首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Hypoxia is an important environmental stressor to marine species, especially in benthic coastal waters. Increasing anthropogenic emissions of nutrients and organic matter contribute to the depletion of dissolved oxygen (DO). Biotic sensitivity to low levels of DO is determined by the organisms’ ability to use DO as a respiratory gas, a process depending on oxygen partial pressure. A method is proposed to estimate an indicator of the intensity of the effects caused by hypoxia on exposed marine species. Sensitivity thresholds to hypoxia of an exposed ecological community, modelled as lowest-observed-effect-concentrations (LOEC), were compiled from literature for 91 benthic, demersal and benthopelagic species of fish, crustaceans, molluscs, echinoderms, annelids, and cnidarians, and converted to temperature-specific benthic (100 m depth) LOEC values. Species distribution and LOEC values were combined using a species sensitivity distribution (SSD) methodology to estimate the DO concentration at which the potentially affected fraction (PAF) of the community's species having their LOEC exceeded is 50% (HC50LOEC). For the purpose of effect modelling in Life Cycle Impact Assessment (LCIA), Effect Factors (EF [(PAF) m3 kgO2−1]) were derived for five climate zones (CZ) to represent the change in effect due to a variation of the stressor intensity, or EF = ΔPAF/ΔDO = 0.5/HC50LOEC. Results range from 218 (PAF) m3 kgO2−1 (polar CZ) to 306 (PAF) m3 kgO2−1 (tropical CZ). Variation between CZs was modest so a site-generic global EF of 264 (PAF) m3 kgO2−1 was also estimated and may be used to represent the average impact on a global ecological community of marine species exposed to hypoxia. The EF indicator is not significantly affected by the major sources of uncertainty in the underlying data suggesting valid applicability in characterisation modelling of marine eutrophication in LCIA.  相似文献   

2.
Water transparency is one of the ecological indicators for describing water quality and the underwater light field which determines its productivity. In the European Water Framework Directive (WFD) as well as in the European Marine Strategy Framework Directive (MSFD) water transparency is used for ecological status classification of inland, coastal and open sea waters and it is regarded as an indicator for eutrophication in Baltic Sea management (HELCOM, 2007). We developed and compared different empirical and semi-analytical algorithms for lakes and coastal Nordic waters to retrieve Secchi depth (ZSD) from remote sensing data (MERIS, 300 m resolution). The algorithms were developed in water bodies with high coloured dissolved organic matter absorption (aCDOM(442) ranging 1.7–4.0 m−1), Chl a concentration (0.5–73 mg m−3) and total suspended matter (0.7–37.5 g m−3) and validated against an independent data set over inland and coastal waters (0.6 m < ZSD < 14.8 m). The results indicate that for empirical algorithms, using longer wavelengths in the visible spectrum as a reference band decreases the RMSE and increases the coefficient of determination (R2). The accuracy increased (R2 = 0.75, RMSE = 1.33 m, n = 134) when ZSD was retrieved via an empirical relationship between ZSD and Kd(490). The best agreement with in situ data was attained when ZSD was calculated via both the diffuse and the beam attenuation coefficient (R2 = 0.89, RMSE = 0.77 m, n = 89). The results demonstrate that transparency can be retrieved with high accuracy over various optical water types by the means of ocean color remote sensing, improving both the spatial and temporal coverage. The satellite derived ZSD product could be therefore used as an additional source of information for WFD and MSFD reporting purposes.  相似文献   

