共查询到20条相似文献,搜索用时 0 毫秒
1.
In response to DNA damage, cells need robust repair mechanisms to complete the cell cycle successfully. Severe forms of DNA damage are repaired by homologous recombination (HR), in which the XRCC2 protein plays a vital role. Cells deficient in XRCC2 also show disruption of the centrosome, a key component of the mitotic apparatus. We find that this centrosome disruption is dynamic and when it occurs during mitosis it is linked directly to the onset of mitotic catastrophe in a significant fraction of the XRCC2-deficient cells. However, we also show for the first time that XRCC2 and other HR proteins, including the key recombinase RAD51, co-localize with the centrosome. Co-localization is maintained throughout the cell cycle, except when cells are finishing mitosis when RAD51 accumulates in the midbody between the separating cells. Taken together, these data suggest a tight functional linkage between the centrosome and HR proteins, potentially to coordinate the deployment of a DNA damage response at vulnerable phases of the cell cycle. 相似文献
2.
Min Gao Wei Wei Ming-Ming Li Yong-Sheng Wu Zhaoqing Ba Kang-Xuan Jin Miao-Miao Li You-Qi Liao Samir Adhikari Zechen Chong Ting Zhang Cai-Xia Guo Tie-shan Tang Bing-Tao Zhu Xing-Zhi Xu Niels Mailand Yun-Gui Yang Yijun Qi Jannie M Rendtlew Danielsen 《Cell research》2014,24(5):532-541
DNA double-strand breaks (DSBs) are highly cytotoxic lesions and pose a major threat to genome stability if not properly repaired. We and others have previously shown that a class of DSB-induced small RNAs (diRNAs) is produced from sequences around DSB sites. DiRNAs are associated with Argonaute (Ago) proteins and play an important role in DSB repair, though the mechanism through which they act remains unclear. Here, we report that the role of diRNAs in DSB repair is restricted to repair by homologous recombination (HR) and that it specifically relies on the effector protein Ago2 in mammalian cells. Interestingly, we show that Ago2 forms a complex with Rad51 and that the interaction is enhanced in cells treated with ionizing radiation. We demonstrate that Rad51 accumulation at DSB sites and HR repair depend on catalytic activity and small RNA-binding capability of Ago2. In contrast, DSB resection as well as RPA and Mre11 loading is unaffected by Ago2 or Dicer depletion, suggesting that Ago2 very likely functions directly in mediating Rad51 accumulation at DSBs. Taken together, our findings suggest that guided by diRNAs, Ago2 can promote Rad51 recruitment and/or retention at DSBs to facilitate repair by HR. 相似文献
3.
《DNA Repair》2014
DNA damage is a significant problem in living organisms and DNA repair pathways have been evolved in different species to maintain genomic stability. Here we demonstrated the molecular function of AtMMS21, a component of SMC5/6 complex, in plant DNA damage response. Compared with wild type, the AtMMS21 mutant plants show hypersensitivity in the DNA damaging treatments by MMS, cisplatin and gamma radiation. However, mms21-1 is not sensitive to replication blocking agents hydroxyurea and aphidicolin. The expression of a DNA damage response gene PARP2 is upregulated in mms21-1 under normal condition, suggesting that this signaling pathway is constitutively activated in the mutant. Depletion of ATAXIA-TELANGIECTASIA MUTATED (ATM) in mms21-1 enhances its root growth defect phenotype, indicating that ATM and AtMMS21 may play additive roles in DNA damage pathway. The analysis of homologous recombination frequency showed that the number of recombination events is reduced in mms21-1 mutant. Conclusively, we provided evidence that AtMMS21 plays an important role in homologous recombination for DNA damage repair. 相似文献
4.
Susan F. Martinez Axelle Renodon-Cornière Julian Nomme Damien Eveillard Fabrice Fleury Masayuki Takahashi Pierre Weigel 《Biochimie》2010
Human Rad51 (HsRad51), a key element of the homologous recombination repair pathway, is related to the resistance of cancer cells to chemo- and radio-therapies. This protein is thus a good target for the development of anti-cancer treatments. We have searched for new inhibitors directed against HsRad51 using the Systematic Evolution of Ligands by EXponential enrichment (SELEX) approach. We have selected three aptamers displaying strong effects on strand exchange activity. Analysis by circular dichroism shows that they are highly structured DNA molecules. Our results also show that they affect the first step of the strand exchange reaction by promoting the dissociation of DNA from the ATP/HsRad51/DNA complex. Moreover, these inhibitors bind only weakly to RecA, a prokaryotic ortholog of HsRad51. Both the specificity and the efficiency of their inhibition of recombinase activity offer an analytical tool based on molecular recognition and the prospect of developing new therapeutic agents. 相似文献
5.
