首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 203 毫秒
1.
The biological role of cyanobacteria secondary metabolites is relatively unknown although several possible hypotheses have been discussed. In the following study the effect of cylindrospermopsin (CYN) and metabolites of non-CYN producing Cylindrospermopsis raciborskii strain on growth, alkaline phosphatase (ALP) activity and microcystin-LR (MC-LR) production in Microcystis aeruginosa was evaluated. Higher concentrations of CYN (10 and 50 μg L−1) induced toxicity effects demonstrated by significant growth inhibition and M. aeruginosa cell necrosis. Lower concentrations of CYN (1 and 5 μg L−1) slightly decreased growth rates but significantly up-regulated ALP activity. Moreover, under all studied CYN concentrations MC-LR production strongly decreased. Spent C. raciborskii medium mimicked the CYN action by inducing strong inhibition of M. aeruginosa growth and MC-LR production and through up-regulation of ALP activity. On the other hand, spent M. aeruginosa medium did not affect C. raciborskii growth and no alterations in ALP activity were observed. Co-culturing of these two species resulted in an increase of C. raciborskii contribution at the expense of M. aeruginosa. From the results we conclude that CYN can be involved in interspecific competition in cyanobacteria and that non-CYN producing C. raciborskii strains may produce a hitherto unknown bioactive compound(s) which can mimic CYN action.  相似文献   

2.
Allelopathic interactions among phytoplankton species are regarded as one of the important factors contributing to phytoplankton species competition and succession. The role and extent of allelopathic effects of blooming freshwater cyanobacteria on other phytoplankton species in eutrophied waters, however, are still unknown. We examined the allelopathic effect of Microcystis aeruginosa on two common green algae (Scenedesmus quadricauda, Chlorella pyrenoidosa) and a diatom (Cyclotella meneghiniana) by adding exudates from different growth phases and in co-culture tests. Exudates of M. aeruginosa from the exponential growth phase and the stationary phase significantly inhibited the growth of S. quadricauda, C. pyrenoidosa and C. meneghiniana, whereas those from the decline phase increased their growth. The presence of M. aeruginosa extremely inhibited the growth of all tested species in co-cultures within 24 h. Our results indicate that under the tested environmental conditions (25 °C, light 80 μmol quanta m−2 s−1, manual shaking twice a day), allelopathic effects of M. aeruginosa on other phytoplankton species can significantly contribute to their competitive success.  相似文献   

3.
Global warming was believed to accelerate the expansion of cyanobacterial blooms. However, the impact of changes due to the allelopathic effects of cyanobacterial blooms with or without algal toxin production on the ecophysiology of its coexisting phytoplankton species arising from global warming were unknown until recently. In this study, the allelopathic effects of toxic and non-toxic Microcystis aeruginosa strains on the growth of green alga Chlorella vulgaris and photosynthesis of the co-cultivations of C. vulgaris and toxic M. aeruginosa FACHB-905 or non-toxic M. aeruginosa FACHB-469 were investigated at different temperatures. The growth of C. vulgaris, co-cultured with the toxic or non-toxic M. aeruginosa strains, was promoted at 20 °C but inhibited at temperatures ≥25 °C. The inhibitory effects of the toxic and non-toxic M. aeruginosa strains on of the co-cultivations (C. vulgaris and non-toxic M. aeruginosa FACHB-469 or toxic M. aeruginosa FACHB-905) also linearly increased with elevated temperatures. Furthermore, toxic M. aeruginosa FACHB-905 induced more inhibition toward growth of C. vulgaris or Pmax and Rd of the mixtures than non-toxic M. aeruginosa FACHB-469. C. vulgaris dominated over non-toxic M. aeruginosa FACHB-469 but toxic M. aeruginosa FACHB-905 overcame C. vulgaris when they were co-cultured in mesocosms in water temperatures from 20 to 25 °C. The results indicate that allelopathic effects of M. aeruginosa strains on C. vulgaris are both temperature- and species-dependent: it was stimulative for C. vulgaris at low temperatures such as 20 °C, but inhibitory at high temperatures (≥25 °C); the toxic strain was determined to be more harmful to C. vulgaris than the non-toxic one. This suggests that global warming may aggravate the ecological risk of cyanobacteria blooms, especially those with toxic species as the main contributors.  相似文献   