3.
Marine toxic dinoflagellates of the genus Gambierdiscus are the causative agents of ciguatera fish poisoning (CFP), a form of seafood poisoning that is widespread in tropical, subtropical and temperate regions worldwide. The distributions of Gambierdiscus australes, Gambierdiscus scabrosus and two phylotypes of Gambierdiscus spp. type 2 and type 3 have been reported for the waters surrounding the main island of Japan. To explore the bloom dynamics and the vertical distribution of these Japanese species and phylotypes of Gambierdiscus, the effects of light intensity on their growth were tested, using a photoirradiation-culture system. The relationship between the observed growth rates and light intensity conditions for the four species/phylotypes were formulated at R > 0.92 (p < 0.01) using regression analysis and photosynthesis-light intensity (P-L) model. Based on this equation, the optimum light intensity (Lmax) and the semi-optimum light intensity range (Ls-opt) that resulted in the maximum growth rate (μmax) and ≥80% μ max values of the four species/phylotypes, respectively, were as follows: (1) the Lmax and Ls-opt of G. australes were 208 μmol photons m−2 s−1 and 91–422 μmol photons m−2 s−1, respectively; (2) those of G. scabrosus were 252 and 120–421 μmol photons m−2 s−1, respectively; (3) those of Gambierdiscus sp. type 2 were 192 and 75–430 μmol photons m−2 s−1, respectively; and (4) those of Gambierdiscus sp. type 3 were ≥427 and 73–427 μmol photons m−2 s−1, respectively. All four Gambierdiscus species/phylotypes required approximately 10 μmol photons m−2 s−1 to maintain growth. The light intensities in coastal waters at a site in Tosa Bay were measured vertically at 1 m intervals once per season. The relationships between the observed light intensity and depth were formulated using Beer’s Law. Based on these equations, the range of the attenuation coefficients at Tosa Bay site was determined to be 0.058–0.119 m−1. The values 1700 μmol photons m−2 s−1, 500 μmol photons m−2 s−1, and 200 μmol photons m−2 s−1 were substituted into the equations to estimate the vertical profiles of light intensity at sunny midday, cloudy midday and rainy midday, respectively. Based on the regression equations coupled with the empirically determined attenuation coefficients for each of the four seasons, the ranges of the projected depths of Lmax and Ls-opt for the four Gambierdiscus species/phylotypes under sunny midday conditions, cloudy midday conditions, and rainy midday conditions were 12–38 m and 12–54 m, 1–16 m and 1–33 m, and 0 m and 0–16 m, respectively. These results suggest that light intensity plays an important role in the bloom dynamics and vertical distribution of Gambierdiscus species/phylotypes in Japanese coastal waters.  相似文献   

4.
Functional indicators are being increasingly used to assess waterway health but their responses to pressure in non-wadeable rivers have not been widely documented or applied in modern survey designs that provide unbiased estimates of extent. This study tests the response of river metabolism and loss in cotton strip tensile strength across a land use pressure gradient in non-wadeable rivers of northern New Zealand, and reports extent estimates for river metabolism and decomposition rates. Following adjustment for probability of selection, ecosystem respiration (ER) and gross primary production (GPP) for the target population of order 5–7 non-wadeable rivers averaged −7.3 and 4.8 g O2 m−2 d−1, respectively, with average P/R < 1 indicating dominance by heterotrophic processes. Ecosystem respiration was <−3.3 g O2 m−2 d−1 for 75% of non-wadeable river length with around 20% of length between −10 and −20 g O2 m−2 d−1. Cumulative distribution functions of cotton strength loss estimates indicated a more-or-less linear relationship with river km reflecting an even spread of decay rates (range in k 0.0007–0.2875 d−1) across non-wadeable rivers regionally. A non-linear relationship with land cover was detected for GPP which was typically <5 g O2 m−2 d−1 where natural vegetation cover was below 20% and greater than 80% of upstream catchment area. For cotton strength loss, the relationship with land cover was wedge-shaped such that sites with >60% natural cover had low decay rates (<0.02 d−1) with variability below this increasing as natural cover declined. Using published criteria for assessing waterway health based on ER and GPP, 232–298 km (20–29%) of non-wadeable river length was considered to have severely impaired ecosystem functioning, and 436–530 km (42–50%) had no evidence of impact on river metabolism.  相似文献   

5.
Using ten years (2003–2012) of satellite Chlorophyll-a data, we report that annual phytoplankton bloom climax in the Northwest Pacific marginal seas (17°–58°N) delays northward at a rate of 22.98 ± 2.86 km day−1. The spring bloom is a dominant feature of the phytoplankton seasonal cycle in this region, except for the northern South China Sea, which features a winter bloom. The sea surface hourly Photosynthetically Available Radiation (PAR) intensity averaged over the bloom peak duration is nearly uniform (1.04 ± 0.10 W m−2 h−1) among the four sub-regions (i.e. the northern South China Sea, the Kuroshio waters, the Sea of Japan and the Sea of Okhotsk), although different algal species in these four distinct ecological provinces could adapt to a much larger change in other environmental parameters (including total daily PAR, day length, sea surface temperature, net surface heat flux, mixed layer depth, wind speed and euphotic depth). The differences of the hourly PAR intensity between the four provinces during their bloom periods are smaller than those during non-bloom seasons. In contrast, an increasing total daily PAR (W m−2 day−1), due to the longer day length at higher latitudes, may balance decreasing sea surface temperature and induce algal flowering. Our results point to an optimal hourly light intensity for the annual phytoplankton bloom peak timing in this entire region, which could potentially become an indicator for the requirement of these annual bloom peaks.  相似文献   

