首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
A classification tool suitable for establishing the ecological status of lakes based on fish population parameters has been developed for the Republic of Ireland and Northern Ireland (EU Water Framework Directive Ecoregion 17). A lake typology relevant to fish populations in lakes from Ecoregion 17 was produced as part of the ecological classification tool development. Four lake types were determined based on fish metrics and abiotic variables from 43 “reference” lakes. The specific lake fish typology categorised lakes into low (≤67 CaCO3 mg L−1) or high (>67 CaCO3 mg L−1) alkalinity, and shallow (≤17 m) or deep (>17 m) maximum depth. The fish in lakes classification tool (FIL2) follows a novel multimetric predictive approach, assigning ecological status to a lake using two independent methods. FIL2 qualitatively defines a lake's ecological status based on fish metrics using discriminant classification rules and, using a generalised linear model, quantitatively derives an Ecological Quality Ratio (EQR, 0 < EQR < 1), along with associated confidence intervals. It is recommended that both methods are used to validate output and cross-check and highlight potential misclassification.  相似文献   

2.
《Aquatic Botany》2007,86(1):25-29
Waterfowl exclusion cages were set up in Sentiz Lake, an eutrophic shallow lake in León (NW of Spain) in order to determine the role of waterfowl herbivory on macrophyte biomass and species composition. Total macrophyte biomass was high during the study (250 g DW m−2 in summer). The macrophyte community was mainly formed by Myriophyllum alterniflorum (95% cover), Ceratophyllum demersum (5%) and Potamogeton gramineus (<0.5%). High densities of co-occurring coots (Fulica atra; 24 ind/ha) and ducks (Anas penelope, A. strepera and A. platyrhynchos; 18 ind/ha) did not have a significant effect on macrophyte biomass in the lake. There were no statistical differences between total biomass inside and outside the exclosures, although plant biomass reached a higher value inside the cages than in the lake. Biomass species composition was significantly different inside and outside exclosures; C. demersum was more abundant in the cages than in the lake. P. gramineus, almost absent in the lake, became co-dominant with M. alterniflorum in some exclosures. The detailed study of M. alterniflorum flower buds in summer showed significant herbivory by coots. Flower bud abundance was lower in the lake (35% lower in June; 85% lower in July) than under waterfowl exclusion. The effect of waterfowl on macrophyte biomass in Mediterranean wetlands seems to be negligible as compared to effects identified in northern European lakes. Apart from an important role in dispersal, waterfowl in Mediterranean areas have a strong qualitative effect on the structure of plant communities by selecting most palatable species or their reproductive structures.  相似文献   

3.
Lake Chaohu is one of the most eutrophic lakes in China. Research on this lake's seasonal and spatial variations in phytoplankton diversity is needed to understand the distribution of eutrophication, as well as to find appropriate comprehensive biodiversity indices to assess the eutrophication status of the lake. The present study indicated that the Margalef index of all samples was as low as 0.799 ± 0.543 in summer (August 2011) and as high as 1.467 ± 0.653 in winter (February 2012). The Margalef index of the river samples had a high mean value and substantial variation compared with the lake samples. The Peilou index of the lake samples was higher than that of the river samples in summer and autumn (November 2011) but lower than that of the river samples in winter. In spring (May 2012), the Peilou index of the western samples was lower than that of the eastern samples. The spatial distribution of the Shannon–Wiener index was more similar to that of the Peilou index in autumn and winter, while in spring and summer, the spatial distribution was affected by both species richness and evenness. High eutrophication levels occurred in the western lake in spring and summer, whereas high levels occurred in the eastern lake, especially in the middle of the lake, in autumn and winter. The total trophic state index (TSI) in all samples exhibited a significant negative correlation with the Margalef (r = −0.726) and Peilou (r = −0.530) indices but a significant positive correlation with the Shannon–Wiener (r = 0.654) index. The partial correlation analysis results implied that these phytoplankton biodiversity indices could serve as synthetic ecological indicators to assess the eutrophication condition of Lake Chaohu.  相似文献   

