首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Aims Understanding of the ecophysiological dynamics of forest canopy photosynthesis and its spatial and temporal scaling is crucial for revealing ecological response to climate change. Combined observations and analyses of plant ecophysiology and optical remote sensing would enable us to achieve these studies. In order to examine the utility of spectral vegetation indices (VIs) for assessing ecosystem-level photosynthesis, we investigated the relationships between canopy-scale photosynthetic productivity and canopy spectral reflectance over seasons for 5 years in a cool, temperate deciduous broadleaf forest at 'Takayama' super site in central Japan.Methods Daily photosynthetic capacity was assessed by in situ canopy leaf area index (LAI), (LAI × V cmax [single-leaf photosynthetic capacity]), and the daily maximum rate of gross primary production (GPP max) was estimated by an ecosystem carbon cycle model. We examined five VIs: normalized difference vegetation index (NDVI), enhanced vegetation index (EVI), green–red vegetation index (GRVI), chlorophyll index (CI) and canopy chlorophyll index (CCI), which were obtained by the in situ measurements of canopy spectral reflectance.Important findings Our in situ observation of leaf and canopy characteristics, which were analyzed by an ecosystem carbon cycling model, revealed that their phenological changes are responsible for seasonal and interannual variations in canopy photosynthesis. Significant correlations were found between the five VIs and canopy photosynthetic capacity over the seasons and years; four of the VIs showed hysteresis-type relationships and only CCI showed rather linear relationship. Among the VIs examined, we applied EVI–GPP max relationship to EVI data obtained by Moderate Resolution Imaging Spectroradiometer to estimate the temporal and spatial variation in GPP max over central Japan. Our findings would improve the accuracy of satellite-based estimate of forest photosynthetic productivity in fine spatial and temporal resolutions, which are necessary for detecting any response of terrestrial ecosystem to meteorological fluctuations.  相似文献   

2.
Factors constraining the geographic ranges of broadleaf tree species in eastern North America were examined in common gardens along a ~1500 km latitudinal transect travers in grange boundaries of four target species: trembling aspen (Populus tremuloides) and paper birch (Betula papyrifera) to the north vs. eastern cottonwood (Populus deltoides) and sweet gum (Liquidambar styraciflua) to the south. In 2006 and 2007, carbon‐use efficiency (CUE), the proportion of assimilated carbon retained in biomass, was estimated for seedlings of the four species as the quotient of relative growth rate (RGR) and photosynthesis per unit tree mass (Atree). In aspen and birch, CUE and RGR declined significantly with increasing growth temperature, which spanned 9 °C across gardens and years. The 37% (relative) CUE decrease from coolest to warmest garden correlated with increases in leaf nighttime respiration (Rleaf) and the ratio of Rleaf to leaf photosynthesis (R%A). For cottonwood and sweet gum, however, similar increases in Rleaf and R%A accompanied modest CUE declines, implying that processes other than Rleaf were responsible for species differences in CUE's temperature response. Our findings illustrate marked taxonomic variation, at least among young trees, in the thermal sensitivity of CUE, and point to potentially negative consequences of climate warming for the carbon balance, competitive ability, and persistence of two foundation species in northern temperate and boreal forests.  相似文献   

3.
Invasions by alien plants significantly affect native biodiversity and ecosystem functioning. We conducted a 5-year field experiment to investigate potential effects of the annual invasive plant Impatiens glandulifera on both the native above-ground vegetation and the soil seed bank in a deciduous forest in Switzerland. Eight years after the establishment of I. glandulifera, we set up plots in patches invaded by the alien plant, in plots from which the invasive plant had been manually removed and in plots which were not yet colonized by the invasive plant. We examined plant species richness, diversity and plant species composition in the above-ground vegetation and soil seed bank in all plots one year and five years after the initiation of the experiment. The 36 plots (3 plot types × 6 replicates × 2 sites) were equally distributed over two forest sites. Neither the native above-ground vegetation nor the soil seed bank was influenced by the presence of I. glandulifera one year after the start of the field experiment. After five years, however, plant species richness of both the above-ground vegetation and the soil seed bank was reduced by 25% and 30%, respectively, in plots invaded by the alien plant compared to plots from which I. glandulifera had been removed or uninvaded plots. Furthermore, plots invaded by the alien plant had a lower total seedling density (reduction by 60%) and an altered plant species composition in the soil seed bank compared to control plots. Our field experiment indicates that negative effects of the annual invasive plant on the native above-ground vegetation and soil seed bank of deciduous forests become visible with a delay of several years.  相似文献   