6.
The sensitivity of bacteria to the marine neurotoxins, brevetoxins, produced by the dinoflagellate Karenia brevis and raphidophytes Chattonella spp. remains an open question. We investigated the bacteriocidal effects of brevetoxin (PbTx-2) on the abundance and community composition of natural microbial communities by adding it to microbes from three coastal marine locations that have varying degrees of historical brevetoxin exposure: (1) Great Bay, New Jersey, (2) Rehoboth Bay, Delaware and (3) Sarasota Bay, Florida. The populations with limited or no documented exposure were more susceptible to the effects of PbTx-2 than the Gulf of Mexico populations which are frequently exposed to brevetoxins. The community with no prior documented exposure to brevetoxins showed significant (p = 0.03) changes in bacterial abundance occurring with additions greater than 2.5 μg PbTx-2 L−1. Brevetoxin concentrations during K. brevis blooms range from ∼2.5 to nearly 100 μg L−1 with typical concentrations of ∼10–30 μg L−1. In contrast to the unexposed populations, there was no significant decrease in bacterial cell number for the microbial community that was frequently exposed to brevetoxins, which implies variable sensitivity in natural communities. The diversity in the bacterial communities that were sensitive to PbTx-2 declined upon exposure. This suggests that the PbTx-2 was selecting for or against specific species. Mortality was much higher in the 200 μg PbTx-2 L−1 treatment after 48 h and >37% of the species disappeared in the bacterial communities with no documented exposure. These results suggest that toxic red tides may play a role in structuring bacterial communities.  相似文献   

7.
Islands, which provide multiple ecosystem services, are subject to increasing urbanization pressure due to the ongoing marine development, especially in developing countries. Insights into the island urbanization mechanism and its ecological consequences are essential to sustainable development. In the present paper, the satellite images, nighttime lights, and topographic data were integrated to characterize the spatially explicit urbanization process and mechanism during 1995–2011 in the Zhoushan Island, East China. Furthermore, the corresponding spatially explicit changes in ecosystem services, including net primary productivity (NPP), carbon sequestration and oxygen production (CSOP), nutrient cycling, crop production, and habitat quality, were quantified based on the Carnegie–Ames–Stanford Approach (CASA) and Integrated Valuation of Ecosystem Services and Tradeoffs (InVEST) models. The results showed that the Zhoushan Island had experienced a rapid urbanization over the years, with significant urban encroachment on the farmland and tidal flat. Moreover, the urban land expansion was positively correlated with that of the nighttime lights and negatively correlated with the elevation, slope, and the distance to shoreline. These indicated that the urban expansion was resulted from the enhancement of socioeconomic activities, and concentrated in the near-shore areas with low altitude and gentle slope. The urban encroachment on other land use types resulted in a decrease of 3.4 Gg C a−1 NPP, 8.7 Gg a−1 CSOP, 13.2 Gg a−1 nutrient cycling, and 12.3 t a−1 crop production, respectively. In addition, the habitat quality in 11% area of this island degraded substantially. Therefore, to achieve sustainable development of islands, it is urgent to implement more stringent policies, such as island spatial regulation, environmental impact assessment, intensive land use, and urban greening, etc.  相似文献   