4.
Although an understanding of the quantity and quality of sedimentary organic matter (SOM) pools is necessary to design sound environmental management strategies for lacustrine systems, the characterization of organic matter sources and the assessment of their relative contributions to eutrophic and inland lake sediments remain insufficient. In this study, the contribution of potential organic matter sources to sediments in shallow and hypereutrophic lake Taihu, China was assessed on the molecular level using source-specific fatty acid biomarkers. The results indicated that SOM was composed mainly of terrestrial plants with a maximal contribution of 45.3 ± 2.4% to the total organic carbon, which accounted for approximately 66% among the determined organic matter sources. Evidence suggests the terrestrial plants remained in a fresh state in surface sediments: the correlation (R2 = 0.62, p < 0.05) between bacterial and terrestrial plant carbon was strong. On the other hand, aquatic plant and bacterial carbon contributed 5–15% to the total organic carbon, which was followed by the faint contribution (<5% of total organic carbon) of algae-derived organic carbon including cyanobacteria, diatoms, and dinoflagellates. The results provided details of the contributions of SOM sources, illustrating the usefulness of fatty acid biomarkers in discriminating organic matter sources within lake environments. Although organic matter sources of sediments varied in spatial and temporal patterns, the strong correlation between terrestrial plant and total organic carbon (R2 = 0.60, p < 0.05) indicates that terrestrial plants were the dominant source in lake sediments.  相似文献   

5.
In the Patagonian region (∼37–56°S) E of the Andes, the salinity and solute composition of lakes is strongly related to their location along the marked W-E decreasing precipitation gradient that is one of the main climatic features of the area. A calibration function (n = 34) based on 12 ostracod species (Ostracoda, Crustacea) was developed by WA-PLS to quantitatively reconstruct electrical conductivity (EC) values as a salinity proxy. The selected one component model had a r2 = 0.74 and RMSEP and maximum bias equal to 16% and 31% of the sampled range, respectively, comparable to other published ostracod-based calibration functions. This model was applied to the ostracod record of the closed lake Laguna Cháltel (49°58′S, 71°07′W), comprising seven species and dominated by two species of the genus Limnocythere. In order to evaluate the calibration function’s robustness, the obtained EC values were compared with qualitative lake level and salinity variations inferred through a multiproxy hydrological reconstruction of the lake. Both reconstructions show good overall agreement, with reconstructed EC values in the oligo-mesohaline range (average: 11 060 ± 680 μS/cm) between 4570 and 3190 cal BP, corresponding to the ephemeral and shallow lake phases, and a marked decrease in EC concurrent with a lake level rise, reaching an average EC of 1140 ± 90 μS/cm during the deep lake phase (1720 cal BP to present). The variability in the reconstructed EC values for the ephemeral lake phase showed some inconsistency with the expected trend, which was attributed to time-averaging effects; for its part, the pace of the decrease in EC during the medium-depth phase (3190–1720 cal BP) differed from the expected, which could be due to autigenic effects (redissolution of salts) at the onset of this phase. This comparison not only lends support to the adequacy of the calibration function, but also suggests that its application in the context of a multiproxy study can greatly contribute to distinguish between autigenic and climatic-related controls of paleosalinity in closed lakes, allowing performing more accurate paleoenvironmental inferences on the basis of paleohydrological reconstructions.  相似文献   

6.
Stressor-response models offer guidance for concentration-based nutrient criteria in lakes under human intervention. Diatom-based statistics from biological responses were incorporated to derive taxon-specific and community-level change points (thresholds) of phosphorous and nitrogen in 77 Yangtze floodplain lakes. Diatom metrics relating with conductivity were adopted as response variables, since conductivity explained the maximum variation (38.1%) in diatom assemblages via Bootstrapped regression trees. Nonparametric change-point analysis and Threshold Indicator Taxa ANalysis showed threshold responses of diatom community structure at 0.05–0.08 mg TP/L in connected lakes and 0.02–0.04 mg TP/L in isolated lakes. Distinct community change points of sensitive diatoms occurred at 0.96–1.63 mg TN/L in connected lakes and 0.52–0.63 mg TN/L in isolated lakes. Diatom community structures of tolerant taxa were substantially altered beyond 0.22–0.23 mg/L in connected lakes and 0.52–0.69 mg NOx/L in isolated lakes. Hydrological river-lake connectivity differed significantly in ecological nutrient criteria with more TN/TP criteria and less NOx criteria in connected lakes. Given the ecological significance and biological integrity, diatom-based statistics can provide more reliable change points (thresholds) for nutrient criteria than Chl a-nutrient relationships.  相似文献   

