapes on the larger search space that no longer exhibit trapping local minima. We present cover-encoding maps for the problems of the traveling salesman, number partitioning, maximum matching and maximum clique; the practical feasibility of our method is demonstrated by simulations of adaptive walks on the corresponding encoded landscapes which find the global minima for these problems.  相似文献   

4.
We introduce a broadened framework to study aspects of coevolution based on the NK class of statistical models of rugged fitness landscapes. In these models the fitness contribution of each of N genes in a genotype depends epistatically on K other genes. Increasing epistatic interactions increases the rugged multipeaked character of the fitness landscape. Coevolution is thought of, at the lowest level, as a coupling of landscapes such that adaptive moves by one player deform the landscapes of its immediate partners. In these models we are able to tune the ruggedness of landscapes, how richly intercoupled any two landscapes are, and how many other players interact with each player. All these properties profoundly alter the character of the coevolutionary dynamics. In particular, these parameters govern how readily coevolving ecosystems achieve Nash equilibria, how stable to perturbations such equilibria are, and the sustained mean fitness of coevolving partners. In turn, this raises the possibility that an evolutionary metadynamics due to natural selection may sculpt landscapes and their couplings to achieve coevolutionary systems able to coadapt well. The results suggest that sustained fitness is optimized when landscape ruggedness relative to couplings between landscapes is tuned such that Nash equilibria just tenuously form across the ecosystem. In this poised state, coevolutionary avalanches appear to propagate on all length scales in a power law distribution. Such avalanches may be related to the distribution of small and large extinction events in the record.  相似文献   

5.
Speciation is facilitated when selection generates a rugged fitness landscape such that populations occupy different peaks separated by valleys. Competition for food resources is a strong ecological force that can generate such divergent selection. However, it is unclear whether intrasexual competition over resources that provide mating opportunities can generate rugged fitness landscapes that foster speciation. Here we use highly variable male F2 hybrids of benthic and limnetic threespine sticklebacks, Gasterosteus aculeatus Linnaeus, 1758, to quantify the male competition fitness landscape. We find that disruptive sexual selection generates two fitness peaks corresponding closely to the male phenotypes of the two parental species, favouring divergence. Most surprisingly, an additional region of high fitness favours novel hybrid phenotypes that correspond to those observed in a recent case of reverse speciation after anthropogenic disturbance. Our results reveal that sexual selection through male competition plays an integral role in both forward and reverse speciation.  相似文献   

6.
The tunably rugged NK-model is used to study avalanche-like events that occur when environmental change causes fitness optima to disappear. The probability of an event with Delta substitutions scales as exp(-c Delta) for smooth landscapes, and as exp(-c Delta(2)) for rugged landscapes. Increasing the ruggedness leads to two competing effects: (1) more possible routes by which single mutations can increase the fitness, which dominates at low ruggedness and acts to increase Delta; and (2) a higher density of fitness optima, which dominates at high ruggedness and acts to decrease Delta. Due to these competing effects, the largest average values of Delta occur at intermediate ruggedness. The effects of system size on the avalanche events are examined, and average values of Delta increase logarithmically with system size. The variance to mean ratios for the number of substitutions per unit time are consistent with experimental results for protein evolution.  相似文献   

7.
Burton OJ  Travis JM 《Genetics》2008,179(2):941-950
Dynamic species' ranges, those that are either invasive or shifting in response to environmental change, are the focus of much recent interest in ecology, evolution, and genetics. Understanding how range expansions can shape evolutionary trajectories requires the consideration of nonneutral variability and genetic architecture, yet the majority of empirical and theoretical work to date has explored patterns of neutral variability. Here we use forward computer simulations of population growth, dispersal, and mutation to explore how range-shifting dynamics can influence evolution on rugged fitness landscapes. We employ a two-locus model, incorporating sign epistasis, and find that there is an increased likelihood of fitness peak shifts during a period of range expansion. Maladapted valley genotypes can accumulate at an expanding range front through a phenomenon called mutation surfing, which increases the likelihood that a mutation leading to a higher peak will occur. Our results indicate that most peak shifts occur close to the expanding front. We also demonstrate that periods of range shifting are especially important for peak shifting in species with narrow geographic distributions. Our results imply that trajectories on rugged fitness landscapes can be modified substantially when ranges are dynamic.  相似文献   