8.
Anthropogenic deposition of reactive nitrogen (N) has increased during the 20th century, and is considered an important driver of shifts in ecosystem functions and biodiversity loss. The objective of the present study was to identify those ecosystem functions that best evidence a target ecosystem’s sensitivity to N deposition, taking coastal heathlands as an example. We conducted a three-year field experiment in heathlands of the island Fehmarn (Baltic Sea, North Germany), which currently are subject to a background deposition of 9 kg N ha−1 yr−1. We experimentally applied six levels of N fertilisation (application of 0, 2.5, 5, 10, 20, and 50 kg N ha−1 yr−1), and quantified the growth responses of different plant species of different life forms (dwarf shrubs, graminoids, bryophytes, lichens) as well as shifts in the C:N ratios of plant tissue and humus horizons. For an applicability of the experimental findings (in terms of heathland management and critical load assessment) fertilisation effects on response variables were visualised by calculating the treatment ‘effect sizes’. The current year’s shoot increment of the dominant dwarf shrub Calluna vulgaris proved to be the most sensitive indicator to N fertilisation. Shoot increment significantly responded to additions of ≥ 5 kg N ha−1 yr−1 already in the first year, whereas flower formation of Calluna vulgaris increased only in the high-N treatments. Similarly, tissue C:N ratios of vascular plants (Calluna vulgaris and the graminoids Carex arenaria and Festuca ovina agg.) only decreased in the highest N treatments (50 and 20 kg N ha−1 yr−1, respectively). In contrast, tissue C:N ratios of cryptogams responded more quickly and sensitively than vascular plants. For example, Cladonia spp. tissue C:N ratios responded to N additions ≥ 5 kg N ha−1 yr−1 in the second study year. After three years we observed an increase in cover of graminoids and a corresponding decrease of cryptogams at N fertilisation rates of ≥ 10 kg N ha−1 yr−1. Soil C:N ratios proved to be an inappropriate indicator for N fertilisation at least within our three-year study period. Although current critical N loads for heathlands (10−20 kg N ha−1 yr−1) were confirmed in our experiment, the immediate and highly sensitive response of the current year’s shoots of Calluna vulgaris suggests that at least some ecosystem functions (e.g. dwarf shrub growth) also might respond to low (i.e. < 10 kg N ha−1 yr−1) but chronic inputs of N.  相似文献   

9.
Little is known about how the growth of individual Gambierdiscus species responds to environmental factors. This study examined the effects of temperature (15–34 °C), salinity (15–41) and irradiance (2–664 μmol photons m−2 s−1) on growth of Gambierdiscus: G. australes, G. belizeanus, G. caribaeus, G. carolinianus, G. carpenteri, G. pacificus and G. ruetzleri and one putative new species, Gambierdiscus ribotype 2. Depending on species, temperatures where maximum growth occurred varied between 26.5 and 31.1 °C. The upper and lower thermal limits for all species were between 31–34 °C and 15–21 °C, respectively. The shapes of the temperature vs. growth curves indicated that even small differences of 1–2 °C notably affected growth potentials. Salinities where maximum growth occurred varied between 24.7 and 35, while the lowest salinities supporting growth ranged from <14 to 20.9. These data indicated that Gambierdiscus species are more tolerant of lower salinities than is generally appreciated. Growth of all species began to decline markedly as salinities exceed 35.1–39.4. The highest salinity tested in this study (41), however, was lethal to only one species, Gambierdiscus ribotype 2. The combined salinity data indicated that differences in salinity regimes may affect relative species abundances and distributions, particularly when salinities are <20 and >35. All eight Gambierdiscus species were adapted to relatively low light conditions, exhibiting growth maxima at 50–230 μmol photons m−2 s−1 and requiring only 6–17 μmol photons m−2 s−1 to maintain growth. These low light requirements indicate that Gambierdiscus growth can occur up to 150 m depth in tropical waters, with optimal light regimes often extending to 75 m. The combined temperature, salinity and light requirements of Gambierdiscus can be used to define latitudinal ranges and species-specific habitats, as well as to inform predictive models.  相似文献   

