首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Aquatic ecosystems are experiencing increasing disturbance from multiple stressors caused by anthropogenic activities. The potential for multiple stressors to modify each others’ impacts is not well understood. Legislation such as the EU Water Framework Directive (WFD) requires the development of tools to assess human impacts in aquatic systems that incorporate ecological elements, such as macroinvertebrates. Nutrient enrichment and invasive species are major threats to freshwater systems. The invasive zebra mussel Dreissena polymorpha is a conspicuous invader in freshwater aquatic systems in Europe and North America, and has been linked to drastic changes in macroinvertebrate communities and lake ecology. In 31 lake sites varying in nutrient pressure and in the presence or absence of D. polymorpha we tested three ecological quality assessment tools based on macroinvertebrate assemblages (% Sensitive Taxa to Total Phosphorus (TP), TP Score and Indicator Taxa Metric) and two basic ecological metrics. There were highly significant changes in macroinvertebrate diversity, structure, and composition associated with the invasion by D. polymorpha. While the three metrics performed consistently well in non-invaded systems, they lost explanatory power for eutrophication pressure in invaded systems. Our results suggest that metrics may need to be developed separately for invaded and non-invaded systems, and that the interaction between alien species and nutrient enrichment requires further investigation.  相似文献   

2.
3.
Freshwater ecosystems have been fragmented by the construction of large numbers of dams. In addition to disruption of ecological continuity and physical disturbance downstream, accumulation of large amounts of sediment within run-of-river reservoirs constitutes a latent ecotoxic risk to aquatic communities. To date, run-of-river reservoirs and ecotoxic risks associated with contaminated sediment to the biodiversity and functioning of such systems are little studied. Therefore, the main objective of this study was to describe macroinvertebrate assemblages, and the functioning of these systems, and to propose indicators of sediment contamination to integrate in in-situ risk assessment methodology. To identify specific assemblages of run-of-river reservoirs, we first compared macroinvertebrate assemblages and their biotrait profiles (i.e. from a database of biological and ecological traits) in reservoirs (n = 6) and associated river sites (upstream and downstream of dams). Then, we compared responses of assemblages and biotrait profiles to sediment contamination of the banks and channels of reservoirs to select the most useful spatial scale to identify sediment contamination. Nineteen indicator taxa were observed to be specifically associated with channel habitats of reservoirs. Among these, the abundance of three taxa (Tanypodinae (Diptera), Ephemerella (Ephemeroptera) and Atherix (Diptera)) revealed the effect of metal sediment contamination. “Between-reservoirs” differences in their biotrait profile were found along the contamination gradient, with a shift of communities’ composition and functionality, and an increase in functional similarity. Many traits (response traits), for example “maximum size”, “transverse distribution”, “substrate preferences”, “saprobity”, “temperature”, “resistance forms”, and “locomotion”, were specifically linked to contamination of sediments by metals. This study indicates how sediment contamination can change the structural and functional composition of run-of-river reservoir assemblages. Indicator taxa and response traits identified in this study could improve current risk assessment methodology and potentially enable prediction of the risks of contaminated sediments stored in reservoirs in downstream ecosystems.  相似文献   

4.
Invasive bivalves often act as ecosystem engineers, generally causing physical alterations in the ecosystems in which they establish themselves. However, the effects of these physical alterations over benthic macroinvertebrate communities’ structure are less clear. The objective of this study was to characterize the ecological effects of the invasive bivalves Corbicula fluminea and Limnoperna fortunei on the structure of benthic macroinvertebrate communities in neo-tropical reservoirs. Three hypotheses were tested: (1) invasive bivalves act as facilitator species to other benthic macroinvertebrates, resulting in communities with higher number of species, abundance and diversity; (2) invasive bivalves change the taxonomic composition of benthic macroinvertebrate communities; (3) invasive bivalves increase the complexity of benthic macroinvertebrate communities. For that it was used data from 160 sampling sites from four reservoirs. We sampled sites once in each area, during the dry season from 2009 to 2012. The first hypothesis was rejected, as the presence of invasive bivalves significantly decreased the host benthic communities’ number of species and abundance. The second hypothesis was corroborated, as the composition of other benthic macroinvertebrates was shown to be significantly different between sites with and without invasive bivalves. We observed a shift from communities dominated by common soft substrate taxa, such as Chironomidae and Oligochaeta, to communities dominated by the invasive Gastropoda Melanoides tuberculata. The biomass data corroborated that, showing significantly higher biomass of M. tuberculata in sites with invasive bivalves, but significantly lower biomass of native species. Benthic macroinvertebrate communities presenting invasive bivalves showed significantly higher eco-exergy and specific eco-exergy, which corroborate the third hypothesis. These results suggest that while the presence of invasive bivalves limits the abundance of soft bottom taxa such as Chironomidae and Oligochaeta, it enhances benthic communities’ complexity and provide new energetic pathways to benthic communities in reservoirs. This study also suggests a scenario of invasion meltdown, as M. tuberculata was facilitated by the invasive bivalves.  相似文献   