7.
Traditional approaches for managing aquatic resources have often failed to account for effects of anthropogenic disturbances on biota that are not directly reflected by chemical and physical proxies of environmental condition. The index of biotic integrity (IBI) is a potentially effective assessment method to integrate ecological, functional, and structural aspects of aquatic systems. A macrophyte-based IBI was developed for Minnesota lakes to assess the ability of aquatic plant communities to indicate environmental condition. The index was developed using quantitative point intercept vegetation surveys for 97 lakes that represent a range of limnological and watershed characteristics. We followed an approach similar to that used in Wisconsin to develop the aquatic macrophyte community index (AMCI). Regional adaptation of the AMCI required the identification of species representative of macrophyte communities in Minnesota. Metrics and scaling methods were also substantially modified to produce a more empirically robust index. Regression analyses indicated that IBI scores reflected statewide differences in lake trophic state (R2 = 0.57, F = 130.3, df = 1, 95, p < 0.005), agricultural (R2 = 0.51, F = 83.0, df = 1, 79, p < 0.005), urban (R2 = 0.22, F = 23.0, df = 1, 79, p < 0.005), and forested land uses (R2 = 0.51, F = 84.7, df = 1, 79, p < 0.005), and county population density (R2 = 0.14, F = 16.6, df = 1, 95, p < 0.005). Variance partitioning analyses using multiple regression models indicated a unique response of the IBI to human-induced stress separate from a response to natural lake characteristics. The IBI was minimally affected by differences in sample point density as indicated by Monte Carlo analyses of reduced sampling effort. Our analysis indicates that a macrophyte IBI calibrated for Minnesota lakes could be useful for identifying differences in environmental condition attributed to human-induced stress gradients.  相似文献   

8.
《农业工程》2014,34(1):26-33
Based on the vertically interval sampling in 25 sampling sites in Dangxiong Co salt lake in 2011, a preliminary investigation on population spatial distribution and cysts resources of Artemia in the lake has been conducted. The study achieves four new progresses. First, the average density of Artemia and Artemia cysts in the lake is 4.157 × 103 ind. m−2 and 8.069 × 104 ind. m−2, respectively. Among Artemia, the adults account for 60.31%; Second, different from other salt lakes in horizontal distribution, the Artemia population mainly distributes in the open water, only a little in the shallow water, and there is no distribution in the longshore area in the north part and the estuary region; Third, in vertical distribution, 44.24% of individuals intensively distribute in the upper water layer within 2.0 m, especially 0–0.2 m, where the average density of Artemia and cysts are maximum (129.488 ind. L−1 and 5.728 ind. L−1, respectively). A decrease of distribution density is accompanied by an increase of water depth basically, the percentage of Artemia and cysts decrease to 0.68% and 4.60%, respectively; Fourth, the cysts resources of 14.96 t in the lake are assessed using contour map. 66.35% of them distributed in 0.0–2.0 m water layer and 49.06% concentrate in the 18.21% areas of the central water; Fifth, quantity of cysts suitable for development in the lake is 2.399 ± 0.320 t, with an upper limit of 0.879 t. The study can provide a reference for the sustainable development and exploitation of Artemia in Dangxiong Co salt lake.  相似文献   

9.
Cyanobacterial blooms in eutrophic lakes are severe environmental problems worldwide. To characterize the spatiotemporal heterogeneity of cyanobacterial blooms, a high-throughput method is necessary for the specific detection of cyanobacteria. In this study, the cyanobacterial composition of three eutrophic waters in China (Taihu Lake, Dongqian Lake, and Dongzhen Reservoir) was determined by pyrosequencing the cpcBA intergenic spacer (cpcBA-IGS) of cyanobacteria. A total of 2585 OTUs were obtained from the normalized cpcBA-IGS sequence dataset at a distance of 0.05. The 238 most abundant OTUs contained 92% of the total sequences and were classified into six cyanobacterial groups. The water samples of Taihu Lake were dominated by Microcystis, mixed Nostocales species, Synechococcus, and unclassified cyanobacteria. Besides, all the samples from Taihu Lake were clustered together in the dendrogram based on shared abundant OTUs. The cyanobacterial diversity in Dongqian Lake was dramatically decreased after sediment dredging and Synechococcus became exclusively dominant in this lake. The genus Synechococcus was also dominant in the surface water of Dongzhen Reservoir, while phylogenetically diverse cyanobacteria coexisted at a depth of 10 m in this reservoir. In summary, targeted deep sequencing based on cpcBA-IGS revealed a large diversity of bloom-forming cyanobacteria in eutrophic lakes and spatiotemporal changes in the composition of cyanobacterial communities. The genus Microcystis was the most abundant bloom-forming cyanobacteria in eutrophic lakes, while Synechococcus could be exclusively dominant under appropriate environmental conditions.  相似文献   

