首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The combined action of oxidative stress and genotoxic polycyclic aromatic hydrocarbons derivatives can lead to cluster-type DNA damage that includes both a modified nucleotide and a bulky lesion. As an example, we investigated the possibility of repair of an AP site located opposite a minor groove-positioned (+)-trans-BPDE-dG or a base-displaced intercalated (+)-cis-BPDE-dG adduct (BP lesion) by a BER system. Oligonucleotides with single uracil residue in the certain position were annealed with complementary oligonucleotides bearing either a cis- or trans-BP adduct. Digestion with uracil DNA glycosylase was utilized to generate an AP site which was then hydrolyzed by APE1, and the resulting gap was processed by X-family DNA polymerases β (Polβ) and λ (Polλ), or Y-family polymerase ι (Polι). By varying reaction conditions, namely, Mg2+/Mn2+ replacement/combination and ionic strength decrease, we found that under certain conditions both Polβ and Polι can catalyze lesion bypass across both cis- and trans-BP adducts in the presence of physiological dNTP concentrations. Polβ and Polι catalyze gap filling trans-lesion synthesis in an error prone manner. By contrast, Polλ selectively introduced the correct dCTP opposite the modified dG in the case of cis-BP-dG adduct only, and did not bypass the stereoisomeric trans-adduct under any of the conditions examined. The results suggest that Polλ is a specialized polymerase that can process these kinds of lesions.  相似文献   

2.
Free radical attack on the sugar-phosphate backbone generates oxidized apurinic/apyrimidinic (AP) residues in DNA. 2'-deoxyribonolactone (dL) is a C1'-oxidized AP site damage generated by UV and gamma-irradiation, and certain anticancer drugs. If not repaired dL produces G-->A transitions in Escherichia coli. In the base excision repair (BER) pathway, AP endonucleases are the major enzymes responsible for 5'-incision of the regular AP site (dR) and dL. DNA glycosylases with associated AP lyase activity can also efficiently cleave regular AP sites. Here, we report that dL is a substrate for AP endonucleases but not for DNA glycosylases/AP lyases. The kinetic parameters of the dL-incision were similar to those of the dR. DNA glycosylases such as E. coli formamidopyrimidine-DNA glycosylase, mismatch-specific uracil-DNA glycosylase, and human alkylpurine-DNA N-glycosylase bind strongly to dL without cleaving it. We show that dL cross-links with the human proteins 8-oxoguanine-DNA (hOGG1) and thymine glycol-DNA glycosylases (hNth1), and dR cross-links with Nth and hNth1. These results suggest that dL and dR induced genotoxicity might be strengthened by BER pathway in vivo.  相似文献   

3.
A number of endogenous and exogenous agents, and cellular processes create abasic (AP) sites in DNA. If unrepaired, AP sites cause mutations, strand breaks and cell death. Aldehyde-reactive agent methoxyamine reacts with AP sites and blocks their repair. Another alkoxyamine, ARP, tags AP sites with a biotin and is used to quantify these sites. We have combined both these abilities into one alkoxyamine, AA3, which reacts with AP sites with a better pH profile and reactivity than ARP. Additionally, AA3 contains an alkyne functionality for bioorthogonal click chemistry that can be used to link a wide variety of biochemical tags to AP sites. We used click chemistry to tag AP sites with biotin and a fluorescent molecule without the use of proteins or enzymes. AA3 has a better reactivity profile than ARP and gives much higher product yields at physiological pH than ARP. It is simpler to use than ARP and its use results in lower background and greater sensitivity for AP site detection. We also show that AA3 inhibits the first enzyme in the repair of abasic sites, APE-1, to about the same extent as methoxyamine. Furthermore, AA3 enhances the ability of an alkylating agent, methylmethane sulfonate, to kill human cells and is more effective in such combination chemotherapy than methoxyamine.  相似文献   

