首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.

Purpose

Lithium-ion (Li-ion) battery packs recovered from end-of-life electric vehicles (EV) present potential technological, economic and environmental opportunities for improving energy systems and material efficiency. Battery packs can be reused in stationary applications as part of a “smart grid”, for example to provide energy storage systems (ESS) for load leveling, residential or commercial power. Previous work on EV battery reuse has demonstrated technical viability and shown energy efficiency benefits in energy storage systems modeled under commercial scenarios. The current analysis performs a life cycle assessment (LCA) study on a Li-ion battery pack used in an EV and then reused in a stationary ESS.

Methods

A complex functional unit is used to combine energy delivered by the battery pack from the mobility function and the stationary ESS. Various scenarios of cascaded “EV mobility plus reuse in stationary clean electric power scenarios” are contrasted with “conventional system mobility with internal combustion engine vehicles plus natural gas peaking power.” Eight years are assumed for first use; with 10 years for reuse in the stationary application. Operational scenarios and environmental data are based on real time-of-day and time-of-year power use. Additional data from LCA databases are utilized. Ontario, Canada, is used as the geographic baseline; analysis includes sensitivity to the electricity mix and battery degradation. Seven environmental categories are assessed using ReCiPe.

Results and discussion

Results indicate that the manufacturing phase of the Li-ion battery will still dominate environmental impacts across the extended life cycle of the pack (first use in vehicle plus reuse in stationary application). For most impact categories, the cascaded use system appears significantly beneficial compared to the conventional system. By consuming clean energy sources for both use and reuse, global and local environmental stress reductions can be supported. Greenhouse gas advantages of vehicle electrification can be doubled by extending the life of the EV batteries, and enabling better use of off-peak low-cost clean electricity or intermittent renewable capacity. However, questions remain concerning implications of long-duration use of raw material resources employed before potential recycling.

Conclusions

Li-ion battery packs present opportunities for powering both mobility and stationary applications in the necessary transition to cleaner energy. Battery state-of-health is a considerable determinant in the life cycle performance of a Li-ion battery pack. The use of a complex functional unit was demonstrated in studying a component system with multiple uses in a cascaded application.
  相似文献   

2.

Purpose

Quantitative life cycle sustainable assessment requires a complex and multidimensional understanding, which cannot be fully covered by the current portfolio of reductionist-oriented tools. Therefore, there is a dire need on a new generation of modeling tools and approaches that can quantitatively assess the economic, social, and environmental dimensions of sustainability in an integrated way. To this end, this research aims to present a practical and novel approach for (1) broadening the existing life cycle sustainability assessment (LCSA) framework by considering macrolevel environmental, economic, and social impacts (termed as the triple bottom line), simultaneously, (2) deepening the existing LCSA framework by capturing the complex dynamic relationships between social, environmental, and economic indicators through causal loop modeling, (3) understanding the dynamic complexity of transportation sustainability for the triple bottom line impacts of alternative vehicles, and finally (4) investigating the impacts of various vehicle-specific scenarios as a novel approach for selection of a macrolevel functional unit considering all of the complex interactions in the environmental, social, and economic aspects.

Methods

To alleviate these research objectives, we presented a novel methodology to quantify macrolevel social, economic, and environmental impacts of passenger vehicles from an integrated system analysis perspective. An integrated dynamic LCSA model is utilized to analyze the environmental, economic, and social life cycle impact as well as life cycle cost of alternative vehicles in the USA. System dynamics modeling is developed to simulate the US passenger transportation system and its interactions with economy, the environment, and society. Analysis covers manufacturing and operation phase impacts of internal combustion vehicles (ICVs), hybrid electric vehicles (HEVs), plug-in hybrid electric vehicles (PHEVs), and battery electric vehicles (BEVs). In total, seven macrolevel indicators are selected; global warming potential, particulate matter formation, photochemical oxidant formation, vehicle ownership cost, contribution to gross domestic product, employment generation, and human health impacts. Additionally, contribution of vehicle choices to global atmospheric temperature rise and public welfare is investigated.