5.
Macroinvertebrate communities have been widely used as a tool for assessing the environmental quality of freshwater ecosystems, whereas zooplankton communities have been to some extent neglected. However, the importance of using different indicators to achieve a more comprehensive framework of assessment regarding water quality has been recognized. This study compared estimates of species richness (number of species) and the Shannon–Wiener index for data on macroinvertebrate and zooplankton communities in tropical reservoirs and related them to their trophic state. The trop+hic classification was obtained by applying the Carlson index (1977) modified by Toledo et al. (1983), and the index of the Brazilian Society of the Environmental Technology Agency. The comparative response of the different indicators was analyzed using a series of bivariate correlations (Draftsman’s plot). The results illustrate that diversity measures, namely species richness, responded differently when related to the trophic classification of reservoirs, depending on the community considered. The species richness of zooplankton was positively related to hypereutrophic conditions, due to the higher number of rotifer species, including tolerant generalist species and at the same time, as a result of the exclusion of species from other groups, whereas for macroinvertebrates, species richness was negatively related to hypereutrophic conditions. Melanoides tuberculatus, which exhibits a high tolerance and competitive ability under such conditions, was the dominant species in macroinvertebrate communities, which excluded endemic species and reduced local richness and diversity. The same indicators applied to the zooplankton and macroinvertebrate communities might therefore provide contradictory responses regarding ecological quality assessment in tropical reservoirs, which suggest that zooplankton should be taken into account among the biological quality elements considered in the ecological quality assessment, management, and restoration of water bodies.  相似文献   

6.
Understanding the correlation between genetic diversity and species diversity in freshwater communities is important to elucidate the influences of local selective forces on the genetic diversity of local aquatic plant populations across different communities. This study employed amplified fragment length polymorphism (AFLP) to assess the genetic diversity of Potamogeton pectinatus L. populations between two sister-lakes with contrasting trophic levels, eutrophic and oligotrophic, in the Yunnan Plateau in southwest of China. The results showed high genetic differentiation between eutrophic lake and oligotrophic lake. The genetic distances between P. pectinatus populations were significantly correlated with the species evenness, but not with difference in species richness of aquatic plant communities. The results underpinned that genetic diversity at inter-population levels and local species diversity in plant communities are positively correlated. In addition, our results also suggested that habitat types might play an important role in the genetic diversity of the P. pectinatus populations between these two lakes.  相似文献   

7.
Five variable microsatellite loci are reported for the nonbiting midge species Chironomus riparius and Chironomus piger. All loci show considerable intraspecific variation and species‐specific alleles, which allow to discriminate among the two closely related species and their interspecific hybrids, and to estimate genetic diversity within and between populations. Additionally, the loci were localized on C. riparius polytene chromosomes to verify their single copy status and investigate possible chromosomal linkage. The described markers are used in different studies with regard to population and ecological genetics and evolutionary ecotoxicology of Chironomus.  相似文献   

8.
Freshwater mollusc communities readily respond to various human-induced stressors, and thus are appropriate models for studying the effects of such stressors on the structure and dynamics of stream macroinvertebrate communities. This paper examined the distribution of freshwater molluscs in 35 stream reaches of 18 small coastal basins in the south-western Iberian Peninsula. Using several multivariate techniques, I showed that mollusc distribution mainly responded to gradients in drainage area, water availability, pollution and salinity. Upstream and downstream communities were clearly differentiated, with the former dominated by freshwater species (Bithynia tentaculata, Galba truncatula, Radix balthica, Ancylus fluviatilis and Planorbarius metidjensis) and the latter by species typical of brackish waters (Peringia ulvae and Myosotella myosotis). There was a clear decrease in species richness from upper to lower reaches. The conservation of mollusc communities of these small basins requires a deeper understanding of their ecological requirements, effective control of urban discharges and an analysis of their interaction with invasive species.  相似文献   