4.
The hypothesis that outcomes of phosphorus and light competition between Cylindrospermopsis raciborskii and Microcystis aeruginosa are strain dependent was tested experimentally. Critical requirements of phosphorus (P*) and of light (I*) of two strains of each species were determined through monoculture experiments, which indicated a trade-off between species and also between Microcystis strains. Competition experiments between species were performed using the weakest predicted competitors (with the highest values of P* and of I*) and with the strongest predicted competitors (with the lowest values of P* and of I*). Under light limitation, competition between the weakest competitors led C. raciborskii to dominate. Between the strongest competitors, the opposite was observed, M. aeruginosa displaced C. raciborskii, but both strains co-existed in equilibrium. Under phosphate limitation, competition between the weakest competitors led C. raciborskii to exclude M. aeruginosa, and between the strongest competitors, the opposite was observed, M. aeruginosa displaced C. raciborskii, but the system did not reach an equilibrium and both strains were washed out. Hence, outcomes of the competition depended on the pair of competing strains and not only on species or on type of limitation. We concluded that existence of different trade-offs among strains and between species underlie our results showing that C. raciborskii can either dominate or be displaced by M. aeruginosa when exposed to different conditions of light or phosphate limitation.  相似文献   

5.
Phosphorus loading plays an important role in the occurrence of cyanobacterial blooms and understanding how this nutrient affects the physiology of cyanobacteria is imperative to manage these phenomena. Microcystis aeruginosa and Raphidiopsis raciborskii are cyanobacterial species that form potentially toxic blooms in freshwater ecosystems worldwide. Blooms comprise numerous strains with high trait variability, which can contribute to the widespread distribution of these species. Here, we explored the intraspecific variability in response to phosphorus depleted conditions (P-) testing five strains of each species. Strains could be differentiated by cell volume or genetic profiles except for those of the same species, sampling location and date, though these presented differences in their response to (P-). Although differently affected by (P-) over 10 days, all strains were able to grow and maintain photosynthetic activity. For most M. aeruginosa and R. raciborskii strains growth rates were not significantly different comparing (P+) and (P-) conditions. After ten days in (P-), only one M. aeruginosa strain and two R. raciborskii strains showed reduction in biovolume yield as compared to (P+) but in most strains chlorophyll-a concentrations were lower in (P-) than in (P+). Reduced photosystem II efficiency was found for only one R. raciborskii strain while all M. aeruginosa strains were affected. Only two M. aeruginosa and one R. raciborskii strain increased alkaline phosphatase activity under (P-) as compared to (P+). Variation in P-uptake was also observed but comparison among strains yielded homogeneous groups comprised of representatives of both species. Comparing the response of each species as a whole, the (P-) condition affected growth rate, biovolume yield and chlorophyll yield. However, these parameters revealed variation among strains of the same species to the extent that differences between M. aeruginosa and R. raciborskii were not significant. Taken together, these results do not support the idea that R. raciborskii, as a species, can withstand phosphorus limitation better than M. aeruginosa and also point that the level of intraspecific variation may preclude generalizations based on studies that use only one or few strains.  相似文献   

6.
《Aquatic Botany》2005,82(4):284-296
The allelopathic potential of exudates from the aquatic macrophyte Stratiotes aloides on the growth of phytoplankton was investigated. A selection of phytoplankton species, occurring in habitats similar to that of Stratiotes, was used: two cyanobacterial strains (toxic and non-toxic Microcystis aeruginosa), one green alga (Scenedesmus obliquus) and one eustigmatophyte (Nannochloropsis limnetica). The results indicate allelopathic effects of Stratiotes on phytoplankton in six of the eight cases, expressed in an extended duration of the initial biovolume doubling time. The overall inhibitory effect (8–51%) was strain-specific for the two cyanobacteria. We also studied the effect of irradiance on the allelopathic potential of exudates from Stratiotes. Irradiance influenced the response of Scenedesmus only. The inhibitory effect of Stratiotes exudates on the growth of this green alga was stronger at 35 μmol m−2 s−1 than at 105 μmol m−2 s−1. We conclude that Stratiotes has allelopathic effects on phytoplankton, and that irradiance can, but does not always determine the extent of the allelopathic inhibition. In our experiments, the sensitivity of cyanobacteria to Stratiotes exudates was not higher than for other phytoplankton strains, but within cyanobacteria, the toxic strain was more sensitive than the non-toxic one.  相似文献   