Results and discussion

BEVs are found to be a better alternative for most of sustainability impact categories. While some of the benefits such as contribution to employment and GDP, CO2 emission reduction potential of BEVs become greater toward 2050, other sustainability indicators including vehicle ownership cost and human health impacts of BEVs are higher than the other vehicle types on 2010s and 2020s. While the impact shares of manufacturing and operation phases are similar in the early years of 2010s, the contribution of manufacturing phase becomes higher as the vehicle performances increase toward 2050. Analysis results revealed that the US transportation sector, alone, cannot reduce the rapidly increasing atmospheric temperature and the negative impacts of the global climate change, even though the entire fleet is replaced with BEVs. Reducing the atmospheric climate change requires much more ambitious targets and international collaborative efforts. The use of different vehicle types has a small impact on public welfare, which is a function of income, education, and life expectancy indexes.

Conclusions

The authors strongly recommend that the dynamic complex and mutual interactions between sustainability indicators should be considered for the future LCSA framework. This approach will be critical to deepen the existing LCSA framework and to go beyond the current LCSA understanding, which provide a snapshot analysis with an isolated view of all pillars of sustainability. Overall, this research is a first empirical study and an important attempt toward developing integrated and dynamic LCSA framework for sustainable transportation research.
  相似文献   

3.
中国海洋资源环境经济系统承载力及协调性的时空演变   总被引:2,自引:0,他引:2  
盖美  钟利达  柯丽娜 《生态学报》2018,38(22):7921-7932
中国海洋复合系统承载力研究对海洋标准化发展具有重要意义。引入环境EKC机理,通过可变模糊识别算法,结合相关研究构建承载力指标体系和评价体系对中国海洋资源环境经济2006—2014年承载力情况进行评价分析;利用三元协调发展模型对复合系统承载力进行协调发展测度;最后通过灰色关联模型测度承载力驱动因素以期为中国海洋复合系统可持续发展提供参考依据。研究结果表明:(1)中国海洋复合系统承载力时序变化良好;空间上天津、上海、海南承载力较高,呈南北中"三足鼎立"格局,河北、广西承载力较低;(2)承载力协调发展状况也呈良性发展,但区域间差异较大,海南、山东协调性较高,海南、上海、天津协调发展度较高,其余大部分地区均有待提高。(3)海洋经济规模与产业结构、环境治理、资源丰富度分别影响着海洋经济、资源、环境承载力。  相似文献   

4.
China faces a contradictory period of economic development and environmental protection, with it being essential to control total emissions within the limit of atmospheric environmental capacity (AEC) by promoting atmospheric environmental carrying capacity (AECC). This implies that well-calculated AEC and AECC values are the key macro-criteria for improving environmental quality and supporting the challenging coordinated development of economy and environment. When considering compound air pollution characterised as fine particulate matter (PM2.5), conventional methods are not capable of calculating AEC and AECC, but the system dynamics (SD) method retains the advantage of simplicity in resolving complex problems. In the present study, we first describe the background and definitions of AEC and AECC, which are different from Western concepts, and their dialectical relationships. Then, with the statistical data from Wuhan city in 2014, we establish an ‘economy–energy–atmospheric environment’ dynamic model using the SD method, which does not need to simulate the complicated physicochemical processes of atmospheric transmission and diffusion. Instead, it uses the pollutants’ proportionality factors and conversion rates to establish quantitative connections among different types of variables. Finally, we simulate the dynamic trends of gross domestic production (GDP), PM2.5, and six air pollutant emissions between 2015 and 2030 in four different scenarios and calculate the results of AEC and AECC constrained by GDP and PM2.5.  相似文献   

5.
In France, greenhouse gas (GHG) emissions from transport have grown steadily since 1950 and transport is now the main source of emissions. Despite technological improvements, urban sprawl increases the environmental stress due to car use. This study evaluates urban mobility through assessments of the transport system and travel habits, by applying life cycle assessment methods to the results of mobility simulations that were produced by a Land Use and Transport Interactions (LUTI) model. The environmental impacts of four life cycle phases of urban mobility in the Lyon area (exhausts, fuel processing, infrastructure and vehicle life cycle) were estimated through nine indicators (global warming potential, particulate matter emissions, photochemical oxidant emissions, terrestrial acidification, fossil resource depletion, metal depletion, non-renewable energy use, renewable energy use and land occupancy). GHG emissions were estimated to be 3.02 kg CO2-eq inhabitant−1 day−1, strongly linked to car use, and indirect impacts represented 21% of GHG emissions, which is consistent with previous studies. Combining life cycle assessment (LCA) with a LUTI model allows changes in the vehicle mix and fuel sources combined with demographic shifts to be assessed, and provides environmental perspectives for transport policy makers and urban planners. It can also provide detailed analysis, by allowing levels of emissions that are generated by different categories of households to be differentiated, according to their revenue and location. Public policies can then focus more accurately on the emitters and be assessed from both an environmental and social point of view.  相似文献   