9.
The structural characteristics of the macroinvertebrate community can effectively reflect the health status of lake ecosystems and the quality of the lake ecological environment. It is therefore important to identify the limiting factors of macroinvertebrate community structure for the maintenance of lake ecosystem health. In this study, the community composition of macroinvertebrate assemblages and their relationships with environmental variables were investigated in 13 small lakes within Lianhuan Lake in northern China. A self‐organizing map and K‐means clustering analysis grouped the macroinvertebrate communities into five groups, and the indicator species reflected the environmental characteristics of each group. Principal component analysis indicated that the classification of the macroinvertebrate communities was affected by environmental variables. The Kruskal–Wallis test results showed that environmental variables (pH, total phosphorus, nitrate, water temperature, dissolved oxygen, conductivity, permanganate index, and ammonium) had a significant effect on the classification of the macroinvertebrate communities. Redundancy analysis showed that mollusks were significantly negatively correlated with pH and chlorophyll a, while annelids and aquatic insects were significantly positively correlated with chlorophyll a and dissolved oxygen. Spearman correlation analysis showed that the species richness and Shannon''s diversity of macroinvertebrates were significantly negatively correlated with total phosphorus, while the biomass of macroinvertebrates was significantly negatively correlated with pH. High alkalinity and lake eutrophication have a serious impact on the macroinvertebrate community. Human disturbances, such as industrial and agricultural runoff, negatively impact the ecological environment and affect macroinvertebrate community structure. Thus, macroinvertebrate community structure should be improved by enhancing the ecological environment and controlling environmental pollution at a watershed scale.  相似文献   

10.
The freshwater pearl mussel Margaritifera margaritifera L. is one of the most endangered freshwater mussels in the world. Effective conservation of threatened species requires not only ecological, but also genetic information from the target species and populations. Since low genetic diversity can reduce the ability of a species to adapt to environmental changes, maintaining genetic diversity has been identified as one of the key elements in successful conservation programs. We examined genetic variation of the freshwater pearl mussel from the River Vuokkijoki, Karelia, Russia. We sequenced a fragment of the cytochrome c oxidase subunit I gene (COI) from 22 individuals and compared the data to 32 previously published COI sequences available in GenBank. We identified 10 different COI haplotypes in the sequenced samples, three of which had not been previously reported. Our results show that the River Vuokkijoki has high genetic diversity and suggest that the colonization of this northern freshwater pearl mussel population might have occurred from multiple and even distant refugia. Therefore, the freshwater pearl mussel population of the River Vuokkijoki is valuable for the conservation of the whole species.  相似文献   

11.
12.
13.
For more than 100?years, the Werra River has been severely affected by intensive salinisation caused by potash fertilizer industries. We show considerable differences in macroinvertebrate assemblages between reaches without salinisation impact and downstream reaches with intense anthropogenic salinisation in the Werra. This is true for almost all biological metrics relevant for ecological status classification under the EU-Water Framework Directive (EU-WFD) (European Community, Directive 2000/60/EC of the European Parliament and of the Council of 23 October 2000 establishing a framework for Community action in the field of water policy, No. L 327/1, of 22 December 2000) and diversity measures (taxon richness, evenness). Macroinvertebrate assemblages at salinisation sites were completely dominated by three halophile neobiotic macroinvertebrate species (Gammarus tigrinus, Corophium lacustre and Potamopyrgus antipodarum). We compared anthropogenically salinised sites from the Werra with disturbed but non-salinised sites from the Werra and other German rivers. We used biological metrics developed for classifying the ecological status according to the EU-WFD. This comparison indicated a severe degradation at salinisation sites on the Werra and these fell into the worst ecological status class ??bad?? according to the EU-WFD. Multivariate statistical analyses revealed anthropogenic salinisation as a key factor causing the differences in composition of macroinvertebrate assemblages in the Werra between salinisation and reference sites. Analyses of the long-term presence?Cabsence data of macroinvertebrate assemblages indicated no marked improvement in the ecological status in the past 20?years.  相似文献   

14.
Drinking water reservoir plays a vital role in the security of urban water supply, yet little is known about microbial community diversity harbored in the sediment of this oligotrophic freshwater environmental ecosystem. In the present study, integrating community level physiological profiles (CLPPs), nested polymerase chain reaction (PCR)-denaturing gradient gel electrophoresis (DGGE) and clone sequence technologies, we examined the sediment urease and protease activities, bacterial community functional diversity, genetic diversity of bacterial and fungal communities in sediments from six sampling sites of Zhou cun drinking water reservoir, eastern China. The results showed that sediment urease activity was markedly distinct along the sites, ranged from 2.48 to 11.81 mg NH3-N/(g·24h). The highest average well color development (AWCD) was found in site C, indicating the highest metabolic activity of heterotrophic bacterial community. Principal component analysis (PCA) revealed tremendous differences in the functional (metabolic) diversity patterns of the sediment bacterial communities from different sites. Meanwhile, DGGE fingerprints also indicated spatial changes of genetic diversity of sediment bacterial and fungal communities. The sequence BLAST analysis of all the sediment samples found that Comamonas sp. was the dominant bacterial species harbored in site A. Alternaria alternate, Allomyces macrogynus and Rhizophydium sp. were most commonly detected fungal species in sediments of the Zhou cun drinking water reservoir. The results from this work provide new insights about the heterogeneity of sediment microbial community metabolic activity and genetic diversity in the oligotrophic drinking water reservoir.  相似文献   