4.
Interstrand DNA–DNA cross-links are highly toxic lesions that are important in medicinal chemistry, toxicology, and endogenous biology. In current models of replication-dependent repair, stalling of a replication fork activates the Fanconi anemia pathway and cross-links are “unhooked” by the action of structure-specific endonucleases such as XPF-ERCC1 that make incisions flanking the cross-link. This process generates a double-strand break, which must be subsequently repaired by homologous recombination. Recent work provided evidence for a new, incision-independent unhooking mechanism involving intrusion of a base excision repair (BER) enzyme, NEIL3, into the world of cross-link repair. The evidence suggests that the glycosylase action of NEIL3 unhooks interstrand cross-links derived from an abasic site or the psoralen derivative trioxsalen. If the incision-independent NEIL3 pathway is blocked, repair reverts to the incision-dependent route. In light of the new model invoking participation of NEIL3 in cross-link repair, we consider the possibility that various BER glycosylases or other DNA-processing enzymes might participate in the unhooking of chemically diverse interstrand DNA cross-links.  相似文献   

5.
6.
The p53 tumor suppressor that plays a central role in the cellular response to genotoxic stress was suggested to be associated with the DNA repair machinery which mostly involves nucleotide excision repair (NER). In the present study we show for the first time that p53 is also directly involved in base excision repair (BER). These experiments were performed with p53 temperature-sensitive (ts) mutants that were previously studied in in vivo experimental models. We report here that p53 ts mutants can also acquire wild-type activity under in vitro conditions. Using ts mutants of murine and human origin, it was observed that cell extracts overexpressing p53 exhibited an augmented BER activity measured in an in vitro assay. Depletion of p53 from the nuclear extracts abolished this enhanced activity. Together, this suggests that p53 is involved in more than one DNA repair pathway.  相似文献   

7.
DNA damaging agents are a constant threat to genomes in both the nucleus and the mitochondria. To combat this threat, a suite of DNA repair pathways cooperate to repair numerous types of DNA damage. If left unrepaired, these damages can result in the accumulation of mutations which can lead to deleterious consequences including cancer and neurodegenerative disorders. The base excision repair (BER) pathway is highly conserved from bacteria to humans and is primarily responsible for the removal and subsequent repair of toxic and mutagenic oxidative DNA lesions. Although the biochemical steps that occur in the BER pathway have been well defined, little is known about how the BER machinery is regulated. The budding yeast, Saccharomyces cerevisiae is a powerful model system to biochemically and genetically dissect BER. BER is initiated by DNA N-glycosylases, such as S. cerevisiae Ntg1. Previous work demonstrates that Ntg1 is post-translationally modified by SUMO in response to oxidative DNA damage suggesting that this modification could modulate the function of Ntg1. In this study, we mapped the specific sites of SUMO modification within Ntg1 and identified the enzymes responsible for sumoylating/desumoylating Ntg1. Using a non-sumoylatable version of Ntg1, ntg1ΔSUMO, we performed an initial assessment of the functional impact of Ntg1 SUMO modification in the cellular response to DNA damage. Finally, we demonstrate that, similar to Ntg1, the human homologue of Ntg1, NTHL1, can also be SUMO-modified in response to oxidative stress. Our results suggest that SUMO modification of BER proteins could be a conserved mechanism to coordinate cellular responses to DNA damage.  相似文献   

