首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Lake Erie is the most socioeconomically important and productive of the Laurentian (North American) Great Lakes. Since the mid-1990s cyanobacterial blooms dominated primarily by Microcystis have emerged to become annual, late summer events in the western basin of Lake Erie yet the effects of these blooms on food web dynamics and zooplankton grazing are unclear. From 2005 to 2007, grazing rates of cultured (Daphnia pulex) and natural assemblages of mesozooplankton and microzooplankton on five autotrophic populations were quantified during cyanobacterial blooms in western Lake Erie. While all groups of zooplankton grazed on all prey groups investigated, the grazing rates of natural and cultured mesozooplankton were inversely correlated with abundances of potentially toxic cyanobacteria (Microcystis, Anabaena, and Cylindrospermopsis; p < 0.05) while those of the in situ microzooplankton community were not. Microzooplankton grazed more rapidly and consistently on all groups of phytoplankton, including cyanobacteria, compared to both groups of mesozooplankton. Cyanobacteria displayed more rapid intrinsic cellular growth rates than other phytoplankton groups under enhanced nutrient concentrations suggesting that future nutrient loading to Lake Erie could exacerbate cyanobacterial blooms. In sum, while grazing rates of mesozooplankton are slowed by cyanobacterial blooms in the western basin of Lake Erie, microzooplankton are likely to play an important role in the top-down control of these blooms; this control could be weakened by any future increases in nutrient loads to Lake Erie.  相似文献   

2.
Blooms of toxic cyanobacteria may potentially affect food web productivity and even be a human health hazard. In the Baltic Sea, regularly occurring summer blooms of nitrogen-fixing cyanobacteria are often dominated by Nodularia spumigena, which produces the potent hepatotoxin nodularin. Evidence of sedimentation of these blooms indicates that benthic fauna can be exposed to nodularin. In a one month experiment, we simulated the settling of a summer bloom dominated by N. spumigena in sediment microcosms with three species of sediment-dwelling, deposit-feeding macrofauna, the amphipods Monoporeia affinis and Pontoporeia femorata and the bivalve Macoma balthica, and analyzed nodularin in the animals by HPLC–ESI–MS (high-performance liquid chromatography–electrospray ionization–mass spectrometry). We found nodularin in quantities of 50–120 ng g−1 DW. The results show that deposit-feeding macrofauna in the Baltic Sea may contribute to trophic transfer of nodularin.  相似文献   

3.
Lake Taihu, which is the third largest freshwater lakes in China, is a hypertrophic shallow lake in eastern China that has experienced lake-wide cyanobacterial blooms annually during the last few decades. In this study, quantitative real-time PCR assays targeting on phycocyanin intergenic spacer (PC-IGS) and a microcystin synthetase gene mcyD were established, respectively. Water samples collected from eight sampling sites (including Zhushan Bay (N5), Meiliang Bay (N2), Gonghu Bay (N4), West lake areas (W2 and W4), south-middle lake areas (S2, S4 and S5)) in August of 2009 and 2010 were analyzed using real time PCR for the distribution and abundance of toxic and total Microcystis populations. The results showed that Microcystis exists as a mixed population of potential toxic and non-toxic genotypes, and there was significant spatial changes in the abundance of potential toxic Microcystis on the basis of quantification by quantitative real-time PCR analysis: the abundance of toxic Microcystis population in 2009 and 2010 varied from 4.08 × 104 to 8.28 × 106 copies mL?1, from 4.45 × 105 to 5.22 × 107 copies mL?1, respectively. Meanwhile the ratio of the mcyD subpopulation to the total Microcystis varied considerably, from 5.7% to 41.1% in 2009 and from 10.3% to 65.8% in 2010 in all sampling sites, and the value is high in Zhushan Bay and Meiliang Bay with the high level of eutrophication. Correlation analysis showed the abundance of toxic and total Microcystis being strongly related (P < 0.01). However, there is different effects of environmental factors on the abundance of toxic and non-toxic Microcystis populations. The abundance of toxic and total Microcystis populations were positively correlated with chlorophyll-a (Chl-a) concentration (P < 0.01) suggesting that Microcystis is dominated genera of cyanobacterial bloom in Lake Taihu. It was also found that the abundance of toxic Microcystis and the proportion of toxic subpopulation to the total Microcystis were positively correlated with total phosphorus and orthophosphate concentrations (P < 0.01), whereas there was no significant correlation with total nitrogen and nitrate concentration (P > 0.05). All data suggest that phosphorus concentration is a critical factor for determining the abundance of toxic Microcystis population.  相似文献   