15.
16.
Relationships between environmental variables and benthic macroinvertebrate assemblages were investigated among several sites that varied in disturbance history in Bwindi Impenetrable National Park, an Afromontane site in East Africa. Environmental variables were correlated with the level of past catchment disturbance – logging, agricultural encroachment, and present tourism activity. For example, sites in medium and high disturbance categories had higher values of specific conductance and lower water transparency than low disturbance category sites, these environmental variables may therefore act indicators of ecological quality of rivers. Environmental variables such as conductivity and water transparency were found to be good predictors of benthic macroinvertebrate assemblages, with anthropogenically stressed sites having lower diversity than the reference sites. Impacted sites were dominated by tolerant taxa such as chironomid and leeches, while ‘clean water’ taxa such as Ephemeroptera, Plecoptera and Trichoptera dominated at minimally impacted sites. Comparison of sites with different disturbance histories provided evidence for differences in benthic macroinvertebrate communities that reflect the state of forest restoration and recovery. We recommend quarterly monitoring of water quality to act as an early warning system of deterioration and tracking ecological recovery of previously impacted sites.  相似文献   

17.
18.
19.
Mediterranean coastal areas are characterised by heavily transformed landscapes and an ever-increasing number of ponds are subjected to strong alterations. Although benthic diatoms and macroinvertebrates are widely used as indicators in freshwater ecosystems, little is still known about the diatom communities of lowland freshwater ponds in the Mediterranean region, and, furthermore, there are few macroinvertebrate-based methods to assess their ecological quality, especially in Italy. This article undertakes an analysis of benthic diatom and macroinvertebrate communities of permanent freshwater ponds, selected along a gradient of anthropogenic pressures, to identify community indicators (taxa and/or metrics) useful to evaluate the effect of human impacts. A series of 21 ponds were sampled along Tyrrhenian coast in central Italy. Five of these ponds, in a good conservations status and surrounded by woodland were selected as ‘reference sites’ for macroinvertebrates and epipelic diatoms. The remaining sixteen ponds were located in an agricultural landscape subject to different levels of human impact. The total number of macroinvertebrate taxa found in each pond was significantly higher in reference sites than in both the intermediate and heavily degraded ones, whereas the diatom species richness did not result in a good community variable to evaluate the pond ecological quality. The analysis revealed a substantial difference among the compositions of diatom communities between reference ponds and degraded ponds. The former were characterised by the presence of several species belonging to genera, such as Pinnularia sp., Eunotia sp., Stauroneis sp., Neidium sp., all of which were mostly absent from degraded ponds. Furthermore, the taxonomic richnesses of some macroinvetebrate groups (Odonata, Ephemeroptera, Trichoptera, Coleoptera), and taxa composition attributes of macroinvertebrate communities (total abundance, percentages of top three dominant taxa, percentages of Pleidae, Ancylidae, Hirudinea, Hydracarina) significantly correlated with variables linked with anthropogenic pressures. The results of the investigation suggested that diatoms tended more to reflect water chemistry through changes in community structure, whereas invertebrates responded to physical habitat changes primarily through changes in taxonomic richness. The methodologies developed for the analysis of freshwater benthic diatom and macroinvertebrate communities may have a considerable potential as a tool for assessing the ecological status of this type of water body, complying with the European Union Water Framework Directive 2000/60/EC. Electronic supplementary material  The online version of this article (doi:) contains supplementary material, which is available to authorized users. Guest editors: B. Oertli, R. Cereghino, A. Hull & R. Miracle Pond Conservation: From Science to Practice. 3rd Conference of the European Pond Conservation Network, Valencia, Spain, 14–16 May 2008  相似文献   

20.
Amphipods are key organisms in many freshwater systems and contribute substantially to the diversity and functioning of macroinvertebrate communities. Furthermore, they are commonly used as bioindicators and for ecotoxicological tests. For many areas, however, diversity and distribution of amphipods is inadequately known, which limits their use in ecological and ecotoxicological studies and handicaps conservation initiatives. We studied the diversity and distribution of amphipods in Switzerland (Central Europe), covering four major drainage basins, an altitudinal gradient of>2,500 m, and various habitats (rivers, streams, lakes and groundwater). We provide the first provisional checklist and detailed information on the distribution and diversity of all amphipod species from Switzerland. In total, we found 29 amphipod species. This includes 16 native and 13 non-native species, one of the latter (Orchestia cavimana) reported here for the first time for Switzerland. The diversity is compared to neighboring countries. We specifically discuss species of the genus Niphargus, which are often receiving less attention. We also found evidence of an even higher level of hidden diversity, and the potential occurrence of further cryptic species. This diversity reflects the biogeographic past of Switzerland, and suggests that amphipods are ideally suited to address questions on endemism and adaptive radiations, post-glaciation re-colonization and invasion dynamics as well as biodiversity-ecosystem functioning relationships in aquatic systems.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号