4.
5.
六种木本植物水分利用效率和其小生境关系研究   总被引:35,自引:2,他引:35  
严昌荣  韩兴国  陈灵芝 《生态学报》2001,21(11):1952-1956
北京山区落叶阔叶林优势种的水分利用效率(WUE)与其所在地的气候条件有很密切的关系,特别是大气相对湿度、太阳辐射强度、饱和水汽压亏缺(VPD)和温度.辽东栎、山杏、大叶白蜡、北京丁香、荆条和核桃楸等植物在整个生长季水分利用效率的变化幅度在3.76~4.95 mmolCO2.mol1H2O之间,平均水分利用效率为4.428±0.386 mmo1 CO2.mol-1H 2O,水分利用效率以山杏最高,核桃楸最低.在整个生长季中,这些植物在早春时水分利用效率高于生长旺期.另外,同种植物生长在于旱瘠薄生境上的水分利用效率高.  相似文献   

6.
  • Phototropic leaf movement of plants is an effective mechanism for adapting to light conditions. Light is the major driver of plant photosynthesis. Leaf N is also an important limiting factor on leaf photosynthetic potential. Cotton (Gossypium hirsutum L.) exhibits diaheliotropic leaf movement. Here, we compared the long‐term photosynthetic acclimation of fixed leaves (restrained) and free leaves (allowed free movement) in cotton.
  • The fixed leaves and free leaves were used for determination of PAR, leaf chlorophyll concentration, leaf N content and leaf gas exchange. The measurements were conducted under clear sky conditions at 0, 7, 15 and 30 days after treatment (DAT).
  • The results showed that leaf N allocation and partitioning among different components of the photosynthetic apparatus were significantly affected by diaheliotropic leaf movement. Diaheliotropic leaf movement significantly increased light interception per unit leaf area, which in turn affected leaf mass per area (LMA), leaf N content (NA) and leaf N allocation to photosynthesis (NP). In addition, cotton leaves optimised leaf N allocation to the photosynthetic apparatus by adjusting leaf mass per area and NA in response to optimal light interception.
  • In the presence of diaheliotropic leaf movement, cotton leaves optimised their structural tissue and photosynthetic characteristics, such as LMA, NA and leaf N allocation to photosynthesis, so that leaf photosynthetic capacity was maximised to improve the photosynthetic use efficiency of light and N under high light conditions.
  相似文献   

7.
通过测定中国东部南北样带主要森林生态系统中10种优势植物(兴安落叶松、蒙古栎、水曲柳、紫椴、色木槭、红松、杉木、木荷、马尾松、锥栗)叶片的碳氮含量(Cmass、Nmass)、同位素丰度(δ13C、δ15N)以及光合响应曲线,分析了不同优势植物叶片的水分利用效率和氮素利用效率之间的差异及其相互关系.结果表明: 不同生活型植物叶片的Nmass和δ15N差异显著,表现为阔叶植物>针叶植物,落叶植物>常绿植物;最大光合速率(Pn max)表现为针叶植物>阔叶植物,落叶植物>常绿植物;植物叶片的瞬时水分利用效率(WUEi)和长期水分利用效率(WUE)均表现为阔叶植物>针叶植物,常绿植物>落叶植物;植物叶片的瞬时氮素利用效率(NUEi)和长期氮素利用效率(NUE)则表现出相反的规律,且常绿植物和落叶植物叶片的NUE差异显著;WUEi和WUE之间相关性不显著,而NUEi和NUE之间呈显著正相关.植物叶片的水分利用效率与氮素利用效率显著负相关.两种资源利用效率均受植物生活型的影响,并且存在一定的制约关系.  相似文献   

8.
封丘地区小麦耗水量与水分利用率研究   总被引:1,自引:1,他引:1  
根据水量平衡方程式计算,雨养麦田5个试验麦季的耗水量分别为435.5、326.0、293.8、277.2和365.9mm,可代表该区过湿、一般和干旱年份的小麦耗水量.研究结果表明,小麦地上部分生物量与其总耗水量的相关关系不显着(r=0.67).在耗水量中,土壤储水的贡献占50%.在降雨少而土壤储水丰足的年份,其贡献高达60%,是小麦水分的重要来源.在充分施肥条件下,5个麦季的水分利用率≥11.25kg·ha-1·mm-1,表明适当增加肥料投入可提高农田水分利用率.  相似文献   