4.
Cyanobacterial blooms in eutrophic lakes are severe environmental problems worldwide. To characterize the spatiotemporal heterogeneity of cyanobacterial blooms, a high-throughput method is necessary for the specific detection of cyanobacteria. In this study, the cyanobacterial composition of three eutrophic waters in China (Taihu Lake, Dongqian Lake, and Dongzhen Reservoir) was determined by pyrosequencing the cpcBA intergenic spacer (cpcBA-IGS) of cyanobacteria. A total of 2585 OTUs were obtained from the normalized cpcBA-IGS sequence dataset at a distance of 0.05. The 238 most abundant OTUs contained 92% of the total sequences and were classified into six cyanobacterial groups. The water samples of Taihu Lake were dominated by Microcystis, mixed Nostocales species, Synechococcus, and unclassified cyanobacteria. Besides, all the samples from Taihu Lake were clustered together in the dendrogram based on shared abundant OTUs. The cyanobacterial diversity in Dongqian Lake was dramatically decreased after sediment dredging and Synechococcus became exclusively dominant in this lake. The genus Synechococcus was also dominant in the surface water of Dongzhen Reservoir, while phylogenetically diverse cyanobacteria coexisted at a depth of 10 m in this reservoir. In summary, targeted deep sequencing based on cpcBA-IGS revealed a large diversity of bloom-forming cyanobacteria in eutrophic lakes and spatiotemporal changes in the composition of cyanobacterial communities. The genus Microcystis was the most abundant bloom-forming cyanobacteria in eutrophic lakes, while Synechococcus could be exclusively dominant under appropriate environmental conditions.  相似文献   

5.
The reoccurrence of significant cyanobacterial blooms in Lake Erie during the last 13 years has raised questions concerning the long-term persistence of microcystin-producing cyanobacteria and the presence of natural sediment reservoirs for potentially toxic cyanobacteria in this large lake system. To address these questions, we analyzed phytoplankton and sediment samples which were collected and preserved in the 1970s as well as samples collected in 2004 from locations within Lake Erie. The identification of microcystin-producing cyanobacteria in Lake Erie was examined via PCR amplification of the mcyA gene fragment. Based on the high % sequence similarity, the mcyA sequences from all 1970s phytoplankton and sediment samples were determined to belong to Microcystis spp., in spite of reports suggesting that Lake Erie was dominated by filamentous cyanobacteria in the 1970s. In sediment samples from 2004, signature genes for Microcystis were distributed and preserved not only in the surface sediments but also up to 10–12 cm in depth. Based on cell quantities determined by a quantitative polymerase chain reaction (qPCR) method, 0.18% of eubacteria in the sediments were Microcystis cells, of which 4.8% were potential microcystin producers. In combination with experiments showing that Microcystis cells can be cultured from Lake Erie surface sediments, this paper demonstrates the potential for these sediments to act as a reservoir for pelagic Microcystis populations and that the composition of the population of microcystin-producing cyanobacteria in Lake Erie has not changed remarkably since the 1970s.  相似文献   