《DNA Repair》2019
A missense mutation in C. elegans RAD-54, a homolog of RAD54 that operates in the homologous recombination (HR) pathway, was found to decrease ATPase activity in vitro. The hypomorphic mutation caused hypersensitivity of C. elegans germ cells to double-strand DNA breaks (DSBs). Although the formation of RAD-51 foci at DSBs was normal in both the mutant and knockdown worms, their subsequent dissipation was slow. The rad-54-deficient phenotypes were greatly aggravated when combined with an xpf-1 mutation, suggesting a conservative role of single-strand annealing (SSA) for DSB repair in HR-defective worms. The phenotypes of doubly-deficient rad-54;xpf-1 worms were partially suppressed by a mutation of lig-4, a nonhomologous end-joining (NHEJ) factor. In summary, RAD-54 is required for the dissociation of RAD-51 from DSB sites in C. elegans germ cells. Also, NHEJ and SSA exert negative and positive effects, respectively, on genome stability when HR is defective. 相似文献
6.
《DNA Repair》2015
Accurate DNA double-strand break repair through homologous recombination is essential for preserving genome integrity. Disruption of the gene encoding RAD51, the protein that catalyzes DNA strand exchange during homologous recombination, results in lethality of mammalian cells. Proteins required for homologous recombination, also play an important role during DNA replication. To explore the role of RAD51 in DNA replication and DSB repair, we used a knock-in strategy to express a carboxy-terminal fusion of green fluorescent protein to mouse RAD51 (mRAD51-GFP) in mouse embryonic stem cells. Compared to wild-type cells, heterozygous mRad51+/wt-GFP embryonic stem cells showed increased sensitivity to DNA damage induced by ionizing radiation and mitomycin C. Moreover, gene targeting was found to be severely impaired in mRad51+/wt-GFP embryonic stem cells. Furthermore, we found that mRAD51-GFP foci were not stably associated with chromatin. From these experiments we conclude that this mRad51-GFP allele is an antimorphic allele. When this allele is present in a heterozygous condition over wild-type mRad51, embryonic stem cells are proficient in DNA replication but display defects in homologous recombination and DNA damage repair. 相似文献
7.
Brendon Ladd Jeffrey J. Ackroyd J. Kevin Hicks Christine E. Canman Sheryl A. Flanagan Donna S. Shewach 《DNA Repair》2013,12(12):1114-1121
The nucleoside analog ganciclovir (GCV) elicits cytotoxicity in tumor cells via a novel mechanism in which drug incorporation into DNA produces minimal disruption of replication, but numerous DNA double strand breaks occur during the second S-phase after drug exposure. We propose that homologous recombination (HR), a major repair pathway for DNA double strand breaks, can prevent GCV-induced DNA damage, and that inhibition of HR will enhance cytotoxicity with GCV. Survival after GCV treatment in cells expressing a herpes simplex virus thymidine kinase was strongly dependent on HR (>14-fold decrease in IC50 in HR-deficient vs. HR-proficient CHO cells). In a homologous recombination reporter assay, the histone deacetylase inhibitor, suberoylanilide hydroxamic acid (SAHA; vorinostat), decreased HR repair events up to 85%. SAHA plus GCV produced synergistic cytotoxicity in U251tk human glioblastoma cells. Elucidation of the synergistic mechanism demonstrated that SAHA produced a concentration-dependent decrease in the HR proteins Rad51 and CtIP. GCV alone produced numerous Rad51 foci, demonstrating activation of HR. However, the addition of SAHA blocked GCV-induced Rad51 foci formation completely and increased γH2AX, a marker of DNA double strand breaks. SAHA plus GCV also produced synergistic cytotoxicity in HR-proficient CHO cells, but the combination was antagonistic or additive in HR-deficient CHO cells. Collectively, these data demonstrate that HR promotes survival with GCV and compromise of HR by SAHA results in synergistic cytotoxicity, revealing a new mechanism for enhancing anticancer activity with GCV. 相似文献
8.