6.
A model is presented for calculating the environmental burdens of the part manufacturing and vehicle assembly (VMA) stage of the vehicle life cycle. The model is based on a process‐level approach, accounting for all significant materials by their transformation processes (aluminum castings, polyethylene blow molding; etc.) and plant operation activities (painting; heating, ventilation, and air conditioning [HVAC], etc.) germane to VMA. Using quantitative results for these material/transformation process pairings, a percent‐by‐weight material/transformation distribution (MTD) function was developed that permits the model to be applied to a range of vehicles, both conventional and advanced (e.g., hybrid electric, light weight, aluminum intensive). Upon consolidation of all inputs, the model reduces to two terms: one proportional to vehicle mass and a plant overhead per vehicle term. When the model is applied to a materially well‐characterized conventional vehicle, reliable estimates of cumulative energy consumption (34 gigajoules/vehicle) and carbon dioxide (CO2) emissions (2 tonnes/vehicle) with coefficients of variation are computed for the VMA life cycle stage. Due to the more comprehensive coverage of manufacturing operations, our energy estimates are on the higher end of previously published values. Nonetheless, they are still somewhat underestimated due to a lack of data on overhead operations in part manufacturing facilities and transportation of parts and materials between suppliers and vehicle manufacturing operations. For advanced vehicles, the material/transformation process distribution developed above needs some adjusting for different materials and components. Overall, energy use and CO2 emissions from the VMA stage are about 3.5% to 4.5% of total life cycle values for vehicles.  相似文献   

7.
《Zoologica scripta》2009,38(S1):41-47
Since the mid-18th century scientists have been using existing industrial technology for scientific investigation in remote places. This approach, pioneered by Linnaeus and his 'Apostles', is being used today to access deep-water environments using remotely operated vehicles (ROVs) in collaboration with the offshore hydrocarbon industry, particularly through the Scientific and Environmental Remotely operated vehicle Partnership using Existing Industrial Technology (SERPENT) project. Industrial ROVs are well suited for scientific investigation with high quality imaging systems as standard. These have already been used to provide associated ecological information to taxonomic specimens and to describe feeding behaviours of monkfish ( Lophius piscatorius ) and a galatheid ( Munida sarsi ). In addition, work-class vehicles have sufficient power and manipulation capacity to interact with the environment, permitting sample collection and experimental assessment of deep-water ecological processes; examples are given of each of these investigations. The increased understanding of deep-water systems is now being used by policy-makers and industry to improve environmental management and monitoring procedures.  相似文献   

8.
The comprehension of vehicular traffic in urban environments is crucial to achieve a good management of the complex processes arising from people collective motion. Even allowing for the great complexity of human beings, human behavior turns out to be subject to strong constraints—physical, environmental, social, economic—that induce the emergence of common patterns. The observation and understanding of those patterns is key to setup effective strategies to optimize the quality of life in cities while not frustrating the natural need for mobility. In this paper we focus on vehicular mobility with the aim to reveal the underlying patterns and uncover the human strategies determining them. To this end we analyze a large dataset of GPS vehicles tracks collected in the Rome (Italy) district during a month. We demonstrate the existence of a local optimization of travel times that vehicle drivers perform while choosing their journey. This finding is mirrored by two additional important facts, i.e., the observation that the average vehicle velocity increases by increasing the travel length and the emergence of a universal scaling law for the distribution of travel times at fixed traveled length. A simple modeling scheme confirms this scenario opening the way to further predictions.  相似文献   