10.
《Ecological Indicators》2007,7(2):371-386
Aquatic macroinvertebrates have been among the principal biological communities used for freshwater monitoring and assessment for several decades, but macroinvertebrate biomonitoring has not incorporated nutrient measures into assessment strategies. Two nutrient biotic indices were developed for benthic macroinvertebrate communities, one for total phosphorus (NBI-P), and one for nitrate (NBI-N). Weighted averaging was used to assess the distributions of 164 macroinvertebrate taxa across TP and NO3 gradients and to establish nutrient optima and subsequent nutrient tolerance values. Both the NBI-P and NBI-N were correlated with increasing mean TP and NO3 values (r = 0.68 and r = 0.57, respectively, p < 0.0001). A three-tiered scale of eutrophication for TP and NO3 (oligotrophic: ≤0.0175 mg/l TP, ≤0.24 mg/l NO3, mesotrophic: >0.0175 to ≤0.065 mg/l TP, >0.24 to ≤0.98 mg/l NO3, eutrophic: >0.065 mg/l TP, >0.98 mg/l NO3) was also established through cluster analysis of invertebrate communities using Bray–Curtis (quantitative) similarity. Significant differences (p < 0.0001) were detected between median NBI-P and NBI-N scores among the three trophic states. Therefore, the nutrient biotic indices (NBIs) appear to accurately reflect changes in stream trophic state. Multimetric water quality assessments were also used to identify thresholds of impairment among the three trophic states. Hodges-Lehman estimation indicated that the greatest change in assessment results occurred between the mesotrophic and eutrophic states. The eutrophic state also represented the highest percentage of overall impairment. Therefore, the suggested threshold for nutrient impairment is the boundary between mesotrophic and eutrophic (0.065 mg/l TP and 0.98 mg/l NO3). The corresponding NBI-P score (6.1) and NBI-N score (6.0) for this threshold incorporate predictive capabilities into the NBIs. The NBI and index score thresholds of impairment will provide monitoring programs with a robust measure of stream nutrient status and serve as a useful tool in enforcing regional nutrient criteria.  相似文献   

11.
With the rapid development of the economy in recent years, massive algal (blue-green algae in particular) blooms have often observed in Chinese eutrophic lakes. The concentration of the cyanobacterial pigment phycocyanin (PC), an accessory pigment unique to freshwater blue-green algae, is often used as a quantitative indicator of blue-green algae in eutrophic inland waters. The purpose of this study was to evaluate the semi-analytic PC retrieval algorithm proposed by Simis et al. and to explore the potential to improve this PC algorithm so that it is more suitable for eutrophic lakes, such as Taihu Lake. In this paper, we recalculated the correction coefficients γ and δ to calculate the absorptions of chlorophyll-a at 665 nm and the absorptions of phycocyanin at 620 nm in terms of in situ measurements and observed that the values of these coefficients differed from the values used by Simis et al. and Randolph et al. The two coefficients are site dependent due to the different bio-optical properties of lakes. We also observed that the specific PC absorption at 620 nm apc*(620) decreases exponentially with an increase in PC concentrations. Therefore, a non-linear power–function of apc*(620), instead of a constant value of apc*(620) as used by Simis et al., was proposed for our improved PC retrieval algorithm in Taihu Lake, yielding a squared correlation coefficient (R2) of 0.55 and a root mean square error (RMSE) of 58.89 μg/L. Compared with the original PC retrieval algorithm by Simis et al., the improved retrieval algorithm has generally superior performance. In evaluating the limitation of the PC retrieval algorithms, we observed that the ratio of the total suspended solids to phycocyanin can be used as a primary measure for retrieval performance. Validation in Dianchi Lake and an error analysis proved that the improved PC algorithm has a better universality and is more suitable for eutrophic lakes with higher PC concentrations.  相似文献   