6.
In a shallow multifunction dam reservoir, perennial water blooms formed by several toxin-producing cyanobacteria (Anabaena spp., Aphanizomenon spp., Planktothrix agardhii and Microcystis spp.) were observed. Over a seven-year period, concomitantly with a gradual decrease in phosphate and total phosphorus concentrations in the water and an increase in the DIN to DIP ratio, a reduced biomass of cyanobacteria was noted. Simultaneously, a twofold increase in cyanobacterial species richness was found. The concentration of intracellular anatoxin-a was positively correlated with the total cyanobacterial biomass, but the concentration of intracellular microcystins was significantly negatively correlated with the level of phosphorus in the water. Therefore, in a period with a very low (2.3–3.6) DIN:DIP ratio, intracellular ANTX prevailed in the reservoir, while in the following years (at DIN:DIP = 23–36) much higher MC levels were noted. The highest total concentrations (22.2 μg L−1) of intracellular MCs (MC-LF > -LY > -LR > -LA = -LW) and ANTX (14.4 μg L−1) were found in 2010. In the following year, eight MC iso-forms were detected (MC-LF > -LY > -LA > -LR > -LW > -WR > -YR > -RR). The number of MC variants was positively correlated with the increased contribution of Anabaena planctonica/A. affinis and Microcystis spp. to cyanobacteria biomass. The indigenous bentho-pelagic fish Abramis brama L. accumulated in their tissues relatively high amounts of both ANTX (e.g. 6.2–18.4 μg g−1 FW of liver) and different variants of MCs (up to 4.4 μg g−1 FW of liver). Cyanotoxin tissue contents decreased in the following order: gills > liver > muscles. These observed strong changes in the species structure of cyanobacteria assemblages, even at their considerably smaller biomass, appeared to be an undesirable phenomenon due to the predominance of the efficient MC and ANTX producers, such as Anabaena spp., which is easily digested by fish. The variability of the profile of cyanobacterial blooms that depends on nutrient fluctuations and may account for the diverse toxin accumulation and tissue distribution in freshwater ichthyofauna is noteworthy, especially in water bodies used for fishery.  相似文献   

7.
Nitrogen (N) and phosphorus (P) over-enrichment has accelerated eutrophication and promoted cyanobacterial blooms worldwide. The colonial bloom-forming cyanobacterial genus Microcystis is covered by sheaths which can protect cells from zooplankton grazing, viral or bacterial attack and other potential negative environmental factors. This provides a competitive advantage over other phytoplankton species. However, the mechanism of Microcystis colony formation is not clear. Here we report the influence of N, P and pH on Microcystis growth and colony formation in field simulation experiments in Lake Taihu (China). N addition to lake water maintained Microcystis colony size, promoted growth of total phytoplankton, and increased Microcystis proportion as part of total phytoplankton biomass. Increases in P did not promote growth but led to smaller colonies, and had no significant impact on the proportion of Microcystis in the community. N and P addition together promoted phytoplankton growth much more than only adding N. TN and TP concentrations lower than about TN 7.75–13.95 mg L−1 and TP 0.41–0.74 mg L−1 mainly promoted the growth of large Microcystis colonies, but higher concentrations than this promoted the formation of single cells. There was a strong inverse relationship between pH and colony size in the N&P treatments suggesting CO2 limitation may have induced colonies to become smaller. It appears that Microcystis colony formation is an adaptation to provide the organisms adverse conditions such as nutrient deficiencies or CO2 limitation induced by increased pH level associated with rapidly proliferating blooms.  相似文献   