9.
The current flow of carbon for the production, use, and waste management of polymer‐based products is still mostly linear from the lithosphere to the atmosphere with rather low rates of material recycling. In view of a limited future supply of biomass, this article outlines the options to further develop carbon recycling (C‐REC). The focus is on carbon dioxide (CO2) capture and use for synthesis of platform chemicals to produce polymers. CO2 may be captured from exhaust gases after combustion or fermentation of waste in order to establish a C‐REC system within the technosphere. As a long‐term option, an external C‐REC system can be developed by capturing atmospheric CO2. A central role may be expected from renewable methane (or synthetic natural gas), which is increasingly being used for storage and transport of energy, but may also be used for renewable carbon supply for chemistry. The energy input for the C‐REC processes can come from wind and solar systems, in particular, power for the production of hydrogen, which is combined with CO2 to produce various hydrocarbons. Most of the technological components for the system already exist, and, first modules for renewable fuel and polymer production systems are underway in Germany. This article outlines how the system may further develop over the medium to long term, from a piggy‐back add‐on flow system toward a self‐carrying recycling system, which has the potential to provide the material and energy backbone of future societies. A critical bottleneck seems to be the capacity and costs of renewable energy supply, rather than the costs of carbon capture.  相似文献   

10.
Electric vehicles (EVs) coupled with low‐carbon electricity sources offer the potential for reducing greenhouse gas emissions and exposure to tailpipe emissions from personal transportation. In considering these benefits, it is important to address concerns of problem‐shifting. In addition, while many studies have focused on the use phase in comparing transportation options, vehicle production is also significant when comparing conventional and EVs. We develop and provide a transparent life cycle inventory of conventional and electric vehicles and apply our inventory to assess conventional and EVs over a range of impact categories. We find that EVs powered by the present European electricity mix offer a 10% to 24% decrease in global warming potential (GWP) relative to conventional diesel or gasoline vehicles assuming lifetimes of 150,000 km. However, EVs exhibit the potential for significant increases in human toxicity, freshwater eco‐toxicity, freshwater eutrophication, and metal depletion impacts, largely emanating from the vehicle supply chain. Results are sensitive to assumptions regarding electricity source, use phase energy consumption, vehicle lifetime, and battery replacement schedules. Because production impacts are more significant for EVs than conventional vehicles, assuming a vehicle lifetime of 200,000 km exaggerates the GWP benefits of EVs to 27% to 29% relative to gasoline vehicles or 17% to 20% relative to diesel. An assumption of 100,000 km decreases the benefit of EVs to 9% to 14% with respect to gasoline vehicles and results in impacts indistinguishable from those of a diesel vehicle. Improving the environmental profile of EVs requires engagement around reducing vehicle production supply chain impacts and promoting clean electricity sources in decision making regarding electricity infrastructure.  相似文献   

11.
Public use of protected areas is typically encouraged, but visitors arriving by vehicles may alter the natural areas they seek. Vehicle emissions add nitrogen oxides (NOx) and ammonia (NH3) to the air, which can increase the amount of plant-available (reactive) nitrogen, a limiting nutrient. Changes in ecosystem processes as a result of increases in nitrogen availability are at odds with the goals of many protected wilderness areas that are typically accessed by vehicles. In this multi-year study (2003–2019), we tested whether emissions from local vehicles entered the forest ecosystem adjacent to a highway in a protected wilderness valley near a mid-sized city (Calgary, Alberta, Canada). We examined the concentration of NO2 in the air and the abundance of combustion-derived nitrogen isotopes (δ15N) in naturally-occurring forest moss (Hylocomium splendens and Pleurozium schreberi) within 20 m of the highway as a function of traffic levels that varied independently at two scales: along the highway and among years. Within the valley, we observed a gradient in the number of vehicles that was greatest where vehicles enter the valley, with a corresponding pattern for NO2 concentrations in air. Traffic volume also varied among years, with the highest year having almost twice as many vehicles in the summer as the lowest year. δ15N values in forest moss displayed similar patterns as traffic both within and among years, signalling that nitrogen from vehicle emissions entered the local ecosystem corresponding to local traffic levels. Because vehicle emissions enter natural ecosystems that are intended to be conserved, vehicle use must be considered in the management of protected natural areas.  相似文献   