《DNA Repair》2014
Genotoxins and other factors cause replication stress that activate the DNA damage response (DDR), comprising checkpoint and repair systems. The DDR suppresses cancer by promoting genome stability, and it regulates tumor resistance to chemo- and radiotherapy. Three members of the phosphatidylinositol 3-kinase-related kinase (PIKK) family, ATM, ATR, and DNA-PK, are important DDR proteins. A key PIKK target is replication protein A (RPA), which binds single-stranded DNA and functions in DNA replication, DNA repair, and checkpoint signaling. An early response to replication stress is ATR activation, which occurs when RPA accumulates on ssDNA. Activated ATR phosphorylates many targets, including the RPA32 subunit of RPA, leading to Chk1 activation and replication arrest. DNA-PK also phosphorylates RPA32 in response to replication stress, and we demonstrate that cells with DNA-PK defects, or lacking RPA32 Ser4/Ser8 targeted by DNA-PK, confer similar phenotypes, including defective replication checkpoint arrest, hyper-recombination, premature replication fork restart, failure to block late origin firing, and increased mitotic catastrophe. We present evidence that hyper-recombination in these mutants is ATM-dependent, but the other defects are ATM-independent. These results indicate that DNA-PK and ATR signaling through RPA32 plays a critical role in promoting genome stability and cell survival in response to replication stress. 相似文献
9.
Summary The complete physical map of the mitochondrial genome of the Owen cytoplasm of sugar beet has been determined from overlapping cosmid clones. The genome is 386 kb in size and has a multicircular organisation generated by homologous recombination across repeated DNA elements. The location of the rRNA genes and several polypeptide genes has been determined. In addition the mitochondrial genome was found to contain a sequence of chloroplast DNA including part of the 16 S rRNA gene. 相似文献
10.
11.
12.
《DNA Repair》2017
Homologous recombination (HR) serves to repair DNA double-strand breaks and damaged replication forks and is essential for maintaining genome stability and tumor suppression. HR capacity also determines the efficacy of anticancer therapy. Hence, there is an urgent need to better understand all HR proteins and sub-pathways. An emerging protein that is critical for RAD51-mediated HR is RAD51-associated protein 1 (RAD51AP1). Although much has been learned about its biochemical attributes, the precise molecular role of RAD51AP1 in the HR reaction is not yet fully understood. The available literature also suggests that RAD51AP1 expression may be relevant for cancer development and progression. Here, we review the efforts that led to the discovery of RAD51AP1 and elaborate on our current understanding of its biochemical profile and biological function. We also discuss how RAD51AP1 may help to promote cancer development and why it could potentially represent a promising new target for therapeutic intervention. 相似文献
13.
Xiaoqing Hu Xiaohua Wu Hao Liu Ziyuan Cheng Zilu Zhao Cuifang Xiang Xiaoyu Feng Shunichi Takeda Yong Qing 《Journal of cellular physiology》2019,234(3):2683-2692
Genistein (GES), a phytoestrogen, has potential chemopreventive and chemotherapeutic effects on cancer. The anticancer mechanism of GES may be related with topoisomerase II associated DNA double-strand breaks (DSBs). However, the precise molecular mechanism remains elusive. Here, we performed genetic analyses using human lymphoblastoid TK6 cell lines to investigate whether non-homologous DNA end joining (NHEJ) and homologous recombination (HR), the two major repair pathways of DSBs, were involved in repairing GES-induced DNA damage. Our results showed that GES induced DSBs in TK6 cells. Cells lacking Ligase4, an NHEJ enzyme, are hypersensitive to GES. Furthermore, the sensitivity of Ligase4−/− cells was associated with enhanced DNA damage when comparing the accumulation of γ-H2AX foci and number of chromosomal aberrations (CAs) with WT cells. In addition, cells lacking Rad54, a HR enzyme, also presented hypersensitivity and increased DNA damages in response to GES. Meanwhile, Treatment of GES-lacking enhanced the accumulation of Rad51, an HR factor, in TK6 cells, especially in Ligase4−/−. These results provided direct evidence that GES induced DSBs in TK6 cells and clarified that both NHEJ and HR were involved in the repair of GES-induced DNA damage, suggesting that GES in combination with inhibition of NHEJ or HR would provide a potential anticancer strategy. 相似文献
14.