8.
The South African impoundments of Hartbeespoort and Roodeplaat experience excessive blooms of Microcystis species each year. Microcystins, produced primarily by strains of cyanobacteria belonging to the genera Microcystis, Anabaena and Planktothrix, are harmful cyanobacterial hepatotoxins. These bloom-forming cyanobacteria form toxic and non-toxic strains that co-occur and are visually indistinguishable, but can be identified and quantified molecularly. We described the relationships between microcystin production and the genotypic composition of the Microcystis community involved together with environmental conditions in both the Roodeplaat and Hartbeespoort reservoirs using quantitative real time PCR. DNA copy number of the Microcystis-specific 16S rRNA and toxin biosynthesis genes, mcyE and mcyB, were measured. Planktothrix spp. occurred in both reservoirs during autumn, but no toxin-producing species was present as measured with mcyE specific primers, whereas both toxic and non-toxic strains of Microcystis were recorded in both reservoirs, with Microcystis spp. dominating in the summer months. Water-surface temperature correlated strongly with microcystin concentration, mcyE and mcyB copy number. Microcystin production was associated by temperatures higher than 23 °C. This suggests that should current environmental trends persist with surface water temperatures continuing to rise and more and more nutrients continued to be loaded into fresh water systems toxic Microcystis may outgrow non-toxic Microcystis and synthesise even more microcystins.  相似文献   

9.
Rising temperatures (1.4–6 °C) due to climate change have been predicted to increase cyanobacterial bloom occurrences in temperate water bodies; however, the impacts of warming on tropical cyanobacterial blooms are unknown. We examined the effects of four different temperatures on the growth rates and microcystin (MC) production of five tropical Microcystis isolates (M. ichthyoblabe (two strains), M. viridis, M. flos-aquae, and M. aeruginosa). The temperature treatments are based on current temperature range in Singapore's reservoirs (27 °C and 30 °C), as well as projected mean (33 °C) and maximum temperatures (36 °C) based on tropical climate change estimates of +6 °C in air temperature. Increasing temperatures did not significantly affect the maximum growth rates of most Microcystis strains. Higher growth rates were only observed in one M. ichthyoblabe strain at 33 °C and M. flos-aquae at 30 °C where both were isolated from the same reservoir. MC-RR and MC-LR were produced in varying amounts by all four species of Microcystis. Raised temperatures of 33 °C were found to boost total MC cell quota for three Microcystis strains although further increase to 36 °C led to a sharp decrease in total MC cell quota for all five Microcystis strains. Increasing temperature also led to higher MC-LR:MC-RR cell quota ratios in M. ichthyoblabe. Our study suggests that higher mean water temperatures resulting from climate change will generally not influence growth rates of Microcystis spp. in Singapore except for increases in M. ichthyoblabe strains. However, toxin cell quota may increase under moderate warming scenarios depending on the species.  相似文献   

10.
In this study, chitosan was used as a flocculant to harvest freshwater microalgae Chlorella vulgaris. The recovery efficiency of C. vulgaris was tested at various chitosan concentrations. 120 mg/L of chitosan showed the highest efficiency (92 ± 0.4%) within 3 min. The maximum concentration factor of 10 was also achieved at this dose of chitosan. The harvesting efficiency was pH dependent. pH 6.0 showed the highest harvesting efficiency (99 ± 0.5%). Measurement of zeta-potential confirmed that the flocculation was induced by charge neutralization. This study showed that a biopolymer, chitosan, can be a promising flocculant due to its high efficacy, low dose requirements, and short settling time.  相似文献   

11.
Benthic cyanobacteria in rivers produce cyanotoxins and affect aquatic food webs, but knowledge of their ecology lags behind planktonic cyanobacteria. The buoyancy of benthic Anabaena spp. mats was studied to understand implications for Anabaena dispersal in the Eel River, California. Field experiments were used to investigate the effects of oxygen bubble production and dissolution on the buoyancy of Anabaena dominated benthic mats in response to light exposure. Samples of Anabaena dominated mats were harvested from the South Fork Eel River and placed in settling columns to measure floating and sinking velocities, or deployed into in situ ambient and low light treatments to measure the effect of light on flotation. Floating and sinking occurred within minutes and were driven by oxygen bubbles produced during photosynthesis, rather than intracellular changes in carbohydrates or gas vesicles. Light experiment results showed that in a natural ambient light regime, mats remained floating for at least 4 days, while in low light mats begin to sink in <24 h. Floating Anabaena samples were collected from five sites in the watershed and found to contain the cyanotoxins anatoxin-a and microcystin, with higher concentrations of anatoxin-a (median 560, max 30,693 ng/g DW) than microcystin (median 30, max 37 ng/g DW). The ability of Anabaena mats to maintain their buoyancy will markedly increase their downstream dispersal distances. Increased buoyancy also allows toxin-containing mats to collect along shorelines, increasing threats to human and animal public health.  相似文献   