12.
We consider a single-species model which is composed of several habitats connected by linear migration rates and having logistic growth. A spatially varying, temporally constant environment is introduced by the non-homogeneity of its carrying capacity. Under this condition any type of purely diffusive behavior, characterized in our model by symmetric migration rates, produces an unbalanced population distribution, i.e. some locations receive more individuals than can be supported by the environmental carrying capacity, while others receive less. Using an evolutionarily stable strategy (ESS) approach we show that an asymmetric migration mechanism, induced by the heterogeneous carrying capacity of the environment, will be selected. This strategy balances the inflow and outflow of individuals in each habitat (balanced dispersal), as well as 'balancing' the spatial distribution relative to variation in carrying capacity (the Ideal Free Distribution from habitat selection theory). We show that several quantities are maximized or minimized by the evolutionarily stable dispersal strategy.  相似文献   

13.
As atmospheric CO2 increases, ecosystem carbon sequestration will largely depend on how global changes in climate will alter the balance between net primary production and decomposition. The response of primary production to climatic change has been examined using well‐validated mechanistic models, but the same is not true for decomposition, a primary source of atmospheric CO2. We used the Long‐term Intersite Decomposition Experiment Team (LIDET) dataset and model‐selection techniques to choose and parameterize a model that describes global patterns of litter decomposition. Mass loss was best represented by a three‐pool negative exponential model, with a rapidly decomposing labile pool, an intermediate pool representing cellulose, and a recalcitrant pool. The initial litter lignin/nitrogen ratio defined the size of labile and intermediate pools. Lignin content determined the size of the recalcitrant pool. The decomposition rate of all pools was modified by climate, but the intermediate pool's decomposition rate was also controlled by relative amounts of litter cellulose and lignin (indicative of lignin‐encrusted cellulose). The effect of climate on decomposition was best represented by a composite variable that multiplied a water‐stress function by the Lloyd and Taylor variable Q10 temperature function. Although our model explained nearly 70% of the variation in LIDET data, we observed systematic deviations from model predictions. Below‐ and aboveground material decomposed at notably different rates, depending on the decomposition stage. Decomposition in certain ecosystem‐specific environmental conditions was not well represented by our model; this included roots in very wet and cold soils, and aboveground litter in N‐rich and arid sites. Despite these limitations, our model may still be extremely useful for global modeling efforts, because it accurately (R2=0.6804) described general patterns of long‐term global decomposition for a wide array of litter types, using relatively minimal climatic and litter quality data.  相似文献   

14.
Environmental impacts of hybrid and electric vehicles—a review   总被引:2,自引:0,他引:2  

Purpose

A literature review is undertaken to understand how well existing studies of the environmental impacts of hybrid and electric vehicles (EV) address the full life cycle of these technologies. Results of studies are synthesized to compare the global warming potential (GWP) of different EV and internal combustion engine vehicle (ICEV) options. Other impacts are compared; however, data availability limits the extent to which this could be accomplished.

Method

We define what should be included in a complete, state-of-the-art environmental assessment of hybrid and electric vehicles considering components and life cycle stages, emission categories, impact categories, and resource use and compare the content of 51 environmental assessments of hybrid and electric vehicles to our definition. Impact assessment results associated with full life cycle inventories (LCI) are compared for GWP as well as emissions of other pollutants. GWP results by life cycle stage and key parameters are extracted and used to perform a meta-analysis quantifying the impacts of vehicle options.

Results

Few studies provide a full LCI for EVs together with assessment of multiple impacts. Research has focused on well to wheel studies comparing fossil fuel and electricity use as the use phase has been seen to dominate the life cycle of vehicles. Only very recently have studies begun to better address production impacts. Apart from batteries, very few studies provide transparent LCIs of other key EV drivetrain components. Estimates of EV energy use in the literature span a wide range, 0.10?C0.24?kWh/km. Similarly, battery and vehicle lifetime plays an important role in results, yet lifetime assumptions range between 150,000?C300,000?km. CO2 and GWP are the most frequently reported results. Compiled results suggest the GWP of EVs powered by coal electricity falls between small and large conventional vehicles while EVs powered by natural gas or low-carbon energy sources perform better than the most efficient ICEVs. EV results in regions dependant on coal electricity demonstrated a trend toward increased SO x emissions compared to fuel use by ICEVs.

Conclusions

Moving forward research should focus on providing consensus around a transparent inventory for production of electric vehicles, appropriate electricity grid mix assumptions, the implications of EV adoption on the existing grid, and means of comparing vehicle on the basis of common driving and charging patterns. Although EVs appear to demonstrate decreases in GWP compared to conventional ICEVs, high efficiency ICEVs and grid-independent hybrid electric vehicles perform better than EVs using coal-fired electricity.  相似文献   

15.