12.
Dissolved reactive manganese seems to be one of the parameters which determines the trophic status of limnic waters, as suggested by its strong correlations with total phosphorus, chlorophyll a, and water pH. The determination of the trophic status involved the application of reactive manganese due to its bioavailability, providing information on the actual, not just the potential (as in the case of total phosphorus or total organic carbon), threat of water eutrophication.The calculation of trophic states index (TSI) based on the reactive manganese concentration, as determined by TSIDRMn = 20.61 ln (DRMn)  35.03, permits the rational assessment of the trophic status of lakes. Oligotrophic lakes are distinguished by concentrations of DRMn < 25 μg/L, mesotrophic by 25–60 μg/L, eutrophic by 60–150 μg/L, and hypertrophic by >150 μg/L.The trophic status of 25 lakes located in central Europe in north-eastern Poland was determined based on the proposed “manganese index” and verified by commonly applied indices proposed by Carlson, Kratzer and Brezonik, and Dunalska.  相似文献   

13.
A novel approach was developed to estimate phytoplankton biomass in eutrophic turbid lakes, using MODIS bands designed for land and atmospheric studies. The Baseline Normalized Difference Bloom Index (BNDBI) uses the difference of remote-sensing reflectance (Rrs, sr−1) at 555 nm (band 4) and 645 nm (band 1) after baseline correction using bands at 469 nm and 859 nm: (Rrs′(555)  Rrs′(645))/(Rrs′(555) + Rrs′(645)). BNDBI takes advantage of the Chl-a’s absorption minimum near 572 nm and absorption maximum near 667 nm. Using data from Lake Chaohu, the index showed a strong relationship with Chl-a concentrations in conditions that would normally saturate more sensitive ocean-color sensors. Extensive field measurements were used to calibrate and validate the algorithm with unbiased root-mean-square-error (URMSE) of 47.9% when compared to in situ Rrs data. A reduced sensitivity to atmospheric effects was accomplished by using a baseline correction approach, anchored at 469 nm and 859 nm to correct the radiances at 555 nm and 645 nm. Radiative transfer simulations showed that the algorithm can be applied directly to MODIS Rayleigh-corrected reflectance (Rrc) after adjusting algorithm coefficients (URMSE uncertainty of 56.4% for MODIS Rrc data) for Chl-a concentrations <1000 μg L−1. Comparative analyses showed that the index was resistant to changes in turbidity and organic matter concentrations. Theoretical simulations, image comparisons and spectral analyses demonstrated that the index was robust in a range of complex atmospheric and surface conditions, with different aerosol types, optical thickness (τa555), solar/viewing geometry, sun glint and thin clouds. A comparison with other MODIS and MERIS Chl-a algorithms for turbid waters showed that BNDBI provided consistent results with the advantage of using MODIS wavebands that remain unsaturated in high turbidity conditions. The BNDBI opens new possibilities to explore bio-optical dynamics in turbid eutrophic lakes using data from a range of satellite sources.  相似文献   

14.
Shallow, eutrophic lakes are usually characterized by a turbid state devoid of submerged vegetation subject to human-induced eutrophication. In most cases, it is rather hard to restore a vegetated clear state due to reduced resilience caused by a blend of complicated factors. In this study, we successfully reestablished a plant community in a small hypereutrophic lake over a certain period. In winter and spring with transparency of >55 cm and temperature of <20 °C, a submerged stands bed formed gradually under strong human interventions. The reestablished plant bed displayed obvious seasonal succession and prolonged the clear-water stage until July 2005, when it collapsed. The regime shift to a turbid state was mainly attributed to the decreasing biomass of stands bed and mechanical damage brought about by the elimination of Spirodela polyrhiza, increasing water temperature, P concentration as well as periphyton biomass, etc. The reestablishment also changed the aquatic ecosystem greatly. A ‘clear-water’ stage was characterized by higher NO3?–N, NH4+–N, electrical conductivity, transparency and TN/TP level and more cladocerans (mainly Daphnia pulex), while the turbid state was characterized by higher temperature, chlorophyll a and TP level and more abundant rotifers. It is thus viable to restore submerged macrophytes in such lakes in winter and spring, when transparency is relatively high while temperature and water level are low. Nevertheless, to obtain a long-term, vegetated clear state, control of internal nutrient loading by means of obstruction, purification, dredging or solidification, is extremely necessary since nutrients play an important role in regime shifts as evidenced by the present case, too.  相似文献   