目的 通过检测胃癌前期阶段幽门螺杆菌(Helicobacter pylori,H. pylori)阳性和阴性患者胃黏膜组织中DNA损伤标志物H2AX及同源重组(homologous recombination,HR)修复关键蛋白MRE11、Rad51、CtIP表达水平,评价H. pylori感染在胃癌前期阶段对HR精确修复的影响。方法 选择2017年3月至9月行胃镜及病理检测的165例H. pylori阳性和阴性患者,取胃黏膜上皮组织,石蜡包埋切片,行HE染色,根据世界卫生组织标准和更新的悉尼标准,划分病理类型。然后应用免疫组织化学染色方法检测H. pylori和DNA损伤标记蛋白及HR修复关键蛋白表达水平,并行统计学分析。结果 胃黏膜上皮细胞中H2AX的表达,在CSG、CAG和IM阶段,H. pylori阳性组表达高于阴性组(Mann-Whitney U=1116.5,P=0.001;Mann-Whitney U=185.0,P=0.018;Mann-Whitney U=214.5,P=0.041),在Dys阶段,H. pylori阳性组和阴性组差异无统计学意义(Mann-Whitney U=35.5,P=0.964);MRE11的表达,在CSG、CAG阶段,H. pylori阳性组表达高于阴性组(Mann-Whitney U=1117.0,P=0.001;Mann-Whitney U=201.0,P=0.002),在IM、Dys阶段,H. pylori阳性组和阴性组差异无统计学意义(Mann-Whitney U=171.0,P=0.568;Mann-Whitney U=41.5,P=0.616);Rad51的表达,在CSG、IM阶段,H. pylori阳性组表达低于阴性组(Mann-Whitney U=490.0,P=0.002;Mann-Whitney U=73.0,P=0.007),在CAG、Dys阶段,H. pylori阳性组和阴性组差异无统计学意义(Mann-Whitney U=101.0,P=0.404;Mann-Whitney U=24.0,P=0.291);CtIP的表达,在CSG、IM阶段,H. pylori阳性组表达低于阴性组(Mann-Whitney U=593.0,P=0.044;Mann-Whitney U=58.5,P=0.001),在CAG、Dys阶段,H. pylori阳性组和阴性组差异无统计学意义(Mann-Whitney U=84.0,P=0.136;Mann-Whitney U=18.5,P=0.102)。结论 在胃癌前期发展阶段,H. pylori感染导致人体胃上皮细胞DNA损伤,却抑制部分HR修复通道关键蛋白表达,从而可能抑制精确的HR修复,增加细胞恶变几率。 相似文献
15.
《DNA Repair》2015
BRCA1 and BRCA2 mutation carriers are predisposed to develop breast and ovarian cancers, but the reasons for this tissue specificity are unknown. Breast epithelial cells are known to contain elevated levels of oxidative DNA damage, triggered by hormonally driven growth and its effect on cell metabolism. BRCA1- or BRCA2-deficient cells were found to be more sensitive to oxidative stress, modeled by treatment with patho-physiologic concentrations of hydrogen peroxide. Hydrogen peroxide exposure leads to oxidative DNA damage induced DNA double strand breaks (DSB) in BRCA-deficient cells causing them to accumulate in S-phase. In addition, after hydrogen peroxide treatment, BRCA deficient cells showed impaired Rad51 foci which are dependent on an intact BRCA1–BRCA2 pathway. These DSB resulted in an increase in chromatid-type aberrations, which are characteristic for BRCA1 and BRCA2-deficient cells. The most common result of oxidative DNA damage induced processing of S-phase DSB is an interstitial chromatid deletion, but insertions and exchanges were also seen in BRCA deficient cells. Thus, BRCA1 and BRCA2 are essential for the repair of oxidative DNA damage repair intermediates that persist into S-phase and produce DSB. The implication is that oxidative stress plays a role in the etiology of hereditary breast cancer. 相似文献
16.
The CDK regulates repair of double-strand breaks by homologous recombination during the cell cycle 总被引:4,自引:0,他引:4 下载免费PDF全文
DNA double-strand breaks (DSBs) are dangerous lesions that can lead to genomic instability and cell death. Eukaryotic cells repair DSBs either by nonhomologous end-joining (NHEJ) or by homologous recombination. We investigated the ability of yeast cells (Saccharomyces cerevisiae) to repair a single, chromosomal DSB by recombination at different stages of the cell cycle. We show that cells arrested at the G1 phase of the cell cycle restrict homologous recombination, but are able to repair the DSB by NHEJ. Furthermore, we demonstrate that recombination ability does not require duplicated chromatids or passage through S phase, and is controlled at the resection step by Clb-CDK activity. 相似文献
17.