12.
《Ecological Informatics》2007,2(2):184-192
Lake Dianchi is a shallow and turbid lake, located in Southwest China. Since 1985, Lake Dianchi has experienced severe cyanabacterial blooms (dominated by Microcystis spp.). In extreme cases, the algal cell densities have exceeded three billion cells per liter. To predict and elucidate the population dynamics of Microcystis spp. in Lake Dianchi, a neural network based model was developed. The correlation coefficient (R2) between the predicted algal concentrations by the model and the observed values was 0.911. Sensitivity analysis was performed to clarify the algal dynamics to the changes of environmental factors. The results of a sensitivity analysis of the neural network model suggested that small increases in pH could cause significantly reduced algal abundance. Further investigations on raw data showed that the response of Microcystis spp. concentration to pH increase was dependent on algal biomass and pH level. When Microcystis spp. population and pH were moderate or low, the response of Microcystis spp. population would be more likely to be positive in Lake Dianchi; contrarily, Microcystis spp. population in Lake Dianchi would be more likely to show negative response to pH increase when Microcystis spp. population and pH were high. The paper concluded that the extremely high concentration of algal population and high pH could explain the distinctive response of Microcystis spp. population to + 1 SD (standard deviation) pH increase in Lake Dianchi. And the paper also elucidated the algal dynamics to changes of other environmental factors. One SD increase of water temperature (WT) had strongest positive relationship with Microcystis spp. biomass. Chemical oxygen demand (COD) and total phosphorus (TP) had strong positive effect on Microcystis spp. abundance while total nitrogen (TN), biological oxygen demand in five days (BOD5), and dissolved oxygen had only weak relationship with Microcystis spp. concentration. And transparency (Tr) had moderate positive relationship with Microcystis spp. concentration.  相似文献   

13.
Lough Neagh is the largest lake in the UK and has been extensively monitored since 1974. It has suffered from considerable eutrophication and toxic algal blooms. The lake continues to endure many of the symptoms of nutrient enrichment despite improvements in nutrient management throughout the catchment, in particular a permanently dominant crop of the cyanobacterium Planktothrix agardhii. This study examines the historical changes in the Lough, and uses the PROTECH lake model to predict how the phytoplankton community may adapt in response to potential future changes in air temperature and nutrient load. PROTECH was calibrated against 2008 observations, with a restriction on the maximum simulated mixed depth to reflect the shallow nature of the lake and the addition of sediment released phosphorus throughout the mixed water column between 1 May and 1 October (with an equivalent in-lake concentration of 2.0 mg m−3). The historical analysis showed that phytoplankton biomass (total chlorophyll a) experienced a steady decline since the mid-1990s. During the same period the key nutrients for phytoplankton growth in the lake have shown contrasting trends, with increases in phosphorus concentrations and declines in nitrate concentrations. The modelled future scenarios which simulated a temperature increase of up to 3 °C showed a continuation of those trends, i.e. total chlorophyll a and nitrate concentrations declined in the surface water, while phosphorus concentrations increased and P. agardhii dominated. However, scenarios which simulated a 4 °C increase in air temperature showed a switch in dominance to the cyanobacteria, Dolichospermum spp. (formerly Anabaena spp.). This change was caused by a temperature related increase in growth driving nutrient consumption to a point where nitrate was limiting, allowing the nitrogen-fixing Dolichospermum spp. to gain sufficient advantage. These results suggest that in the long term, one nuisance cyanobacteria bloom may only be replaced by another unless the in-lake phosphorus concentration can be greatly reduced.  相似文献   