7.
Rising temperatures (1.4–6 °C) due to climate change have been predicted to increase cyanobacterial bloom occurrences in temperate water bodies; however, the impacts of warming on tropical cyanobacterial blooms are unknown. We examined the effects of four different temperatures on the growth rates and microcystin (MC) production of five tropical Microcystis isolates (M. ichthyoblabe (two strains), M. viridis, M. flos-aquae, and M. aeruginosa). The temperature treatments are based on current temperature range in Singapore's reservoirs (27 °C and 30 °C), as well as projected mean (33 °C) and maximum temperatures (36 °C) based on tropical climate change estimates of +6 °C in air temperature. Increasing temperatures did not significantly affect the maximum growth rates of most Microcystis strains. Higher growth rates were only observed in one M. ichthyoblabe strain at 33 °C and M. flos-aquae at 30 °C where both were isolated from the same reservoir. MC-RR and MC-LR were produced in varying amounts by all four species of Microcystis. Raised temperatures of 33 °C were found to boost total MC cell quota for three Microcystis strains although further increase to 36 °C led to a sharp decrease in total MC cell quota for all five Microcystis strains. Increasing temperature also led to higher MC-LR:MC-RR cell quota ratios in M. ichthyoblabe. Our study suggests that higher mean water temperatures resulting from climate change will generally not influence growth rates of Microcystis spp. in Singapore except for increases in M. ichthyoblabe strains. However, toxin cell quota may increase under moderate warming scenarios depending on the species.  相似文献   

8.
Blooms of the toxin-producing cyanobacterium Cylindrospermopsis raciborskii occur in tropical and subtropical lakes during spring-summer but the mechanisms behind bloom formation are unclear. This study tests the hypothesis that C. raciborskii accumulations in freshwater systems are facilitated by selective copepod grazing. Prey selection was examined in a series of experiments with C. raciborskii and the green alga, Chlamydomonas reinhardtii, as well as within natural phytoplankton assemblages. Clearance rates of the copepod Boeckella sp. on a C. raciborskii diet were 2–4 times lower than that of a common cladoceran Ceriodaphnia sp. when both grazers had prey choice. More C. raciborskii was cleared by Boeckella sp. when in mixed natural phytoplankton assemblages, but the clearance rate declined when nutrient replete C. reinhardtii was added, demonstrating that when alternate “high quality” algae were present, so did C. raciborskii consumption. The clearance rates of Boeckella sp. on two toxic C. raciborskii strains were significantly lower than on a non-toxic strain, and on C. raciborskii with low cellular P content. When we tested the grazing preference of a copepod dominated mixed zooplankton community on C. raciborskii during the early bloom period, clearance rates were relatively low (0.05–0.20 ml individual−1 h−1), and decreased significantly as the proportion of C. raciborskii increased above 5%. These results suggest that C. raciborskii persistence could be promoted by copepods preferentially grazing on other algae, with significant loss of top-down control as C. raciborskii abundance increases.  相似文献   

9.
Seven-day-ahead forecasting models of Cylindrospermopsis raciborskii in three warm-monomictic and mesotrophic reservoirs in south-east Queensland have been developed by means of water quality data from 1999 to 2010 and the hybrid evolutionary algorithm HEA. Resulting models using all measured variables as inputs as well as models using electronically measurable variables only as inputs forecasted accurately timing of overgrowth of C. raciborskii and matched well high and low magnitudes of observed bloom events with 0.45  r2 > 0.61 and 0.4  r2 > 0.57, respectively. The models also revealed relationships and thresholds triggering bloom events that provide valuable information on synergism between water quality conditions and population dynamics of C. raciborskii. Best performing models based on using all measured variables as inputs indicated electrical conductivity (EC) within the range of 206–280 mS m−1 as threshold above which fast growth and high abundances of C. raciborskii have been observed for the three lakes. Best models based on electronically measurable variables for the Lakes Wivenhoe and Somerset indicated a water temperature (WT) range of 25.5–32.7 °C within which fast growth and high abundances of C. raciborskii can be expected. By contrast the model for Lake Samsonvale highlighted a turbidity (TURB) level of 4.8 NTU as indicator for mass developments of C. raciborskii.Experiments with online measured water quality data of the Lake Wivenhoe from 2007 to 2010 resulted in predictive models with 0.61  r2 > 0.65 whereby again similar levels of EC and WT have been discovered as thresholds for outgrowth of C. raciborskii. The highest validity of r2 = 0.75 for an in situ data-based model has been achieved after considering time lags for EC by 7 days and dissolved oxygen by 1 day. These time lags have been discovered by a systematic screening of all possible combinations of time lags between 0 and 10 days for all electronically measurable variables. The so-developed model performs seven-day-ahead forecasts and is currently implemented and tested for early warning of C. raciborskii blooms in the Wivenhoe reservoir.  相似文献   

