首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The context is the general stochastic differential equation (SDE) model dN/dt=N(g(N)+sigmaepsilon(t)) for population growth in a randomly fluctuating environment. Here, N=N(t) is the population size at time t, g(N) is the 'average' per capita growth rate (we work with a general almost arbitrary function g), and sigmaepsilon(t) is the effect of environmental fluctuations (sigma>0, epsilon(t) standard white noise). There are two main stochastic calculus used to interpret the SDE, It? calculus and Stratonovich calculus. They yield different solutions and even qualitatively different predictions (on extinction, for example). So, there is a controversy on which calculus one should use. We will resolve the controversy and show that the real issue is merely semantic. It is due to the informal interpretation of g(x) as being an (unspecified) 'average' per capita growth rate (when population size is x). The implicit assumption usually made in the literature is that the 'average' growth rate is the same for both calculi, when indeed this rate should be defined in terms of the observed process. We prove that, when using It? calculus, g(N) is indeed the arithmetic average growth rate R(a)(x) and, when using Stratonovich calculus, g(N) is indeed the geometric average growth rate R(g)(x). Writing the solutions of the SDE in terms of a well-defined average, R(a)(x) or R(g)(x), instead of an undefined 'average' g(x), we prove that the two calculi yield exactly the same solution. The apparent difference was due to the semantic confusion of taking the informal term 'average growth rate' as meaning the same average.  相似文献   

2.
生态对策影响种群增长的数学模型研究   总被引:3,自引:1,他引:3  
本文根据不同生态对策的种群的增长特点和Alllee规律,组建了一个能反映种群自我调节机制以及这种机制与环境负荷协同作用对种群施加影响的种群增长模型。模型在变化其参数时,可以转变为几个具有实用价值的模型。因此,该模型具有一定的应用意义。文章最后还讨论了该模型对生态管理的指导意义。  相似文献   

3.
Most of natural populations seem to be regulated in their sizes in complex ways. Particularly, the sizes of some populations change in time or generation roughly periodically. There are many theoretical studies on such population dynamics. This paper develops stochastic population models for a periodic-like population dynamics. To see the nature of such mechanism, we consider simple models of a delayed density-dependent branching process, and present by numerical simulations how such a branching process shows periodic population changes. The effects of randomly changing stationary environments on the population dynamics are also considered.  相似文献   

4.
One of the main ecological phenomenons is the Allee effect [1], [2] and [3], in which a positive benefit from the presence of conspecifics arises. In this work we describe the dynamical behavior of a population with Allee effect in a finite domain that is surrounded by a completely hostile environment. Using spectral methods to rewrite the local density of habitants we are able to determine the critical patch size and the bifurcation diagram, hence characterizing the stability of possible solutions, for different ways to introduce the Allee effect in the reaction-diffusion equations.  相似文献   

5.
Persistence in population models with demographic fluctuations   总被引:7,自引:0,他引:7  
A persistence and extinction theory is developed through analytical studies of deterministic population models. Under hypotheses that require demographic parameters to fluctuate temporally, the populations may or may not oscillaate. Extinction, when it occurs, is asymptotic. An hierarchy of persistence criteria, based upon fluctuations measured by time average means, is derived. In some situations a threshold value is found to separate persistent population models from those that tend to extinction. Application of the persistence-extinction theory is to the problem of assessing effects of a toxic substance on a population when toxicant inputs to the environment and to resources are oscillatory.  相似文献   

6.
    
The present work employs a nonlocal delay reaction-diffusion model to study the impacts of the density dependent birth function, maturation time delay and population dispersal on single species dynamics (i.e., extinction, survival, extinction-survival). It is shown that the maturation time and the birth function are two major factors determining the fate of single species. Whereas the dispersal acts as a subsidiary factor that only affects the spatial patterns of population densities. When the birth function has a compensating density dependence, maturation time delay cannot destabilize the population survival at the positive equilibrium. Nevertheless, when the birth function has an over-compensating density dependence, the population densities of single species fluctuate in the spatial domain due to the increased maturation time delay. With the Allee effect and over-compensating density dependence, the increases in the maturation time may cause extinction of the single species in the entire spatial domain. The numerical simulations suggest that the solutions of the general model may temporarily remain nearby a stationary wave pulse or a stationary wavefront of the reduced model. The former indicates the survival of single species in a narrow region of the spatial domain. Whereas the latter represents the survival in the entire left-half or right-half of the spatial domain.  相似文献   

7.
    