10.
A new phytoplankton-based index was designed to respond to the Water Framework Directive (WFD) requirements concerning the assessment of lake ecological status. The “Indice Phytoplancton Lacustre” (IPLAC) is a multimetric index, taking into account biomass, abundance and species composition of communities. The first metric is based on the total phytoplankton biomass (MBA), the second on the abundance and taxonomic composition (MCS) of 165 indicator taxa. The IPLAC was developed on 2 independent databases, one for the calibration and the second for the validation of the metrics. The calibration dataset was composed of 255 “lake-years” from 214 distinct lakes sampled between 2005 and 2012. The validation dataset included 173 lake-years in order to confirm the response of the index to the trophic gradient and anthropogenic pressure.The results show that the IPLAC correctly highlights chemical pressure (eutrophication). Especially high Pearson correlations are shown with total phosphorus (r = −0.71, p-value <0.001), chlorophyll-a (r = −0.83, p-value <0.001) and water transparency (r = 0.73, p-value <0.001) which are the main proxies for the trophic level. Corine land cover was used as an indication of the anthropogenic pressure and good correlations are also found with the watershed land use, negatively correlated with agricultural area (r = −0.60, p-value <0.001), population density (r = −0.36, p-value <0.001) and positively with forest area (r = 0.57, p-value <0.001).The index is WFD-compliant and is dedicated to natural lakes and artificial water bodies in metropolitan France, and will be routinely used by the French Ministry of the Environment to assess lake ecological status through the phytoplankton community. However, the results must be carefully interpreted in two cases: reservoirs with large water level fluctuations, and samples that include less than 5 indicator species.  相似文献   

11.
《Harmful algae》2010,9(6):898-909
Using shipboard data collected from the central west Florida shelf (WFS) between 2000 and 2001, an optical classification algorithm was developed to differentiate toxic Karenia brevis blooms (>104 cells l−1) from other waters (including non-blooms and blooms of other phytoplankton species). The identification of K. brevis blooms is based on two criteria: (1) chlorophyll a concentration ≥1.5 mg m−3 and (2) chlorophyll-specific particulate backscattering at 550 nm  0.0045 m2 mg−1. The classification criteria yielded an overall accuracy of 99% in identifying both K. brevis blooms and other waters from 194 cruise stations. The algorithm was validated using an independent dataset collected from both the central and south WFS between 2005 and 2006. After excluding data from estuarine and post-hurricane turbid waters, an overall accuracy of 94% was achieved with 86% of all K. brevis bloom data points identified successfully. Satisfactory algorithm performance (88% overall accuracy) was also achieved when using underway chlorophyll fluorescence and backscattering data collected during a repeated alongshore transect between Tampa Bay and Florida Bay in 2005 and 2006. These results suggest that it may be possible to use presently available, commercial optical backscattering instrumentation on autonomous platforms (e.g. moorings, gliders, and AUVs) for rapid and timely detection and monitoring of K. brevis blooms on the WFS.  相似文献   

12.
A bloom of Karenia brevis Davis developed in September 2007 near Jacksonville, Florida and subsequently progressed south through east Florida coastal waters and the Atlantic Intracoastal Waterway (ICW). Maximum cell abundances exceeded 106 cells L−1 through October in the northern ICW between Jacksonville and the Indian River Lagoon. The bloom progressed further south during November, and terminated in December 2007 at densities of 104 cells L−1 in the ICW south of Jupiter Inlet, Florida. Brevetoxins were subsequently sampled in sediments and seagrass epiphytes in July and August 2008 in the ICW. Sediment brevetoxins occurred at concentrations of 11–15 ng PbTx-3 equivalents (g dry wt sediment)−1 in three of five basins in the northern ICW during summer 2008. Seagrass beds occur south of the Mosquito Lagoon in the ICW. Brevetoxins were detected in six of the nine seagrass beds sampled between the Mosquito Lagoon and Jupiter Inlet at concentrations of 6–18 ng (g dry wt epiphytes)−1. The highest brevetoxins concentrations were found in sediments near Patrick Air Force Base at 89 ng (g dry wt sediment)−1. In general, brevetoxins occurred in either seagrass epiphytes or sediments. Blades of the resident seagrass species have a maximum life span of less than six months, so it is postulated that brevetoxins could be transferred between epibenthic communities of individual blades in seagrass beds. The occurrence of brevetoxins in east Florida coast sediments and seagrass epiphytes up to eight months after bloom termination supports observations from the Florida west coast that brevetoxins can persist in marine ecosystems in the absence of sustained blooms. Furthermore, our observations show that brevetoxins can persist in sediments where seagrass communities are absent.  相似文献   