8.
Apurinic/apyrimidinic (AP or abasic) sites are among the most abundant DNA lesions. Numerous proteins within different organisms ranging from bacteria to human have been demonstrated to react with AP sites to form covalent Schiff base DNA–protein cross-links (DPCs). These DPCs are unstable due to their spontaneous hydrolysis, but the half-lives of these cross-links can be as long as several hours. Such long-lived DPCs are extremely toxic due to their large sizes, which physically block DNA replication. Therefore, these adducts must be promptly eradicated to maintain genome integrity. Herein, we used in vitro reconstitution experiments with chemically synthesized, stable, and site-specific Schiff base AP-peptide/protein cross-link analogs to demonstrate for the first time that this type of DPC can be repaired by Escherichia coli (E. coli) long-patch base excision repair. We demonstrated that the repair process requires a minimum of three enzymes and five consecutive steps, including: (1) 5′-DNA strand incision of the DPC by endonuclease IV; (2 to 4) strand-displacement DNA synthesis, removal of the 5′-deoxyribose phosphate-peptide/protein adduct-containing flap, and gap-filling DNA synthesis by DNA polymerase I; and (5) strand ligation by a ligase. We further demonstrated that endonuclease IV plays a major role in incising an AP-peptide cross-link within E. coli cell extracts. We also report that eradicating model AP-protein (11.2–36.1 kDa) DPCs is less efficient than that of an AP-peptide10mer cross-link, supporting the emerging model that proteolysis is likely required for efficient DPC repair.  相似文献   

9.
Human nucleotide excision repair processes carcinogen-DNA adducts at highly variable rates, even at adjacent sites along individual genes. Here, we identify conformational determinants of fast or slow repair by testing excision of N2-guanine adducts formed by benzo[a]pyrene diol epoxide (BPDE), a potent and ubiquitous mutagen that induces mainly G x C-->T x A transversions and frameshift deletions. We found that human nucleotide excision repair processes the predominant (+)-trans-BPDE-N2-dG adduct 15 times less efficiently than a standard acetylaminofluorene-C8-dG lesion in the same sequence. No difference was observed between (+)-trans- and (-)-trans-BPDE-N2-dG, but excision was enhanced about 10-fold by changing the adduct configurations to either (+)-cis- or (-)-cis-BPDE-N2-dG. Conversely, excision of (+)-cis- and (-)-cis- but not (+)-trans-BPDE-N2-dG was reduced about 10-fold when the complementary cytosine was replaced by adenine, and excision of these BPDE lesions was essentially abolished when the complementary deoxyribonucleotide was missing. Thus, a set of chemically identical BPDE adducts yielded a greater-than-100-fold range of repair rates, demonstrating that nucleotide excision repair activity is entirely dictated by local DNA conformation. In particular, this unique comparison between structurally highly defined substrates shows that fast excision of BPDE-N2-dG lesions is correlated with displacement of both the modified guanine and its partner base in the complementary strand from their normal intrahelical positions. The very slow excision of carcinogen-DNA adducts located opposite deletion sites reveals a cellular strategy that minimizes the fixation of frameshifts after mutagenic translesion synthesis.  相似文献   

10.
Microscopy and micro-irradiation imaging techniques have significantly advanced our knowledge of DNA damage tolerance and the assembly of DNA repair proteins at the sites of damage. While these tools have been extensively applied to the study of nucleotide excision repair and double-strand break repair, their application to the repair of oxidatively-induced base lesions and single-strand breaks is just beginning to yield new insights. This review will focus on examining micro-irradiation techniques reported to create base lesions and single-strand breaks; these lesions are considered to be primarily addressed by proteins involved in the base excision repair (BER) pathway. By examining conditions for generating these DNA lesions and reviewing information on the assembly and dissociation of repair complexes at the induced lesion sites, we hope to promote further investigations into BER and to stimulate further development and enhancement of these techniques for the study of BER.  相似文献   