9.
10.
The effects of an increasing moisture on trees of the tropical species-rich mountain rain forest in the South Ecuadorian Andes was investigated, using the daily total water consumption (TWC) and the instantaneous water use efficiency (WUE, ratio of photosynthetic CO2 uptake per water loss by transpiration) as ecophysiological indicators. Two canopy and one sub-canopy tree species, (Vismia tomentosa, Clusiaceae, an as of yet unknown Lauracee, and Spirotheca rosea, Bombacaceae) were the experimental objects. Seasonal changes as well as a long-term (18 months) trend of increasing precipitation caused an inverse reaction of the TWC of the trees. Because of a rather unlimited water supply to the trees from a permanently high water content of the soil, transpiration followed mainly the atmospheric demand of water vapor, and increasing moisture hence reduced water loss by transpiration. It was hypothesized that in spite of the reduction in transpiratory water loss photosynthetic carbon acquisition would be not or less affected due to an increase in water use efficiency. Concomitant measurements of photosynthetic net CO2 uptake showed the expected increase of WUE in V. tomentosa and S. rosea, but no clear reaction of the Lauracee. Accompanying measurements of stem extension growth confirmed an undiminished growth of V. tomentosa and S. rosea but showed also suspended growth of the Lauracee during the wettest months. While TWC can be continuously monitored with the heat dissipation technique, WUE is determined by leaf porometry in campaigns for which access to the canopy is required. Simultaneous recordings of the gas exchange of leaves at 4 different positions in the crown of one of the experimental trees (V. tomentosa) showed the usability of the trait WUE in combination with the total daily water consumption as indicator set for assessing the response of trees to a subtly changing climate. However, not all tree species appear as likewise useful indicator trees.  相似文献   

11.
Summary Measurements were made of the photosynthetic gas exchange properties and water use efficiency of 19 species of mangrove in 9 estuaries with different salinity and climatic regimes in north eastern Australia and Papua New Guinea. Stomatal conductance and CO2 assimilation rates differed significantly between species at the same locality, with the salt-secreting species, Avicennia marina, consistently having the highest CO2 assimilation rates and stomatal conductances. Proportional changes in stomatal conductance and CO2 assimilation rate resulted in constant and similar intercellular CO2 concentrations for leaves exposed to photon flux densities above 800 mol·m-2·s-1 in all species at a particular locality. In consequence, all species at the same locality had similar water use efficiencies. There were, however, significant differences in gas exchange properties between different localities. Stomatal conductance and CO2 assimilation rate both decreased with increasing salinity and with increasing leaf to air vapour pressure deficit (VPD). Furthermore, the slope of the relationship between assimilation rate and stomatal conductance increased, while intercellular CO2 concentration decreased, with increasing salinity and with decreasing ambient relative humidity. It is concluded from these results that the water use efficiency of mangroves increases with increasing environmental stress, in this case aridity, thereby maximising photosynthetic carbon fixation while minimising water loss.Contribution No. 459 from the Australian Institute of Marine Science  相似文献   

12.
Summary The effects of the availabilities of water and nitrogen on water use efficiency (WUE) of plants were investigated in a sagebrush steppe. The four species studied wereArtemisia tridentata (shrub),Ceratoides lanata (suffrutescent shrub),Elymus lanceolatus (rhizomatous grass), andElymus elymoides (tussock grass). Water and nitrogen levels were manipulated in a two-by-two factorial design resulting in four treatments: control (no additions), added water, added nitrogen, and added water and nitrogen. One instantaneous and two long-term indicators of WUE were used to testa priori predictions of the ranking of WUE among treatments. The short-term indicator was the instantaneous ratio of assimilation to transpiration (A/E). The long-term measures were 1) the slope of the relationship between conductance to water vapor and maximum assimilation and 2) the carbon isotope composition (13C) of plant material. Additional water decreased WUE, whereas additional nitrogen increased WUE. For both A/E and 13C, the mean for added nitrogen alone was significantly greater than the mean for added water alone, and means for the control and added water and nitrogen fell in between. This ranking of WUE supported the hypothesis that both water and nitrogen limit plant gas exchange in this semiarid environment. The short- and long-term indicators were in agreement, providing evidence in support of theoretical models concerning the water cost of carbon assimilation.  相似文献   

13.
Summary Different response patterns in net photosynthesis (A) leaf conductance (g) and water use efficiency (WUE= a/transpiration) in three subalpine plants occurred during experimental sun/shade transitions that simulated natural cloudcover. In Frasera speciosa Dougl., a large-leaved herb characteristic of open sites, g was relatively insensitive to transitions in irradiance and variations in A. However, large decreases in leaf temperature resulted in reduced transpiration during shade intervals and relatively constant WUE throughout the experimental sun/shade regime. In the understory herb, Arnica cordifolia Hook., patterns of A and g were similar during sun/shade transitions, but WUE was substantially reduced compared to steady-state levels. A third, somewhat intermediate pattern of A, g, and WUE was found in Artemisia tridentata L., an open site shrub. Higher intercellular CO2 values in A. tridentata suggested that internal, cellular limitations to A were high relative to stomatal limitations in this shrub when compared to the herbaceous species.  相似文献   