13.
《Aquatic Botany》2005,81(1):1-11
Seed bank samples were collected from Huli Marsh, a subtropical shallow water mountainous marsh in Hunan Province, South China. Core samples were divided into upper and lower layers (each 5 cm in depth) and allowed to germinate in three water levels (0, 5 and 10 cm) over a 4-month period. A total of 51 species germinated and the mean density was 9211 ± 7188 seedlings m−2. In the top 5 cm 41 species and 5747 ± 5111 seedlings m−2 germinated, whereas 40 species and 3464 ± 3363 seedlings m−2 did so from 5–10 cm. Germinated seedling density was significantly higher in the upper layer, largely due to differences in eight species. With increasing experimental water depth, less seedlings germinated: respectively, 9788 ± 7157 m−2, 2050 ± 2412 m−2 and 1978 ± 2616 m−2, of 44, 21 and 19 species, submerged under 0, 5 or 10 cm. Seven species could emerge only in 0 water level. Vallisneria natans occurred only in 5 cm water, whereas Ottelia alismoides occurred in 10 cm water. In the vegetation survey of the marsh, 25 species were recorded, which was less than half of the species recorded in the seed bank. The top 10 dominants in the standing vegetation, accounting for 89% of vegetation abundance, represented only 10% in the seed bank. Twenty germinated species that also occurred in the standing vegetation accounted for 56% of the total seed bank. Our observed number of species germinating from a Chinese wetland seed bank is within the range observed elsewhere in the northern hemisphere (15–113 species).  相似文献   

14.
Harmful algal blooms are mainly caused by marine dinoflagellates and are known to produce potent toxins that may affect the ecosystem, human activities and health. Such events have increased in frequency and intensity worldwide in the past decades. Numerous processes involved in Global Change are amplified in the Arctic, but little is known about species specific responses of arctic dinoflagellates. The aim of this work was to perform an exhaustive morphological, phylogenetical and toxinological characterization of Greenland Protoceratium reticulatum and, in addition, to test the effect of temperature on growth and production of bioactive secondary metabolites. Seven clonal isolates, the first isolates of P. reticulatum available from arctic waters, were phylogenetically characterized by analysis of the LSU rDNA. Six isolates were further characterized morphologically and were shown to produce both yessotoxins (YTX) and lytic compounds, representing the first report of allelochemical activity in P. reticulatum. As shown for one of the isolates, growth was strongly affected by temperature with a maximum growth rate at 15 °C, a significant but slow growth at 1 °C, and cell death at 25 °C, suggesting an adaptation of P. reticulatum to temperate waters. Temperature had no major effect on total YTX cell quota or lytic activity but both were affected by the growth phase with a significant increase at stationary phase. A comparison of six isolates at a fixed temperature of 10 °C showed high intraspecific variability for all three physiological parameters tested. Growth rate varied from 0.06 to 0.19 d−1, and total YTX concentration ranged from 0.3 to 15.0 pg  YTX cell−1 and from 0.5 to 31.0 pg YTX cell−1 at exponential and stationary phase, respectively. All six isolates performed lytic activity; however, for two isolates lytic activity was only detectable at higher cell densities in stationary phase.  相似文献   

15.
Increasing the use of forest biomass for energy production is an important mitigation strategy against climate change. Sustainable use of natural resources requires that these policies are evaluated, planned and implemented, taking into account the boundary conditions of the ecological systems affected. This paper describes the development and application of a quantitative modelling framework for evaluating integrated impacts of forest biomass removal scenarios on four key environmental sustainability/ecosystem service indicators: (i) carbon sequestration and balance, (ii) soil nutrient balances (base cations and nitrogen), (iii) nutrient leaching to surface waters (nitrogen and phosphorus), and (iv) dead wood biomass (used as proxy indicator for impacts on species diversity). The system is based on the use of spatial data sets, mass balance calculations, loading coefficients and dynamic modelling. The approach is demonstrated using data from an intensively studied region (Hämeenlinna municipality) encompassing the Lammi LTER (Long-Term Ecosystem Research) site in southern Finland. Forest biomass removal scenarios were derived from a management-oriented large-scale forestry model (MELA) based on sample plot and stand-level data from national forest inventories. These scenarios have been developed to guide future Finnish forest management with respect to bioenergy use. Using harvest residues for district heat production reduced fossil carbon emissions but also the carbon sink of forests in the case study area. Calculations of the net removal of base cations of the different scenarios ranged between −36 to −43 meq m−2 a−1, indicating that the supply of base cations (soil weathering + deposition) would be enough to sustain also energy-wood harvesting. Greatly increased nutrient removal values and increasing nitrogen limitation problems were however predicted. Clear-cuttings and site preparation were predicted to increase the load of total nitrogen (4.0%) and total phosphorus (4.5%) to surface waters, compared with background leaching. The amount of dead wood has been identified as a key factor for forest species diversity in Finland. A scenario maximising harvest residues used for bioenergy production, would decrease stem dead wood biomass by about 40%, compared with a business-as-usual scenario. Clear trade-off situations could be observed in the case study area between maximising the use of energy-wood and minimising impacts on species diversity, soil carbon and nutrient stores, and nutrient leaching. The developed model system allows seeking for optimised solutions with respect to different management options and sustainability considerations.  相似文献   