11.
The repair enzyme 8-oxoguanine glycosylase/ apyrimidinic/apurinic lyase (OGG) removes 8-hydroxy-2'deoxyguanosine (oh8dG) in human cells. Our goal was to examine oh8dG-removing activity in the cell nuclei of male C57BL/6 mouse brains treated with either forebrain ischemia-reperfusion (FblR) or sham operations. We found that the OGG activity in nuclear extracts, under the condition in which other nucleases did not destroy the oligodeoxynucleotide duplex, excised oh8dG with the greatest efficiency on the oligodeoxynucleotide duplex containing oh8dG/dC and with less efficiency on the heteroduplex containing oh8dG/dT, oh8dG/dG, or oh8dG/dA. This specificity was the same as for the recombinant type 1 OGG (OGG1) of humans. We observed that the OGG1 peptide and its activity in the mouse brain were significantly increased after 90 min of ischemia and 20-30 min of reperfusion. The increase in the protein level and in the activity of brain OGG1 correlated positively with the elevation of FblR-induced DNA lesions in an indicator gene (the c-fos gene) of the brain. The data suggest a possibility that the OGG1 protein may excise oh8dG in the mouse brain and that the activity of OGG1 may have a functional role in reducing oxidative gene damage in the brain after FblR.  相似文献   

12.
Accumulation of 8-oxo-7,8-dihydroguanine (8-oxoG) in the DNA results in genetic instability and mutagenesis, and is believed to contribute to carcinogenesis, aging processes and various aging-related diseases. 8-OxoG is removed from the DNA via DNA base excision repair (BER), initiated by 8-oxoguanine DNA glycosylase-1 (OGG1). Our recent studies have shown that OGG1 binds its repair product 8-oxoG base with high affinity at a site independent from its DNA lesion-recognizing catalytic site and the OGG1•8-oxoG complex physically interacts with canonical Ras family members. Furthermore, exogenously added 8-oxoG base enters the cells and activates Ras GTPases; however, a link has not yet been established between cell signaling and DNA BER, which is the endogenous source of the 8-oxoG base. In this study, we utilized KG-1 cells expressing a temperature-sensitive mutant OGG1, siRNA ablation of gene expression, and a variety of molecular biological assays to define a link between OGG1-BER and cellular signaling. The results show that due to activation of OGG1-BER, 8-oxoG base is released from the genome in sufficient quantities for activation of Ras GTPase and resulting in phosphorylation of the downstream Ras targets Raf1, MEK1,2 and ERK1,2. These results demonstrate a previously unrecognized mechanism for cellular responses to OGG1-initiated DNA BER.  相似文献   

13.
The function of the human nucleotide excision repair (NER) apparatus is to remove bulky adducts from damaged DNA. In an effort to gain insights into the molecular mechanisms involved in the recognition and excision of bulky lesions, we investigated a series of site specifically modified oligonucleotides containing single, well-defined polycyclic aromatic hydrocarbon (PAH) diol epoxide-adenine adducts. Covalent adducts derived from the bay region PAH, benzo[a]pyrene, are removed by human NER enzymes in vitro. In contrast, the stereochemically analogous N(6)-dA adducts derived from the topologically different fjord region PAH, benzo[c]phenanthrene, are resistant to repair. The evasion of DNA repair may play a role in the observed higher tumorigenicity of the fjord region PAH diol epoxides. We are elucidating the structural and thermodynamic features of these adducts that may underlie their marked distinction in biologic function, employing high-resolution nuclear magnetic resonance studies, measurements of thermal stabilities of the PAH diol epoxide-modified oligonucleotide duplexes, and molecular dynamics simulations with free energy calculations. Our combined findings suggest that differences in the thermodynamic properties and thermal stabilities are associated with differences in distortions to the DNA induced by the lesions. These structural effects correlate with the differential NER susceptibilities and stem from the intrinsically distinct shapes of the fjord and bay region PAH diol epoxide-N(6)-adenine adducts.  相似文献   

14.
Poly(ADP-ribosyl)ation is a posttranslational protein modification significant for genomic stability and cell survival in response to DNA damage. Poly(ADP-ribosyl)ation is catalyzed by poly(ADP-ribose)polymerases (PARPs). Among the 17 members of the PARP family, PARP-1 and PARP-2 are described as enzymes whose catalytic activity is stimulated by some types of DNA damages.  相似文献   