8.
Recent experimental and theoretical studies have shown that small asexual populations evolving on complex fitness landscapes may achieve a higher fitness than large ones due to the increased heterogeneity of adaptive trajectories. Here, we introduce a class of haploid three-locus fitness landscapes that allow the investigation of this scenario in a precise and quantitative way. Our main result derived analytically shows how the probability of choosing the path of the largest initial fitness increase grows with the population size. This makes large populations more likely to get trapped at local fitness peaks and implies an advantage of small populations at intermediate time scales. The range of population sizes where this effect is operative coincides with the onset of clonal interference. Additional studies using ensembles of random fitness landscapes show that the results achieved for a particular choice of three-locus landscape parameters are robust and also persist as the number of loci increases. Our study indicates that an advantage for small populations is likely whenever the fitness landscape contains local maxima. The advantage appears at intermediate time scales, which are long enough for trapping at local fitness maxima to have occurred but too short for peak escape by the creation of multiple mutants.  相似文献   

9.
Jain K  Seetharaman S 《Genetics》2011,189(3):1029-1043
We consider an asexual population under strong selection-weak mutation conditions evolving on rugged fitness landscapes with many local fitness peaks. Unlike the previous studies in which the initial fitness of the population is assumed to be high, here we start the adaptation process with a low fitness corresponding to a population in a stressful novel environment. For generic fitness distributions, using an analytic argument we find that the average number of steps to a local optimum varies logarithmically with the genotype sequence length and increases as the correlations among genotypic fitnesses increase. When the fitnesses are exponentially or uniformly distributed, using an evolution equation for the distribution of population fitness, we analytically calculate the fitness distribution of fixed beneficial mutations and the walk length distribution.  相似文献   

10.
Adaptation of asexual populations is driven by beneficial mutations and therefore the dynamics of this process, besides other factors, depends on the distribution of beneficial fitness effects. It is known that on uncorrelated fitness landscapes, this distribution can only be of three types: truncated, exponential and power law. We performed extensive stochastic simulations to study the adaptation dynamics on rugged fitness landscapes, and identified two quantities that can be used to distinguish the underlying distribution of beneficial fitness effects. The first quantity studied here is the fitness difference between successive mutations that spread in the population, which is found to decrease in the case of truncated distributions, remains nearly a constant for exponentially decaying distributions and increases when the fitness distribution decays as a power law. The second quantity of interest, namely, the rate of change of fitness with time also shows quantitatively different behaviour for different beneficial fitness distributions. The patterns displayed by the two aforementioned quantities are found to hold good for both low and high mutation rates. We discuss how these patterns can be exploited to determine the distribution of beneficial fitness effects in microbial experiments.  相似文献   

11.
12.
Identifying and quantifying the benefits of sex and recombination is a long-standing problem in evolutionary theory. In particular, contradictory claims have been made about the existence of a benefit of recombination on high dimensional fitness landscapes in the presence of sign epistasis. Here we present a comparative numerical study of sexual and asexual evolutionary dynamics of haploids on tunably rugged model landscapes under strong selection, paying special attention to the temporal development of the evolutionary advantage of recombination and the link between population diversity and the rate of adaptation. We show that the adaptive advantage of recombination on static rugged landscapes is strictly transitory. At early times, an advantage of recombination arises through the possibility to combine individually occurring beneficial mutations, but this effect is reversed at longer times by the much more efficient trapping of recombining populations at local fitness peaks. These findings are explained by means of well-established results for a setup with only two loci. In accordance with the Red Queen hypothesis the transitory advantage can be prolonged indefinitely in fluctuating environments, and it is maximal when the environment fluctuates on the same time scale on which trapping at local optima typically occurs.  相似文献   