15.
《Aquatic Botany》2004,80(3):177-191
Lack of submerged vegetation was studied in a small, shallow, alkaline, clear-water lake with high nitrate concentration (mean 9 mg NO3–N L−1) and profuse filamentous green algae (FGA) (mainly Spirogyra sp.). A laboratory microcosm and two lake enclosure experiments were carried out using Elodea nuttallii (Planchon) St John. E. nuttallii grew about 1.7 times as well in sediment from its place of origin compared with sediment from the lake. Differential water quality had no effect, and neither sediment nor water prevented growth in the lake. Nutrient addition reduced plant growth by more than 55% because of shading from epiphytic filamentous green algae (shoot dry weight versus epiphytic algal dry weight, r = −0.491, P < 0.05). Transplanted Elodea plants grew better in enclosures in the lake than in laboratory conditions with lake water and sediment (P < 0.001, t-test). Rare Elodea individuals in the lake indicate the presence of plant propagules in the lake sediment, but excessive growth of filamentous green algae (summer mean 3.2 g dry weight m−2) significantly hamperd plant growth (shoot length reduced from 29 ± S.E.M. 1 to 25 ± 1 cm) and bird herbivory significantly reduced survival (from 82 ± 7 to 40 ± 6%) and shoot growth (from 78 ± 6 to 18 ± 5 cm) and thus eliminates establishment of even modest plant beds. Fish disturbance and sediment stability were not important. Restoration of submerged plants may require reduction of nitrate input, control of filamentous green algae and protection from birds.  相似文献   

16.
We investigated the burst swimming performance of five species of Antarctic fish at −1.0°C. The species studied belonged to the suborder, Notothenioidei, and from the families, Nototheniidae and Bathydraconidae. Swimming performance of the fish was assessed over the initial 300 ms of a startle response using surgically attached miniature accelerometers. Escape responses in all fish consisted of a C-type fast start; consisting of an initial pronounced bending of the body into a C-shape, followed by one or more complete tail-beats and an un-powered glide. We found significant differences in the swimming performance of the five species of fish examined, with average maximum swimming velocities (Umax) ranging from 0.91 to 1.39 m s−1 and maximum accelerations (Amax) ranging from 10.6 to 15.6 m s−2. The cryopelagic species, Pagothenia borchgrevinki, produced the fastest escape response, reaching a Umax and Amax of 1.39 m s−1 and 15.6 m s−2, respectively. We also compared the body shapes of each fish species with their measures of maximum burst performance. The dragonfish, Gymnodraco acuticeps, from the family Bathdraconidae, did not conform to the pattern observed for the other four fish species belonging to the family Nototheniidae. However, we found a negative relationship between buoyancy of the fish species and burst swimming performance.  相似文献   

17.
Cyanobacterial blooms have been occasionally observed in Iznik lake, a freshwater body (salinity = 0.5) located in the western part of Turkey. Nodularia spumigena (Mertens in Juergens) was recorded in the lake in the summer months of 2005. Maximum filament concentration of the species (1.3 × 105 fil L?1) was measured in August and constituted 60% of total cyanobacteria abundance. Trichomes were solitary, straight and had cells containing gas vesicles. Heterocysts were regularly spaced throughout the filaments. In the isolated filaments nodularin was detected by HPLC, ELISA and PPIA as well as LC–MS. HPLC analysis showed that gravimetric nodularin concentration in cultured N. spumigena cells was 578 μg of nodularin per gram dry weight (d.w.). Apart from nodularin, demethylated nodularin variant was also found in Nodularia cell extract. This is the first report of toxic N. spumigena in a European freshwater lake.  相似文献   