14.
Microcystin-producing cyanobacteria cause serious water quality problems worldwide, which has led to growing pressure for more intensive monitoring. Molecular biology methods that are based on identification and enumeration of biosynthetic genes, such as quantitative PCR, show promise in this respect. To be practical in a wide range of settings, these methods need to be usable also by laboratory personnel who do not have previous experience in PCR setup. Here we present a real-time quantitative mcyB dry chemistry PCR assay capable of identifying the three globally most common microcystin-producing cyanobacterial genera, Anabaena, Microcystis and Planktothrix. It minimizes the amount of liquid handling and avoids direct contact with the PCR reagents at the time of analysis. Large quantities of virtually identical chips can be manufactured, improving the comparability of results. Using the dry chemistry PCR chips, freshwater environmental samples from Finnish and Estonian lakes, rivers and reservoirs were analyzed for mcyB. The chip format was found to be highly suitable for water sample analysis due to its ease-of-use, good sensitivity and amplification efficiency. Significant positive correlation (Spearman's rank correlation, ρ > 0.66, P < 0.001) was observed between combined mcyB copy numbers from Microcystis, Anabaena, Planktothrix and total microcystin concentrations, regardless of the method used to measure the toxins (ELISA or LC–MS). Positive correlations were observed also for single lakes.  相似文献   

15.
Occurrence of toxic cyanobacterial blooms has become a worldwide problem, increasing the risk of human poisoning due to consumption of seafood contaminated with cyanotoxins. Though no such cases of human intoxication due to toxic blooms have been reported so far from India, most of the studies related to blooms have been restricted to reporting of a bloom and/or antimicrobial activity of its extract. Detailed toxicity study of cyanobacterial blooms are lacking. A study on the toxicity of a dense bloom (14.56 × 106 trichomes L−1) of the marine diazotrophic cyanobacteria, Trichodesmium erythraeum, observed in the coastal waters of Phoenix Bay, Port Blair, Andamans was undertaken. The significance of this bloom is that it was a single species and had conspicuously inhibited the growth of other phytoplankton and complete exclusion of zooplankton from the bloom region, intimating the involvement of toxins in the bloom. The cyanobacterial extracts showed prominent antimicrobial activity against certain human pathogenic bacteria and fungi. Studies on the toxicity of the cyanobacterial extracts was carried out using brine shrimp bioassay, 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT) assay and comet assay. The cyanobacterial extract exhibited toxic effect to Artemia salina causing mortality of up to 40% after 48 h at a concentration of 1 mg mL−1, while it induced cytotoxicity in cell lines (HepG2 and HaCat) and caused DNA damage in human lymphocytes in vitro.  相似文献   

16.
Cyanobacterial blooms are on the rise globally and are capable of adversely impacting human, animal, and ecosystem health. Blooms dominated by cyanobacteria species capable of toxin-production are commonly observed in eutrophic freshwater. The presence of cyanobacterial blooms in selected Ohio lakes, such as Lake Erie and Grand Lake St. Marys, has been well studied, but much less is known about the geographic distribution of these blooms across all of Ohio’s waterbodies. We examined the geographic distribution of cyanobacterial blooms in Ohio’s waterbodies from 2002 to 2011, using a nested semi-empirical algorithm and remotely sensed data from the Medium Resolution Imaging Spectrometer (MERIS) onboard the European Space Agency’s Envisat. We identified: 62 lakes, reservoirs, and ponds; 7 rivers; 6 marshes and wetlands; and 3 quarries with detectable cyanobacteria pigment (phycocyanin) concentrations. Of the 78 waterbodies identified in our study, roughly half (54%; n = 42) have any reported in situ microcystins monitoring results from state monitoring programs. Further, 90% of the waterbodies identified reached phycocyanin pigment concentrations representative of levels potentially hazardous to public health. This gap in lakes potentially impacted by cyanobacterial blooms and those that are currently monitored presents an important area of concern for public health, as well as ecosystem health, where unknown human and animal exposures to cyanotoxins may occur in many of Ohio’s waterbodies. Our approach may be replicated in other regions around the globe with potential cyanobacterial bloom presence, in order to assess the intensity, geographic distribution, and temporal pattern of blooms in lakes not currently monitored for the presence of cyanobacterial blooms.  相似文献   