14.
为深入认识植物对环境变化的响应和适应,以分布在川西巴郎山的糙皮桦为研究对象,选择海拔2200、2500、3100和3400 m 4个分布点,测定计算了各分布点叶片光合氮利用效率(PNUE)、CO2扩散导度(叶肉细胞导度gm与气孔导度gs)和氮分配比例(Rubisco氮分配比例PR、生物力能学组分氮分配比例PB、捕光组分氮分配比例PL与细胞壁氮分配比例PCW)等参数,分析了其沿海拔的变化趋势以及叶片PNUE与其他参数的相关关系.结果表明: 糙皮桦叶片PNUE、PRPB在海拔2500和3100 m相对较高;叶片gsgm则随海拔升高而增加,PL随海拔升高而降低.糙皮桦叶片PRPB与PNUE呈显著正相关关系,说明PRPB是PNUE随海拔变异的重要内部因素.糙皮桦叶片光合系统氮分配比例PP在海拔2500和3100 m相对较高,叶片PCW随海拔升高而降低,叶片其他组分氮分配比例Pother随海拔升高而增加,说明随海拔的升高,糙皮桦叶片趋向将更大比例的氮分配于除光合系统和细胞壁外的其他组分中.  相似文献   

15.
16.
在晴天条件下 ,研究了 4年生甘肃红豆草 (Onobrychis viciaefolia scop.cv.‘Gansu’)、沙打旺 (Astragalus adsurgens)、东方山羊豆 (Galega orientalis)和多年生香豌豆 (L athyruslatifolius)人工种群花期 (5月 31日 )和再生期 (7月 10日 )的净光合速率、蒸腾速率、气孔导度、水分利用效率以及土壤贮水量和水分利用特征。结果表明 ,自 5月 31日 (花期 )至 7月 10日 (再生期 ) ,4种牧草对土壤水分消耗由大到小依次为 :沙打旺 119.2 mm、多年生香豌豆 91.6 mm、山羊豆 81.9m m和红豆草 73.8m m。红豆草在花期和再生期的净光合速率分别为 12 .4 1和 9.0 6μ mol CO2 / (m2 · s) ,沙打旺为 10 .10和 7.0 1μ m ol CO2 / (m2 · s) ;红豆草在花期和再生期的日均蒸腾速率 8.13和 9.0 5 m m ol H2 O/ (m2· s) ,沙打旺刈割前和刈割后蒸腾速率分别为 7.4 0和 6 .5 4mmol H2 O/ (m2· s) ,属于高光合、高蒸腾型。而山羊豆和多年生香豌豆则属于低蒸腾、低光合类型 ,花期和再生期 ,山羊豆的日均光合速率分别为 4 .74和 4 .88μm ol CO2 / (m2· s) ,多年生香豌豆为 4 .4 1和 4 .6 4 μ mol CO2 / (m2· s) ,相应的蒸腾速率分别达到 3.75和 5 .4 2 m mol H2 O/ (m2 · s) ,4 .74和 4 .34m mol H2 O/ (m2 · s)。  相似文献   

17.
The first trifoliate of soybean was shaded when fully expanded, while the plant remained in high light; a situation representative for plants growing in a closed crop. Leaf mass and respiration rate per unit area declined sharply in the first few days upon shading and remained rather constant during the further 12 days of the shading treatment. Leaf nitrogen per unit area decreased gradually until the leaves were shed. Leaf senescence was enhanced by the shading treatment in contrast to control plants growing in low light. Shaded leaves on plants grown at low nutrient availability senesced earlier than shaded leaves on plants grown at high nutrient availability. The light saturated rate of photosynthesis decreased also gradually during the shading treatment, but somewhat faster than leaf N, whereas chlorophyll contents declined somewhat slower than leaf N.
Partitioning of N in the leaf over main photosynthetic functions was estimated from parameters derived from the response of photosynthesis to CO2. It appeared that the N exported from the leaf was more at the expense of compounds that make up photosynthetic capacity than of those involved in photon absorption, resulting in a change in partitioning of N within the photosynthetic apparatus. Photosynthetic nitrogen use efficiency increased during the shading treatment, which was for the largest part due to the decrease in leaf N content, to some extent to the decrease in respiration rate and only for a small part to change in partitioning of N within the photosynthetic apparatus.  相似文献   