15.
Demple B  Sung JS 《DNA Repair》2005,4(12):1442-1449
Many oxidative DNA lesions are handled well by base excision repair (BER), but some types may be problematic. Recent work indicates that 2-deoxyribonolactone (dL) is such a lesion by forming stable, covalent cross-links between the abasic residue and DNA repair proteins with lyase activity. In the case of DNA polymerase beta, the reaction is potentiated by incision of dL by Ape1, the major mammalian AP endonuclease. When repair is prevented, polymerase beta is the most reactive cross-linking protein in whole-cell extracts. Cross-linking with dL is largely avoided by processing the damage through the "long-patch" (multinucleotide) BER pathway. However, if excess damage leads to the accumulation of unrepaired oxidative lesions in DNA, there may be a danger of polymerase beta-mediated cross-link formation. Understanding how cells respond to such complex damage is an important issue. In addition to its role in defending against DNA damage caused by exogenous agents, Ape1 protein is essential for coping with the endogenous DNA damage in human cells grown in culture. Suppression of Ape1 using RNA-interference technology causes arrest of cell proliferation and activation of apoptosis in various cell types, correlated with the accumulation of unrepaired abasic DNA damage. Notably, all these effects are reversed by expression of the unrelated protein Apn1 of S. cerevisiae, which shares only the enzymatic repair function with Ape1 (AP endonuclease).  相似文献   

16.
Continuing our work on fluorogenic substrates labeled with single fluorophores for nucleic acid modifying enzymes, here we describe the development of such substrates for DNA ligases and some base excision repair enzymes. These substrates are hairpin-type synthetic DNA molecules with a single fluorophore located on a base close to the 3′ ends, an arrangement that results in strong fluorescence quenching. When such substrates are subjected to an enzymatic reaction, the position of the dyes relative to that end of the molecules is altered, resulting in significant fluorescence intensity changes. The ligase substrates described here were 5′ phosphorylated and either blunt-ended or carrying short, self-complementary single-stranded 5′ extensions. The ligation reactions resulted in the covalent joining of the ends of the molecules, decreasing the quenching effect of the terminal bases on the dyes. To generate fluorogenic substrates for the base excision repair enzymes formamido–pyrimidine–DNA glycosylase (FPG), human 8-oxo-G DNA glycosylase/AP lyase (hOGG1), endonuclease IV (EndoIV), and apurinic/apyrimidinic endonuclease (APE1), we introduced abasic sites or a modified nucleotide, 8-oxo-dG, at such positions that their enzymatic excision would result in the release of a short fluorescent fragment. This was also accompanied by strong fluorescence increases. Overall fluorescence changes ranged from approximately 4-fold (ligase reactions) to more than 20-fold (base excision repair reactions).  相似文献   

17.
In Schizosaccharomyces pombe the repair of apurinic/apyrimidinic (AP) sites is mainly initiated by AP lyase activity of DNA glycosylase Nth1p. In contrast, the major AP endonuclease Apn2p functions by removing 3'-alpha,beta-unsaturated aldehyde ends induced by Nth1p, rather than by incising the AP sites. S. pombe possesses other minor AP endonuclease activities derived from Apn1p and Uve1p. In this study, we investigated the function of these two enzymes in base excision repair (BER) for methyl methanesulfonate (MMS) damage using the nth1 and apn2 mutants. Deletion of apn1 or uve1 from nth1Delta cells did not affect sensitivity to MMS. Exogenous expression of Apn1p failed to suppress the MMS sensitivity of nth1Delta cells. Although Apn1p and Uve1p incised the oligonucleotide containing an AP site analogue, these enzymes could not initiate repair of the AP sites in vivo. Despite this, expression of Apn1p partially restored the MMS sensitivity of apn2Delta cells, indicating that the enzyme functions as a 3'-phosphodiesterase to remove 3'-blocked ends. Localization of Apn1p in the nucleus and cytoplasm hints at an additional function of the enzyme other than nuclear DNA repair. Heterologous expression of Saccharomyces cerevisiae homologue of Apn1p completely restored the MMS resistance of the nth1Delta and apn2Delta cells. This result confirms a difference in the major pathway for processing the AP site between S. pombe and S. cerevisiae cells.  相似文献   