16.
17.
Benthic dinoflagellates of the genus Ostreopsis are found all over the world in temperate, subtropical, and tropical coastal regions. Our recent studies revealed that a putative “cryptic” species of Ostreopsis ovata is present widely along Japanese coasts. This organism, Ostreopsis sp. 1, possesses palytoxin analogs and thus its toxic blooms may be responsible for potential toxification of marine organisms. To evaluate the bloom dynamics of Ostreopsis sp. 1, the present study examined the growth responses of Ostreopsis sp. 1 strain s0716 to various light intensities (photon flux densities: μmol photons m−2 s−1) using a newly devised photoirradiation-culture system. This novel system has white light-emitting diodes (LEDs) capable of more closely simulating the wavelength spectrum of light entering the oceanic water column than do fluorescent tubes and halogen lamps. In this system, the light intensity of the white LEDs was reduced through two polarizing filters by varying the rotation angles of the filters. Thereby, the new system was capable of culturing microalgae under well-controlled light intensity conditions. Ostreopsis sp. 1 grew proportionally when light intensity was increased from 49.5 to 199 μmol photons m−2 s−1, but its growth appeared to be inhibited slightly at ≥263 μmol photons m−2 s−1. The relationship between observed growth rates and light intensity was calculated at R > 0.99 (P < 0.01) using a regression analysis with a modified equation of the photosynthesis-light intensity (P-L) model. The equation determined the critical light intensities for growth of Ostreopsis sp. 1 and the organism's growth potential as follows: (1) the threshold light intensity for growth: 29.8 μmol photons m−2 s−1; (2) the optimum light intensity (Lm) giving the maximum growth rate (μmax = 0.659 divisions day−1): 196 μmol photons m−2 s−1; (3) the optimum light intensity range (Lopt) giving ≥95% μmax: 130–330 μmol photons m−2 s−1; (4) the semi-optimum range (Lsopt) giving ≥80% μmax: 90 to over 460 μmol photons m−2 s−1. The Lsopt represents 4.5–23% ambient light intensity present in surface waters off of a temperate region of the Japanese coast, Tosa Bay; putatively, this semi-optimum range of light intensity appears at depth of 12.9–27.8 m. Considering these issues, our data indicate that Ostreopsis sp. 1 in coastal environments may form blooms at ca. ∼28 m depth in regions along Japanese coasts.  相似文献   

18.
Scuticociliatosis, which is caused by parasitic protistan pathogens known as scuticociliates, is one of the most serious diseases in marine aquaculture worldwide. Thus, elimination of these ciliates is a primary concern for scientists and managers in the aquaculture industry. To date, formalin and other toxic chemicals have been used as anti-scuticociliate agents, but issues regarding their secondary effects often arise. Consequently, development of safer methods is necessary. To find out a safe method of controlling scuticociliate populations in aqua-tanks or small-scale natural environments, cultures of 14 phototrophic dinoflagellates were tested to determine whether they were able to control populations of the common scuticociliates Miamiensis avidus and Miamiensis sp. isolated from Korean waters. Among the dinoflagellates tested, both cells and culture filtrates of Alexandrium andersonii effectively killed M. avidus and Miamiensis sp. The minimal concentration of cells and equivalent culture filtrates of A. andersonii to kill all M. avidus cells within 48 h of incubation was ca. 2500 and 4500 cells ml−1, respectively; whereas those needed to kill all Miamiensis sp. cells were ca. 1000 and 4500 cells ml−1, respectively. It was estimated that 1 m3 of the stock culture containing 20,000 A. andersonii cells ml−1 could eliminate all M. avidus cells in 7 m3 of waters within the aqua-tanks on land and all Miamiensis sp. cells in 19 m3 of waters within 48 h. None of the brine shrimp Artemia salina nauplii incubated with concentrations of 50–4500 A. andersonii cells ml−1 for 24 h was dead. Furthermore, none of the flounder Paralichthys olivaceus juveniles incubated with a mean concentration of ca. 2280 A. andersonii cells ml−1 for 96 h was dead. Therefore, A. andersonii cultures may be used as a safe biological method for controlling populations of scuticociliates and can replace toxic formalin. The results of this study provided the basis for developing the method to control scuticociliate populations and understanding interactions between scuticociliates and phototrophic dinoflagellates in marine ecosystems.  相似文献   