18.
Water‐use efficiency (WUE) has been recognized as an important characteristic of ecosystem productivity, which links carbon (C) and water cycling. However, little is known about how WUE responds to climate change at different scales. Here, we investigated WUE at leaf, canopy, and ecosystem levels under increased precipitation and warming from 2005 to 2008 in a temperate steppe in Northern China. We measured gross ecosystem productivity (GEP), net ecosystem CO2 exchange (NEE), evapotranspiration (ET), evaporation (E), canopy transpiration (Tc), as well as leaf photosynthesis (Pmax) and transpiration (Tl) of a dominant species to calculate canopy WUE (WUEc=GEP/T), ecosystem WUE (WUEgep=GEP/ET or WUEnee=NEE/ET) and leaf WUE (WUEl=Pmax/Tl). The results showed that increased precipitation stimulated WUEc, WUEgep and WUEnee by 17.1%, 10.2% and 12.6%, respectively, but decreased WUEl by 27.4%. Climate warming reduced canopy and ecosystem WUE over the 4 years but did not affect leaf level WUE. Across the 4 years and the measured plots, canopy and ecosystem WUE linearly increased, but leaf level WUE of the dominant species linearly decreased with increasing precipitation. The differential responses of canopy/ecosystem WUE and leaf WUE to climate change suggest that caution should be taken when upscaling WUE from leaf to larger scales. Our findings will also facilitate mechanistic understanding of the C–water relationships across different organism levels and in projecting the effects of climate warming and shifting precipitation regimes on productivity in arid and semiarid ecosystems.  相似文献   

19.
Trees continuously regulate leaf physiology to acquire CO2 while simultaneously avoiding excessive water loss. The balance between these two processes, or water use efficiency (WUE), is fundamentally important to understanding changes in carbon uptake and transpiration from the leaf to the globe under environmental change. While increasing atmospheric CO2 (iCO2) is known to increase tree intrinsic water use efficiency (iWUE), less clear are the additional impacts of climate and acidic air pollution and how they vary by tree species. Here, we couple annually resolved long-term records of tree-ring carbon isotope signatures with leaf physiological measurements of Quercus rubra (Quru) and Liriodendron tulipifera (Litu) at four study locations spanning nearly 100 km in the eastern United States to reconstruct historical iWUE, net photosynthesis (Anet), and stomatal conductance to water (gs) since 1940. We first show 16%–25% increases in tree iWUE since the mid-20th century, primarily driven by iCO2, but also document the individual and interactive effects of nitrogen (NOx) and sulfur (SO2) air pollution overwhelming climate. We find evidence for Quru leaf gas exchange being less tightly regulated than Litu through an analysis of isotope-derived leaf internal CO2 (Ci), particularly in wetter, recent years. Modeled estimates of seasonally integrated Anet and gs revealed a 43%–50% stimulation of Anet was responsible for increasing iWUE in both tree species throughout 79%–86% of the chronologies with reductions in gs attributable to the remaining 14%–21%, building upon a growing body of literature documenting stimulated Anet overwhelming reductions in gs as a primary mechanism of increasing iWUE of trees. Finally, our results underscore the importance of considering air pollution, which remains a major environmental issue in many areas of the world, alongside climate in the interpretation of leaf physiology derived from tree rings.  相似文献   

20.
为了验证对阿拉斯加东南部温带雨林中有关栖息地关系的预测,我们于1999年和2000年8-9月以及1999年和2000年4-5月研究了亚历山大群岛加氏(Clethrionomys gapperi)和肯氏鹿鼠(Peromyscus keeni)种群。我们测量了26个植被和结构特征以检验林隙老龄生长林、多时代老龄生长林、采伐前壮龄(23岁)生长林和泥炭混交针叶林的丰富度与微栖息地利用的相关性。微栖息地利用随季节和栖息地而变化,但加氏与林下落叶灌木覆盖度的正相关最显著。肯氏鹿鼠利用的微环境的林地有较少的苔藓,但是林隙与抓获加氏的概率有直接关系。两种鼠在两个季节的密度与林下腐朽的倒木直接相关。春季的肯氏鹿鼠密度说明加氏密度变化的62%,说明肯氏鹿鼠密度变化的89%。我们的结果印证了早期对阿拉斯加东南部肯氏鹿鼠在各种栖息地尤其早期的演替林中兴旺时的研究;但偏离了西部地貌中肯氏鹿鼠种群在晚期演替针叶林中达到最高密度的普遍结论。与北美西北部其它地区的种群不同,加氏能持久生活在上层被砍伐的雨林板块中。泥炭针叶混交林对两种鼠的繁殖种群几乎没有贡献,因而不可能减轻对多产的老龄生长雨林大规模皆伐所造成的影响。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号