13.
Hierarchical organization—the recursive composition of sub-modules—is ubiquitous in biological networks, including neural, metabolic, ecological, and genetic regulatory networks, and in human-made systems, such as large organizations and the Internet. To date, most research on hierarchy in networks has been limited to quantifying this property. However, an open, important question in evolutionary biology is why hierarchical organization evolves in the first place. It has recently been shown that modularity evolves because of the presence of a cost for network connections. Here we investigate whether such connection costs also tend to cause a hierarchical organization of such modules. In computational simulations, we find that networks without a connection cost do not evolve to be hierarchical, even when the task has a hierarchical structure. However, with a connection cost, networks evolve to be both modular and hierarchical, and these networks exhibit higher overall performance and evolvability (i.e. faster adaptation to new environments). Additional analyses confirm that hierarchy independently improves adaptability after controlling for modularity. Overall, our results suggest that the same force–the cost of connections–promotes the evolution of both hierarchy and modularity, and that these properties are important drivers of network performance and adaptability. In addition to shedding light on the emergence of hierarchy across the many domains in which it appears, these findings will also accelerate future research into evolving more complex, intelligent computational brains in the fields of artificial intelligence and robotics.  相似文献   

14.
This study investigates the contributions of network topology features to the dynamic behavior of hierarchically organized excitable networks. Representatives of different types of hierarchical networks as well as two biological neural networks are explored with a three-state model of node activation for systematically varying levels of random background network stimulation. The results demonstrate that two principal topological aspects of hierarchical networks, node centrality and network modularity, correlate with the network activity patterns at different levels of spontaneous network activation. The approach also shows that the dynamic behavior of the cerebral cortical systems network in the cat is dominated by the network's modular organization, while the activation behavior of the cellular neuronal network of Caenorhabditis elegans is strongly influenced by hub nodes. These findings indicate the interaction of multiple topological features and dynamic states in the function of complex biological networks.  相似文献   

15.
The rate of mutation is central to evolution. Mutations are required for adaptation, yet most mutations with phenotypic effects are deleterious. As a consequence, the mutation rate that maximizes adaptation will be some intermediate value. Here, we used digital organisms to investigate the ability of natural selection to adjust and optimize mutation rates. We assessed the optimal mutation rate by empirically determining what mutation rate produced the highest rate of adaptation. Then, we allowed mutation rates to evolve, and we evaluated the proximity to the optimum. Although we chose conditions favorable for mutation rate optimization, the evolved rates were invariably far below the optimum across a wide range of experimental parameter settings. We hypothesized that the reason that mutation rates evolved to be suboptimal was the ruggedness of fitness landscapes. To test this hypothesis, we created a simplified landscape without any fitness valleys and found that, in such conditions, populations evolved near-optimal mutation rates. In contrast, when fitness valleys were added to this simple landscape, the ability of evolving populations to find the optimal mutation rate was lost. We conclude that rugged fitness landscapes can prevent the evolution of mutation rates that are optimal for long-term adaptation. This finding has important implications for applied evolutionary research in both biological and computational realms.  相似文献   

16.
Several recent theoretical studies of the genetics of adaptation have focused on the mutational landscape model, which considers evolution on rugged fitness landscapes (i.e., ones having many local optima). Adaptation in this model is characterized by several simple results. Here I ask whether these results also hold on correlated fitness landscapes, which are smoother than those considered in the mutational landscape model. In particular, I study the genetics of adaptation in the block model, a tunably rugged model of fitness landscapes. Considering the scenario in which adaptation begins from a high fitness wild-type DNA sequence, I use extreme value theory and computer simulations to study both single adaptive steps and entire adaptive walks. I show that all previous results characterizing single steps in adaptation in the mutational landscape model hold at least approximately on correlated landscapes in the block model; many entire-walk results, however, do not.  相似文献   