18.
Two base excision repair glycosylase (BER) transition state (TS) mimics, (3R,4R)-1-benzyl (hydroxymethyl) pyrrolidin-3-ol (1NBn) and (3R,4R)-(hydroxymethyl) pyrrolidin-3-ol (1N), were synthesized using an improved method. Several BER glycosylases that repair oxidized DNA bases, bacterial formamidopyrimdine glycosylase (Fpg), human OG glycosylase (hOGG1) and human Nei-like glycosylase 1 (hNEIL1) exhibit exceptionally high affinity (Kd∼pM) with DNA duplexes containing the 1NBn and 1N nucleotide. Notably, comparison of the Kd values of both TS mimics relative to an abasic analog (THF) in duplex contexts paired opposite C or A suggest that these DNA repair enzymes use distinctly different mechanisms for damaged base recognition and catalysis despite having overlapping substrate specificities.  相似文献   

19.
We investigate the influence of base sequence context on the conformations of the 10S (+)- and 10R (-)-trans-anti-[BP]-N(6)-dA adducts through molecular dynamics (MD) simulations with free energy calculations, and relate the structural findings to results of nucleotide excision repair (NER) assays in human cell extracts. In previous studies, these adducts were studied in the CA*A sequence context, and here we report results for the CA*C sequence. Our simulations indicate that the base sequence context affects the syn-anti conformational equilibrium in the 10S (+) adduct by modulating the barrier heights between these states on the energy surface, with a higher barrier in the CA*C case. Our nucleotide excision repair assay finds greater NER susceptibilities in the 10S (+) adduct for the CA*C sequence context. A structural rationale ties together these results. A sequence specific hydrogen bond, accompanied by a significantly increased roll and consequent bending in the 10S (+) adduct, has been found in our simulations for the CA*C sequence, which could account for the enhanced nucleotide excision repair as well as the syn-anti equilibrium difference we observe in this isomer and sequence. Such sequence specific differential repair could contribute to the existence of mutational hotspots and thereby contribute to the complexity of cancer initiation.  相似文献   

20.
Although chemotherapy-induced peripheral neuropathy (CIPN) affects approximately 5–60% of cancer patients, there are currently no treatments available in part due to the fact that the underlying causes of CIPN are not well understood. One contributing factor in CIPN may be persistence of DNA lesions resulting from treatment with platinum-based agents such as cisplatin. In support of this hypothesis, overexpression of the base excision repair (BER) enzyme, apurinic/apyrimidinic endonuclease 1 (APE1), reduces DNA damage and protects cultured sensory neurons treated with cisplatin. Here, we address stimulation of APE1’s endonuclease through a small molecule, nicorandil, as a means of mimicking the beneficial effects observed for overexpression of APE1. Nicorandil, was identified through high-throughput screening of small molecule libraries and found to stimulate APE1 endonuclease activity by increasing catalytic efficiency approximately 2-fold. This stimulation is primarily due to an increase in kcat. To prevent metabolism of nicorandil, an approved drug in Europe for the treatment of angina, cultured sensory neurons were pretreated with nicorandil and daidzin, an aldehyde dehydrogenase 2 inhibitor, resulting in decreased DNA damage but not altered transmitter release by cisplatin. This finding suggests that activation of APE1 by nicorandil in cisplatin-treated cultured sensory neurons does not imbalance the BER pathway in contrast to overexpression of the kinetically faster R177A APE1. Taken together, our results suggest that APE1 activators can be used to reduce DNA damage induced by cisplatin in cultured sensory neurons, although further studies will be required to fully assess their protective effects.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号