We explore extinction rates using a spatially arranged set of subpopulations obeying Ricker dynamics. The population system is subjected to dispersal of individuals among the subpopulations as well as to local and global disturbances. We observe a tight positive correlation between global extinction rate and the level of synchrony in dynamics among thesubpopulations. Global disturbances and to a lesser extent, migration, are capable of synchronizing the temporal dynamics of the subpopulations over a rather wide span of the population growth rate r. Local noise decreases synchrony, as does increasing distance among the subpopulations. Synchrony also levels off with increasing r: in the chaotic region, subpopulations almost invariably behave asynchronously. We conclude that it is asynchrony that reduces the probability of global extinctions, not chaos as such: chaos is a special case only. The relationship between global extinction rate, synchronous dynamics and population growth rate is robust to changes in dispersal rates and ranges.  相似文献   

8.
In the interest of conservation, the importance of having a large habitat available for a species is widely known. Here, we introduce a lattice-based model for a population and look at the importance of fluctuations as well as that of the population density, particularly with respect to Allee effects. We examine the model analytically and by Monte Carlo simulations and find that, while the size of the habitat is important, there exists a critical population density below which the probability of extinction is greatly increased. This has large consequences with respect to conservation, especially in the design of habitats and for populations whose density has become small. In particular, we find that the probability of survival for small populations can be increased by a reduction in the size of the habitat and show that there exists an optimal size reduction.  相似文献   

9.
    
Studies on small and declining populations dominate research in conservation biology. This emphasis reflects two overarching frameworks: the small-population paradigm focuses on correlates of increased extinction probability; the declining-population paradigm directs attention to the causes and consequences of depletion. Neither, however, particularly informs research on the determinants, rate or uncertainty of population increase. By contrast, Allee effects (positive associations between population size and realized per capita population growth rate, rrealized, a metric of average individual fitness) offer a theoretical and empirical basis for identifying numerical and temporal thresholds at which recovery is unlikely or uncertain. Following a critique of studies on Allee effects, I quantify population-size minima and subsequent trajectories of marine fishes that have and have not recovered following threat mitigation. The data suggest that threat amelioration, albeit necessary, can be insufficient to effect recovery for populations depleted to less than 10% of maximum abundance (Nmax), especially when they remain depleted for lengthy periods of time. Comparing terrestrial and aquatic vertebrates, life-history analyses suggest that population-size thresholds for impaired recovery are likely to be comparatively low for marine fishes but high for marine mammals. Articulation of a ‘recovering population paradigm’ would seem warranted. It might stimulate concerted efforts to identify generic impaired recovery thresholds across species. It might also serve to reduce the confusion of terminology, and the conflation of causes and consequences with patterns currently evident in the literature on Allee effects, thus strengthening communication among researchers and enhancing the practical utility of recovery-oriented research to conservation practitioners and resource managers.  相似文献   

10.
体内毒素浓度不相同的三维时变Volterra系统的持续生存   总被引:1,自引:0,他引:1  
在环境容量很大且被污染的情形下,对体内毒素浓度不相同的三种群时变Volterra系统进行了研究,并给出了三维时变Volterra捕食系统弱平均持续生存与灭绝的条件。  相似文献   

11.
环境污染中三维时变Volterra捕食-被捕食系统的持续生存   总被引:4,自引:1,他引:4  
对环境容量很大且被污染的三种群时变系统进行了研究,给出了三维时变Volterra捕食-被捕食系统弱平均持续生存与绝灭的充分条件。  相似文献   

12.
This study focuses on the extinction rate of a population that follows a continuous-time multi-type branching process in a random environment. Numerical computations in a particular example inspired by an epidemic model suggest an explicit formula for this extinction rate, but only for certain parameter values.  相似文献   

13.
集合种群的似Allee效应   总被引:4,自引:0,他引:4  
从局域种群出发,建立了一个既包括局域种群动态,又包含集合种群侵占率的整合模型,并在这两个层次上进行了计算机模拟,结果表明:(1)同局域种群的Allee效应相类似,集合种群的斑块(适宜生境)侵占比例也存在一个临界值,即使有足够的适宜生境,当斑块的侵占比例低于这个临界值时,集合种群优将趋于灭绝。(2)这个临界值与局域种各的Allee效应密切相关,这将给自然保护,尤其稀有生物的保护以很大的启示。  相似文献   

14.
随着全球环境破坏的加剧,物种丧失的速度加快,人们日益关注生物多样性的保护。种群生物学和自然保护生物学的一些研究表明,如果一个局域种群受到Allee效应的影响,最终可能走向灭绝。从物种保护的角度考虑,分别介绍了集合种群水平上的Allee效应的和似Allee效应,比较了集合种群的Allee效应和似Allee效应产生的原因,以及集合种群的Allee效应和局域种群的Allee效应之间的关系、集合种群的似Allee效应和局域种群的Allee效应之间的关系,并提出集合种群的Allee效应还需要进一步的研究。  相似文献   

15.
Habitat destruction, often caused by anthropogenic disturbance, can lead to the extinction of species at an unprecedented rate. It is important, therefore, to consider habitat destruction when assessing population viability. Another factor often ignored in population viability analysis, is the Allee effect that adds to the risk of populations already on the verge of extinction. Understanding the Allee effect on species dynamics and response to habitat destruction has intrinsic value in conservation prioritization. Here, the Allee effect was considered in a multi-species hierarchical competition model. Results showed that species persistence declines dramatically due to the Allee effect, and certain species become more susceptible to habitat destruction than others. Two extinction orders emerged under habitat destruction: either the best competitor becomes extinct first or the best colonizer first. The extinction debt and order, as well as the time lag between habitat destruction and species extinction, were found to be determined by species abundance and the intensity of the Allee effect.  相似文献   