17.
Network analysis of protein dynamics   总被引:1,自引:0,他引:1  
The network paradigm is increasingly used to describe the topology and dynamics of complex systems. Here, we review the results of the topological analysis of protein structures as molecular networks describing their small-world character, and the role of hubs and central network elements in governing enzyme activity, allosteric regulation, protein motor function, signal transduction and protein stability. We summarize available data how central network elements are enriched in active centers and ligand binding sites directing the dynamics of the entire protein. We assess the feasibility of conformational and energy networks to simplify the vast complexity of rugged energy landscapes and to predict protein folding and dynamics. Finally, we suggest that modular analysis, novel centrality measures, hierarchical representation of networks and the analysis of network dynamics will soon lead to an expansion of this field.  相似文献   

18.
Fitness landscapes of protein and RNA molecules can be studied experimentally using high-throughput techniques to measure the functional effects of numerous combinations of mutations. The rugged topography of these molecular fitness landscapes is important for understanding and predicting natural and experimental evolution. Mutational effects are also dependent upon environmental conditions, but the effects of environmental changes on fitness landscapes remains poorly understood. Here, we investigate the changes to the fitness landscape of a catalytic RNA molecule while changing a single environmental variable that is critical for RNA structure and function. Using high-throughput sequencing of in vitro selections, we mapped a fitness landscape of the Azoarcus group I ribozyme under eight different concentrations of magnesium ions (1–48 mM MgCl2). The data revealed the magnesium dependence of 16,384 mutational neighbors, and from this, we investigated the magnesium induced changes to the topography of the fitness landscape. The results showed that increasing magnesium concentration improved the relative fitness of sequences at higher mutational distances while also reducing the ruggedness of the mutational trajectories on the landscape. As a result, as magnesium concentration was increased, simulated populations evolved toward higher fitness faster. Curve-fitting of the magnesium dependence of individual ribozymes demonstrated that deep sequencing of in vitro reactions can be used to evaluate the structural stability of thousands of sequences in parallel. Overall, the results highlight how environmental changes that stabilize structures can also alter the ruggedness of fitness landscapes and alter evolutionary processes.  相似文献   

19.
We study the adaptation dynamics of a maladapted asexual population on rugged fitness landscapes with many local fitness peaks. The distribution of beneficial fitness effects is assumed to belong to one of the three extreme value domains, viz. Weibull, Gumbel, and Fréchet. We work in the strong selection‐weak mutation regime in which beneficial mutations fix sequentially, and the population performs an uphill walk on the fitness landscape until a local fitness peak is reached. A striking prediction of our analysis is that the fitness difference between successive steps follows a pattern of diminishing returns in the Weibull domain and accelerating returns in the Fréchet domain, as the initial fitness of the population is increased. These trends are found to be robust with respect to fitness correlations. We believe that this result can be exploited in experiments to determine the extreme value domain of the distribution of beneficial fitness effects. Our work here differs significantly from the previous ones that assume the selection coefficient to be small. On taking large effect mutations into account, we find that the length of the walk shows different qualitative trends from those derived using small selection coefficient approximation.  相似文献   

20.
Much of the current theory of adaptation is based on Gillespie’s mutational landscape model (MLM), which assumes that the fitness values of genotypes linked by single mutational steps are independent random variables. On the other hand, a growing body of empirical evidence shows that real fitness landscapes, while possessing a considerable amount of ruggedness, are smoother than predicted by the MLM. In the present article we propose and analyze a simple fitness landscape model with tunable ruggedness based on the rough Mount Fuji (RMF) model originally introduced by Aita et al. in the context of protein evolution. We provide a comprehensive collection of results pertaining to the topographical structure of RMF landscapes, including explicit formulas for the expected number of local fitness maxima, the location of the global peak, and the fitness correlation function. The statistics of single and multiple adaptive steps on the RMF landscape are explored mainly through simulations, and the results are compared to the known behavior in the MLM model. Finally, we show that the RMF model can explain the large number of second-step mutations observed on a highly fit first-step background in a recent evolution experiment with a microvirid bacteriophage.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号