19.
《Aquatic Botany》2005,81(2):157-173
The main photosynthesis and respiration parameters (dark respiration rate, light saturated production rate, saturation irradiance, photosynthetic efficiency) were measured on a total of 23 macrophytes of the Thau lagoon (2 Phanerogams, 5 Chlorophyceae, 10 Rhodophyceae and 6 Phaeophyceae). Those measurements were performed in vitro under controlled conditions, close to the natural ones, and at several seasons. Concomitantly, measurements of pigment concentrations, carbon, phosphorous and nitrogen contents in tissues were performed. Seasonal intra-specific variability of photosynthetic parameters was found very high, enlightening an important acclimatation capacity. The highest photosynthetic capacities were found for Chlorophyceae (e.g. Monostroma obscurum thalli at 17 °C, 982 μmol O2 g−1 dw h−1 and 9.1 μmol O2 g−1 dw h−1/μmol photons m−2 s−1, respectively for light saturated net production rate and photosynthetic efficiency) and Phanerogams (e.g. Nanozostera noltii leaves at 25 °C, 583 μmol O2 g−1 dw h−1 and 2.6 μmol O2 g−1 dw h−1/μmol photons m−2 s−1 respectively for light saturated net production rate and photosynthetic efficiency). As expected, species with a high surface/volume ratio were found to be more productive than coarsely branched thalli and thick blades shaped species. Contrary to Rd (ranging 6.7–794 μmol O2 g−1 dw h−1, respectively for Rytiphlaea tinctoria at 7 °C and for Dasya sessilis at 25 °C) for which a positive relationship with water temperature was found whatever the species studied, the evolution of P/I curves with temperature exhibited different responses amongst the species. The results allowed to show summer nitrogen limitation for some species (Gracilaria bursa-pastoris and Ulva spp.) and to propose temperature preferences based on the photosynthetic parameters for some others (N. noltii, Zostera marina, Chaetomorpha linum).  相似文献   

20.
The diatom genus Pseudo-nitzschia (Peragallo) associated with the production of domoic acid (DA), the toxin reposnsible for amnesic shellfish poisoning, is abundant in Scottish waters. A two year study examined the relationship between Pseudo-nitzschia cells in the water column and DA concentration in blue mussels (Mytilus edulis) at two sites, and king scallops (Pecten maximus) at one site. The rate of DA uptake and depuration differed greatly between the two species with M. edulis whole tissue accumulating and depurating 7 μg g−1 (now expressed as mg kg−1) per week. In contrast, it took 12 weeks for DA to depurate from P. maximus gonad tissue from a concentration of 68 μg g−1 (now mg kg−1) to <20 μg g−1 (now mg kg‐1). The DA depuration rate from P. maximus whole tissue was <5% per week during both years of the study. Correlations between the Pseudo-nitzschia cell densities and toxin concentrations were weak to moderate for M. edulis and weak for P. maximus. Seasonal diversity on a species level was observed within the Pseudo-nitzschia genus at both sites with more DA toxicity associated with summer/autumn Pseudo-nitzschia blooms when P. australis was observed in phytoplankton samples. This study reveals the marked difference in DA uptake and depuration in two shellfish species of commercial importance in Scotland. The use of these shellfish species to act as a proxy for DA in the environment still requires investigation.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号