18.
The genus Pfiesteria includes two toxigenic species, Pfiesteria piscicida and Pfiesteria shumwayae, that are thinly thecate dinoflagellates with apparently cosmopolitan distribution, especially in shallow, poorly flushed, eutrophic estuaries. They are heterotrophic prey generalists that typically feed via phagotrophy and prefer live fish or their fresh tissues as food. They can also engage in limited mixotrophy through temporary retention of kleptochloroplasts from algal prey. Toxicity is highly variable among strains, ranging from apparently nontoxic to highly toxic. Some strains produce a group of hydrophilic toxins with metal-mediated free radical production. Various metals can be involved in the toxin congeners, and the purified toxins are highly labile. These toxins can adversely affect mammalian cells as well as fish. Toxic strains are capable of killing fish by both toxins and physical attack from feeding upon epidermis and other tissues. Non-inducible strains do not produce sufficient toxin to kill fish, but some are capable of causing larval fish death by physical attack. From 1991 to 1998, Pfiesteria spp. were linked to major kills of juvenile Atlantic menhaden (Brevoortia tyrannus), mostly at densities of ≥4(3) × 102 to 103 (rarely, 104) flagellate cells mL−1. These kills mainly occurred in the second largest and largest estuaries on the U.S. mainland, especially two main tributaries of the Albemarle-Pamlico Estuarine System, following decades of hurricane-free conditions. Between kills, Pfiesteria abundance was low in surface waters (<10 cells mL−1), and the available evidence suggests that the populations were mostly in the lower water column and within surficial sediments. Apparently highly sensitive to scouring effects from major storms, Pfiesteria populations have been sparse in the affected estuaries since several hurricanes struck the Albemarle-Pamlico in the late 1990s. Recent research highlights include characterization of a novel group of Pfiesteria toxins, culture of a toxigenic strain on a sterile fish cell line, axenic culture on a semi-defined medium, the discovery of a new mode of heterotrophic feeding in dinoflagellates as manifested by Pfiesteria, and other advances in understanding the nutritional ecology and prey acquisition of these harmful dinoflagellates.  相似文献   

19.
Effect of rearing temperature on growth and thermal tolerance of Schizothorax (Racoma) kozlovi Nikolsky larvae and juveniles was investigated. The fish (start at 12 d post hatch) were reared for nearly 6 months at five constant temperatures of 10, 14, 18, 22 and 26 °C. Then juvenile fish being acclimated at three temperatures of 14, 18 and 22 °C were chosen to determine their critical thermal maximum (CTMax) and lethal thermal maximum (LTMax) by using the dynamic method. Growth rate of S. kozlovi larvae and juveniles was significantly influenced by temperature and fish size, exhibiting an increase with increased rearing temperature, but a decline with increased fish size. A significant ontogenetic variation in the optimal temperatures for maximum growth were estimated to be 24.7 °C and 20.6 °C for larvae and juveniles of S. kozlovi, respectively. The results also demonstrated that acclimation temperature had marked effects on their CTMax and LTMax, which ranged from 32.86 °C to 34.54 °C and from 33.79 °C to 34.80 °C, respectively. It is suggested that rearing temperature must never rise above 32 °C for its successful aquaculture. Significant temperature effects on the growth rate and thermal tolerance both exhibit a plasticity pattern. Determination of critical heat tolerance and optima temperature for maximum growth of S. kozlovi is of ecological significance in the conservation and aquaculture of this species.  相似文献   

20.
We examine lacustrine wetland plant assemblages in the Central Corn Belt Plain portion of the Lake Michigan basin and developed a multimetric plant index of biotic integrity (PIBI). Our objectives were to determine the structural and functional attributes of littoral zone plant assemblages of least-impacted lacustrine wetlands, establish and test candidate metrics, statistically test and calibrate metrics, and finally validate a PIBI along a disturbance gradient. Of 35 candidate metrics, we chose 11 metrics that were grouped into four categories: species richness and composition, species tolerance, guild structure, and vegetation abundance. Based on Spearman correlations, we identified a suite of metrics, particularly those related to species richness and tolerance that had a strong response to human-induced habitat change. The overall PIBI correlated strongly with independent measures of habitat quality (p < 0.001) using a qualitative habitat index developed for lacustrine habitats. We validated the lacustrine PIBI by comparing index response to various landuse, landcover, and management types. Least impacted lakes and lakes classified as recreational or undergoing ecological restoration were not statistically separable and received the highest index scores, while the lowest scores were associated with industrial and residential land use. Least-impacted sites differ significantly (p < 0.001) from both industrial and residential lakes.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号