Purpose

In order to assess the global and local environmental impacts of different penetration rates of electric vehicles (EVs) within a region, we developed a life cycle approach based on a detailed traffic simulation assessing local emissions for individual roads with a high time resolution. The aim was to estimate the reduction potential of local emissions such as particulate matter within a region through a substitution of conventional with electric vehicles.

Materials and methods

The chosen approach assessing local emissions includes a detailed traffic simulation of a vehicle fleet composed of individual vehicles with a daily schedule. The driving pattern is modeled based on a survey of driving patterns in Germany. Incorporation of traffic density for each road and emissions of electric and conventional vehicles permits conclusions on the reduction potential for each street. Moreover, a feasible reduction potential for a particular region can be assessed. A case study for Aachen, Germany is presented within this paper. For the classification of the local emissions with the usual life cycle assessment approach, a comparison of EV, PHEV, and conventional vehicles has been conducted for Germany providing the results for impact categories according to CML 2001.

Results and discussion

Based on simulation results, an estimation of the reduction potential for Aachen for different penetration rates of electric vehicles including particulate matter (PM10), carbon monoxide (CO), and nitrogen oxygen (NOx) is carried out. Electric vehicles possess the highest reduction potential for CO and NOx. Assuming 50?% of the total vehicle fleet in 2010 substituted by electric vehicles, local emissions of CO reduce by 46.6?%, for NOx by 38.8?%, and for PM10 by 22.4?%. Due to fluctuations in driving patterns throughout a day, the results are highly time dependent. However, improvements in combustion engine technologies results in an increased reduction potential for conventional vehicles. The direct comparison between the vehicle types showed that the benefit of electric vehicles depends on the considered impact category.

Conclusions

Electric vehicles are able to reduce local emissions within a region. Moreover, this approach focusing on the use phase of vehicles within a regional assessment and the resulting local emissions as well as the detailed analysis of the driving behavior allows a distinguished assessment of the reduction potential of electric vehicles. Additionally, an assessment of policy measures such as drive restrictions for conventional vehicles can be simulated on the base of this approach.  相似文献   

16.
Rising fuel prices and concern over emissions are prompting automakers and legislators to introduce and evaluate "clean vehicles" throughout the United States. Hybrid electric vehicles (HEVs) are now on the roads, electric vehicles (EVs) have been test marketed, and niche vehicles such as high-fuel-economy microcars are being considered for introduction. As these vehicles proliferate and mature, they will eventually reach their end of life (EOL). In the United States, an extensive recycling infrastructure exists for conventional, internal combustion engine (ICE) vehicles. Its primary constituents are the disassembler and the shredder. These industries, as well as battery recyclers, are expected to play integral roles in the EOL processing of clean vehicles.
A model of the automobile-recycling infrastructure and goal programming techniques are used to assess the materials streams and process profitabilities for several different clean vehicles. Two-seat EVs with lead-acid or NiMH batteries are compared with two- and four-seat HEVs and microcars. Changes to the nonferrous content in the vehicle bodies are explored and compared for the effect on processing profit-ability. Despite limitations associated with the linearity of goal programming techniques, application of this tool can still provide informative first-order results. Results indicate that although these clean vehicles may not garner the same profit levels as conventional ICE vehicles, they are profitable to process if there are markets for parts and if there are sufficient quantities of nonferrous materials.  相似文献   

17.
煤电一体化开发对锡林郭勒盟环境经济的影响   总被引:2,自引:0,他引:2  
吴迪  代方舟  严岩  刘昕  付晓 《生态学报》2011,31(17):5055-5060
国家“十二五”规划确定将在内蒙古锡林郭勒盟建设国家重点大型煤电基地.煤电一体化开发将大大地推动锡盟的区域经济发展,但也可能会对这一典型草原地区和重要生态屏障地区的生态环境造成不利影响.采用物料平衡法和指数增长模型对2001-2009年锡林郭勒盟SO2排放量与人均GDP做了相关性分析,发现二者关系基本符合环境库兹涅茨曲线,呈较缓和倒U型曲线,拐点在人均GDP35000-40000元,目前已过曲线拐点,SO2排放量缓步下降.对锡盟煤电一体化开发情景下(2012-2020)的SO2排放及人均GDP进行预测,结果显示SO2排放量将随经济发展呈上升趋势,表明煤电一体化开发会使环境库兹涅茨曲线的拐点后延,虽然到2020年SO2排放量仍然没有超出区域大气环境容量,但将接近环境容量极限,会给当地环境带来明显压力;基于以上判断,进而从制度、技术、市场三方面出发,探讨了促进锡盟煤电一体化产业建设与环境保护协调发展的对策.  相似文献   