Changanamkandath Rajesh Aaron M. Gruver Venkatesha Basrur Douglas L. Pittman 《Proteomics》2009,9(16):4071-4086
The RAD51 family of proteins is involved in homologous recombination (HR) DNA repair and maintaining chromosome integrity. To identify candidates that interact with HR proteins, the mouse RAD51C, RAD51D and XRCC2 proteins were purified using bacterial expression systems and each of them used to co‐precipitate interacting partners from mouse embryonic fibroblast cellular extracts. Mass spectroscopic analysis was performed on protein bands obtained after 1‐D SDS‐PAGE of co‐precipitation eluates from cell extracts of mitomycin C treated and untreated mouse embryonic fibroblasts. Profiling of the interacting proteins showed a clear bias toward nucleic acid binding and modification proteins. Interactions of four candidate proteins (SFPQ, NONO, MSH2 and mini chromosome maintenance protein 2) were confirmed by Western blot analysis of co‐precipitation eluates and were also verified to form ex vivo complexes with RAD51D. Additional interacting proteins were associated with cell division, embryo development, protein and carbohydrate metabolism, cellular trafficking, protein synthesis, modification or folding, and cell structure or motility functions. Results from this study are an important step toward identifying interacting partners of the RAD51 paralogs and understanding the functional diversity of proteins that assist or regulate HR repair mechanisms. 相似文献
18.
DNA double-strand breaks (DSB) represent a major disruption in the integrity of the genome. DSB can be generated when a replication fork encounters a DNA lesion. Recombinational repair is known to resolve such replication fork-associated DSB, but the molecular mechanism of this repair process is poorly understood in mammalian cells. In the present study, we investigated the molecular mechanism by which recombination resolves camptothecin (CPT)-induced DSB at DNA replication forks. The frequency of homologous recombination (HR) was measured using V79/SPD8 cells which contain a duplication in the endogenous hprt gene that is resolved by HR. We demonstrate that DSB associated with replication forks induce HR at the hprt gene in early S phase. Further analysis revealed that these HR events involve an exchange mechanism. Both the irs1SF and V3-3 cell lines, which are deficient in HR and non-homologous end joining (NHEJ), respectively, were found to be more sensitive than wild-type cells to DSB associated with replication forks. The irs1SF cell line was more sensitive in this respect than V3-3 cells, an observation consistent with the hypothesis that DSB associated with replication forks are repaired primarily by HR. The frequency of formation of DSB associated with replication forks was not affected in HR and NHEJ deficient cells, indicating that the loss of repair, rather than the formation of DSB associated with replication forks is responsible for the increased sensitivity of the mutant strains. We propose that the presence of DSB associated with replication forks rapidly induces HR via an exchange mechanism and that HR plays a more prominent role in the repair of such DSB than does NHEJ. 相似文献
19.
Noguchi M Yu D Hirayama R Ninomiya Y Sekine E Kubota N Ando K Okayasu R 《Biochemical and biophysical research communications》2006,351(3):658-663
In order to investigate the mechanism of radio-sensitization by an Hsp90 inhibitor 17-allylamino-17-demethoxygeldanamycin (17-AAG), we studied repair of DNA double strand breaks (DSBs) in irradiated human cells pre-treated with 17-AAG. DSBs are thought to be the critical target for radiation-induced cell death. Two human tumor cell lines DU145 and SQ-5 which showed clear radio-sensitization by 17-AAG revealed a significant inhibition of DSB repair, while normal human cells which did not show radio-sensitization by the drug indicated no change in the DSB repair kinetics with 17-AAG. We further demonstrated that BRCA2 was a novel client protein for Hsp90, and 17-AAG caused the degradation of BRCA2 and in turn altered the behavior of Rad51, a critical protein for homologous recombination (HR) pathway of DSB repair. Our data demonstrate for the first time that 17-AAG inhibits the HR repair process and could provide a new therapeutic strategy to selectively result in higher tumor cell killing. 相似文献