17.
The occurrence of freshwater harmful algal bloom toxins impacting the coastal ocean is an emerging threat, and the potential for invertebrate prey items to concentrate toxin and cause harm to human and wildlife consumers is not yet fully recognized. We examined toxin uptake and release in marine mussels for both particulate and dissolved phases of the hepatotoxin microcystin, produced by the freshwater cyanobacterial genus Microcystis. We also extended our experimental investigation of particulate toxin to include oysters (Crassostrea sp.) grown commercially for aquaculture. California mussels (Mytilus californianus) and oysters were exposed to Microcystis and microcystin toxin for 24 h at varying concentrations, and then were placed in constantly flowing seawater and sampled through time simulating riverine flushing events to the coastal ocean. Mussels exposed to particulate microcystin purged the toxin slowly, with toxin detectable for at least 8 weeks post-exposure and maximum toxin of 39.11 ng/g after exposure to 26.65 μg/L microcystins. Dissolved toxin was also taken up by California mussels, with maximum concentrations of 20.74 ng/g after exposure to 7.74 μg/L microcystin, but was purged more rapidly. Oysters also took up particulate toxin but purged it more quickly than mussels. Additionally, naturally occurring marine mussels collected from San Francisco Bay tested positive for high levels of microcystin toxin. These results suggest that ephemeral discharge of Microcystis or microcystin to estuaries and the coastal ocean accumulate in higher trophic levels for weeks to months following exposure.  相似文献   

18.
Global warming was believed to accelerate the expansion of cyanobacterial blooms. However, the impact of changes due to the allelopathic effects of cyanobacterial blooms with or without algal toxin production on the ecophysiology of its coexisting phytoplankton species arising from global warming were unknown until recently. In this study, the allelopathic effects of toxic and non-toxic Microcystis aeruginosa strains on the growth of green alga Chlorella vulgaris and photosynthesis of the co-cultivations of C. vulgaris and toxic M. aeruginosa FACHB-905 or non-toxic M. aeruginosa FACHB-469 were investigated at different temperatures. The growth of C. vulgaris, co-cultured with the toxic or non-toxic M. aeruginosa strains, was promoted at 20 °C but inhibited at temperatures ≥25 °C. The inhibitory effects of the toxic and non-toxic M. aeruginosa strains on of the co-cultivations (C. vulgaris and non-toxic M. aeruginosa FACHB-469 or toxic M. aeruginosa FACHB-905) also linearly increased with elevated temperatures. Furthermore, toxic M. aeruginosa FACHB-905 induced more inhibition toward growth of C. vulgaris or Pmax and Rd of the mixtures than non-toxic M. aeruginosa FACHB-469. C. vulgaris dominated over non-toxic M. aeruginosa FACHB-469 but toxic M. aeruginosa FACHB-905 overcame C. vulgaris when they were co-cultured in mesocosms in water temperatures from 20 to 25 °C. The results indicate that allelopathic effects of M. aeruginosa strains on C. vulgaris are both temperature- and species-dependent: it was stimulative for C. vulgaris at low temperatures such as 20 °C, but inhibitory at high temperatures (≥25 °C); the toxic strain was determined to be more harmful to C. vulgaris than the non-toxic one. This suggests that global warming may aggravate the ecological risk of cyanobacteria blooms, especially those with toxic species as the main contributors.  相似文献   