18.
Viability in a pink environment: why "white noise" models can be dangerous   总被引:1,自引:0,他引:1  
Morales 《Ecology letters》1999,2(4):228-232
Analysis of long time series suggests that environmental fluctuations may be accurately represented by 1/ f   noise (pink noise), where temporal correlation is found at several scales, and the range of fluctuations increases over time. Previous studies on the effects of coloured noise on population dynamics used first or second order autoregressive noise. I examined the importance of coloured noise for extinction risk using true 1/ f   noise. I also considered the problem of estimating extinction risk with a limited sample of environmental variation. Pink noise environments increased extinction risk in random walk models where environmental variation affected the growth rate. However, pink noise environments decreased extinction risk in the Ricker model where environmental variation modified the carrying capacity. Underestimation of environmental variance almost always yielded underestimation of extinction risk. For either population viability analysis or management, we should carefully consider the long-term behaviour of the environment as well as how we include environmental noise in population models.  相似文献   

19.
海岸带城市生态承载力综合评价——以连云港市为例   总被引:2,自引:0,他引:2  
海岸带是人类聚居和海洋资源开发利用的重点区域。海岸带城市综合生态承载力体现了海岸带生态系统对人类社会经济活动的承受能力,是判断海岸带城市生态系统健康程度和制定海岸带环境管理政策的重要依据。基于"压力(P)-状态(S)-响应(R)"概念模型,以连云港市为例,构建海岸带综合生态承载力评价指标体系,并对2005—2014年间连云港市的综合生态承载力进行评价。结果显示:连云港市海岸带综合生态承载力呈现逻辑斯蒂式波动上升趋势,2005—2007年处于超载状态,2008—2011年基本处于平衡状态,2012年后处于可载状态。对影响承载力的主要因素进行贡献度分析的结果表明:负向指标中,海岸带环境压力大于人口压力;正向指标中,海岸带经济发展水平及科技支撑条件的贡献呈上升趋势,海岸带可利用资源波动下降。结合相关分析和因子分析,得出海岸带环境压力、科技支撑条件及经济发展水平是制约综合承载力的关键因素。研究结果对海岸带地区环境管理及可持续发展政策制定具有重要意义。  相似文献   

20.
We conducted a pilot study to assess magnetic field levels in electric compared to gasoline‐powered vehicles, and established a methodology that would provide valid data for further assessments. The sample consisted of 14 vehicles, all manufactured between January 2000 and April 2009; 6 were gasoline‐powered vehicles and 8 were electric vehicles of various types. Of the eight models available, three were represented by a gasoline‐powered vehicle and at least one electric vehicle, enabling intra‐model comparisons. Vehicles were driven over a 16.3 km test route. Each vehicle was equipped with six EMDEX Lite broadband meters with a 40–1,000 Hz bandwidth programmed to sample every 4 s. Standard statistical testing was based on the fact that the autocorrelation statistic damped quickly with time. For seven electric cars, the geometric mean (GM) of all measurements (N = 18,318) was 0.095 µT with a geometric standard deviation (GSD) of 2.66, compared to 0.051 µT (N = 9,301; GSD = 2.11) for four gasoline‐powered cars (P < 0.0001). Using the data from a previous exposure assessment of residential exposure in eight geographic regions in the United States as a basis for comparison (N = 218), the broadband magnetic fields in electric vehicles covered the same range as personal exposure levels recorded in that study. All fields measured in all vehicles were much less than the exposure limits published by the International Commission on Non‐Ionizing Radiation Protection (ICNIRP) and the Institute of Electrical and Electronics Engineers (IEEE). Future studies should include larger sample sizes representative of a greater cross‐section of electric‐type vehicles. Bioelectromagnetics 34:156–161, 2013. © 2012 Wiley Periodicals, Inc.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号