16.
Many populations have a negative impact on their habitat or upon other species in the environment if their numbers become too large. For this reason they are often subjected to some form of control. One common control regime is the reduction regime: when the population reaches a certain threshold it is controlled (for example culled) until it falls below a lower predefined level. The natural model for such a controlled population is a birth-death process with two phases, the phase determining which of two distinct sets of birth and death rates governs the process. We present formulae for the probability of extinction and the expected time to extinction, and discuss several applications.  相似文献   

17.
We review the role of density dependence in the stochastic extinction of populations and the role density dependence has played in population viability analysis (PVA) case studies. In total, 32 approaches have been used to model density regulation in theoretical or applied extinction models, 29 of them are mathematical functions of density dependence, and one approach uses empirical relationships between density and survival, reproduction, or growth rates. In addition, quasi-extinction levels are sometimes applied as a substitute for density dependence at low population size. Density dependence further has been modelled via explicit individual spacing behaviour and/or dispersal. We briefly summarise the features of density dependence available in standard PVA software, provide summary statistics about the use of density dependence in PVA case studies, and discuss the effects of density dependence on extinction probability. The introduction of an upper limit for population size has the effect that the probability of ultimate extinction becomes 1. Mean time to extinction increases with carrying capacity if populations start at high density, but carrying capacity often does not have any effect if populations start at low numbers. In contrast, the Allee effect is usually strong when populations start at low densities but has only a limited influence on persistence when populations start at high numbers. Contrary to previous opinions, other forms of density dependence may lead to increased or decreased persistence, depending on the type and strength of density dependence, the degree of environmental variability, and the growth rate. Furthermore, effects may be reversed for different quasi-extinction levels, making the use of arbitrary quasi-extinction levels problematic. Few systematic comparisons of the effects on persistence between different models of density dependence are available. These effects can be strikingly different among models. Our understanding of the effects of density dependence on extinction of metapopulations is rudimentary, but even opposite effects of density dependence can occur when metapopulations and single populations are contrasted. We argue that spatially explicit models hold particular promise for analysing the effects of density dependence on population viability provided a good knowledge of the biology of the species under consideration exists. Since the results of PVAs may critically depend on the way density dependence is modelled, combined efforts to advance statistical methods, field sampling, and modelling are urgently needed to elucidate the relationships between density, vital rates, and extinction probability.  相似文献   

18.
Maynard Smith and Szathmary have posed the problem of demonstrating the conjectured instability of a continuum of sexual types with finite interbreeding. Here, I propose a model in which one can analyse exactly when and how the existence of the instability can depend on an Allee effect, and how the growth rate and typical scale of the unstable perturbations depend on the strength and range of competition, mating preference, fecundity and offspring variance due to Mendelian segregation and mutation. Instabilities of various kinds are shown to occur in the majority of parameter regimes. In short, the continuum often breaks up into incipient species.  相似文献   

19.
Krüger O 《Oecologia》2007,152(3):459-471
Density dependence and environmental stochasticity are both potentially important processes influencing population demography and long-term population growth. Quantifying the importance of these two processes for population growth requires both long-term population as well as individual-based data. I use a 30-year data set on a goshawk Accipiter gentilis population from Eastern Westphalia, Germany, to describe the key vital rate elements to which the growth rate is most sensitive and test how environmental stochasticity and density dependence affect long-term population growth. The asymptotic growth rate of the fully age-structured mean matrix model was very similar to the observed one (0.7% vs. 0.3% per annum), and population growth was most elastic to changes in survival rate at age classes 1-3. Environmental stochasticity led only to a small change in the projected population growth rate (between -0.16% and 0.67%) and did not change the elasticities qualitatively, suggesting that the goshawk life history of early reproduction coupled with high annual fertility buffers against a variable environment. Age classes most crucial to population growth were those in which density dependence seemed to act most strongly. This emphasises the importance of density dependence as a regulatory mechanism in this goshawk population. It also provides a mechanism that might enable the population to recover from population lows, because a mean matrix model incorporating observed functional responses of both vital rates to population density coupled with environmental stochasticity reduced long-term extinction risk of 30% under density-independent environmental stochasticity and 60% under demographic stochasticity to zero.  相似文献   

20.
污染环境下单种群模型生存阈值   总被引:1,自引:0,他引:1  
本论文研究了污染环境下毒素对单种群生存的影响。在环境容纳量较小的假设下建立了生物种群模型,在该模型中不但考虑了环境毒素浓度对生物个体生存的影响,还考虑了生物个体从食物链中吸收的毒素对其影响。通过研究得到种群一致持续生存和若平均持续生存的充分条件,同时得到种群持续生存依赖于模型参数和生物个体体内毒素净化率的某些充分条件.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号