19.
Cyanobacterial and zooplankton inducible defenses are important but understudied process that regulate the trophic interactions of freshwater ecosystem. Daphnia due to its large size is considered an important zooplankton with the high potential to control cyanobacterial blooms. It has been shown that Daphnia through maternal induction transfer tolerance to their next generation against Microcystis toxicity. Maternal induction has been investigated in different Daphnia species without considering phenotypic plasticity of prey. Laboratory experiments were performed to explore cyanobacteria-Daphnia inducible defenses in order to better understand their interactions. Two Daphnia species were fed either with Microcystis aeruginosa PCC7806 (Ma) or Microcystis flos-aquae (Mf) mixed with Chlorella vulgaris (Cv) (exposed Daphnia), and or pure Cv (unexposed Daphnia). Exposed prey cultures were produced by prior exposure to Daphnia infochemicals. Neonates produced by exposed and unexposed Daphnia were fed with mixed diet (Microcystis + Cv) of either exposed and or unexposed prey. Growth parameters and toxin production of exposed prey cultures were significantly different than that of control. Exposed Daphnia fecundity and survival was higher as compared to unexposed Daphnia. Growth and reproduction was reduced in exposed Daphnia when fed with exposed prey as compared to those fed with unexposed prey. This study provides information on the interactive inducible defenses between cyanobacteria and its grazer under laboratory conditions and may increase our understanding of cyanobacteria and Daphnia interactions in the freshwater ecosystem.  相似文献   

20.
Dolichospermum (formerly Anabaena) and Microcystis cause harmful cyanobacterial blooms in freshwater ecosystems worldwide. Input reduction of both nitrogen (N) and phosphorus (P) are commonly recognized as basic ways of controlling blooms, but little is known about the roles of nutrients and their using strategy among cyanobacteria in triggering the succession of diazotrophic to non-diazotrophic cyanobacteria. In this study, we investigated in situ responses of cyanobactria to ambient P status during the transition from Dolichospermum flos-aquae to Microcystis spp. in Lake Taihu and Lake Chaohu. While dominant in phytoplankton community, D. flos-aquae experienced P deficiency as evidenced by qualitative detection of extracellular phosphatase via enzyme labeled fluorescence (ELF). The percentage of ELF-labelled D. flos-aquae cells was 33% when it dominated the phytoplankton community, and was 78% when it co-dominated with Microcystis spp., indicating an increase in P deficiency. Meanwhile, no ELF-labelled Microcystis cells were observed while polyphosphate body (PPB) were present, suggesting that Microcystis spp. were not P deficient. Additionally, the percentages of Microcystis cells containing PPB showed an inverted “U-shaped” relationship with concentrations on soluble reactive phosphorus (SRP). To validate the field observation, a laboratory study of the monocultures of the dominant cyanobacteria was conducted. Extracellular alkaline phosphatase activity (APA) and PPB accumulation were regulated by P availability in monocultures of D. flos-aquae. Interestingly, no cell bound extracellular phosphatase was found on Microcystis aeruginasa even in the culture without P supply. Consistently, the expressions of phosphatase encoding gene phoX showed no differences among the treatments. The way in which PPB accumulation occurred in Microcystis spp. in response to P availability in the cultures was similar to that observed in the field, demonstrating a strategy of energy conservation over P accumulation. The competitive advantage of Microcystis spp. was displayed at low P concentrations: where it could rapidly uptake and store inorganic P, which also increased the P deficiency of the coexisting phytoplankton species. Responses of P-transport gene pstS confirmed this hypothesis. The physiological and molecular mechanisms mentioned above enable Microcystis to survive and proliferate in environment with low available P supply more efficiently. In conclusion, different cyanobacterial species have distinct ways of responding to P availability, suggesting that the control of cyanobacterial blooms by targeted nutrient reduction is largely dependent upon the dominant species. P reduction is more effective in controlling diazotrophic cyanobacteria than non-diazotrophic cyanobacteria.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号