10.
We measured the growth rates and swimming behaviors of recently isolated strains of the dinoflagellate Akashiwo sanguinea to investigate to what degree growth and motility could contribute to the formation of in situ blooms. To quantify the effect of variation in in situ conditions on population growth rate, we applied two temperature treatments (10 °C and 20 °C) and measured growth in still conditions and on a shaker table, to emulate mild turbulence. To quantify the importance of intra-strain variability and trait variation in the species growth potential and vertical distribution, we included six strains isolated from a spatially and temporally extensive bloom on the US West Coast. Overall, as reported previously, A. sanguinea was observed to tolerate conditions amounting to a broad ecological niche with intra-specific variability further broadening tolerable conditions. In agreement with prior observations of slow growth rates of the species, average growth rates across all strains increased significantly from 0.12 d−1 (±0.03) at 10 °C to 0.28 d−1 (±0.13) at 20 °C in still conditions. Contrary to prior reports, mild turbulence had neutral or positive effects on most strains’ growth rates, with one strain only able to grow on the shaker table. Growth rates in mild turbulence were higher than in still conditions and increased from 0.15 d−1 (±0.01) at 10 °C to 0.43 d−1 (± 0.04) at 20 °C. There was significant intra-strain variation in growth rates (>50% coefficient of variation) and movement behaviors. All strains had both up and down swimming fractions, leading to predictions of vertically patchy distributions, rather than surface aggregations. Slow growth rates and dispersive swimming behaviors suggest in situ mortality must be low and tolerance of seasonally varying water temperatures lead to accumulation and persistence of cells over months and kilometers. Estimates of in situ loss rates are a critical but missing component of identifying the bloom formation mechanisms of this species.  相似文献   

11.
Six siderophore-producing bacterial strains were isolated from the freshwater, in which five strains belonged to Pseudomona genus, and the other belonged to Stenotrophomonas genus. The strain, Stenotrophomonas maltophilia 15, which produced hydroxamate-type siderophore, was selected for siderophore preparation. Its siderophore production was inhibited by FeCl3, especially when FeCl3 concentration was higher than 20 μM. Effects of siderophore on cyanobacteria Microcystis aeruginosa FACHB-905 and Anabaena flos-aquae FACHB-245 were studied. Compared to the control, almost all the treated groups showed decrease in growth rate and chlorophyll a, carotenoids, phycocyanin, soluble protein, microcystin content, which was attributed the low iron bioavailability in the culture medium. In the study, S. maltophilia 15 showed algicidal activities by secreting siderophore and could inhibit cyanobacterial growth, especially when iron bioavailabity is very low. The two cyanobacterial strains showed distinct demand for iron. It was deduced that in the freshwater the competition between bacteria and cyanobacteria existed for the low-bioavailable iron, which may relate to the replacement of dominant cyanobacteria.  相似文献   

12.
Nitrogen (N) and phosphorus (P) over-enrichment has accelerated eutrophication and promoted cyanobacterial blooms worldwide. The colonial bloom-forming cyanobacterial genus Microcystis is covered by sheaths which can protect cells from zooplankton grazing, viral or bacterial attack and other potential negative environmental factors. This provides a competitive advantage over other phytoplankton species. However, the mechanism of Microcystis colony formation is not clear. Here we report the influence of N, P and pH on Microcystis growth and colony formation in field simulation experiments in Lake Taihu (China). N addition to lake water maintained Microcystis colony size, promoted growth of total phytoplankton, and increased Microcystis proportion as part of total phytoplankton biomass. Increases in P did not promote growth but led to smaller colonies, and had no significant impact on the proportion of Microcystis in the community. N and P addition together promoted phytoplankton growth much more than only adding N. TN and TP concentrations lower than about TN 7.75–13.95 mg L−1 and TP 0.41–0.74 mg L−1 mainly promoted the growth of large Microcystis colonies, but higher concentrations than this promoted the formation of single cells. There was a strong inverse relationship between pH and colony size in the N&P treatments suggesting CO2 limitation may have induced colonies to become smaller. It appears that Microcystis colony formation is an adaptation to provide the organisms adverse conditions such as nutrient deficiencies or CO2 limitation induced by increased pH level associated with rapidly proliferating blooms.  相似文献   

13.
Cylindrospermopsis raciborskii is a global invasive cyanobacterium, with some ecotypes (i.e. strains) producing the toxin cylindrospermopsin, CYN. Multiple ecotypes can co-exist, complicating prediction of toxin concentrations based on cell concentrations. This study examined the growth response and toxin production of three Australian ecotypes of C. raciborskii, two toxic (CS-505, CS-506) and one non-toxic (CS-510), to a range of nitrogen (N) and phosphorus (P) concentrations. CYN cell quota was constant under all N:P ratios and concentration conditions, indicative of a constitutive response, yet the CYN cell quota was 6-fold higher in CS-506 compared to CS-505. The ecotypes differed in response to dissolved N depletion: there was a 4-fold difference in the number of cells heterocyst mL−1 between CS-505 and CS-510, while CS-506 did not produce any heterocysts and was unable to grow in N deplete conditions. Growth rates were lower for all ecotypes as [P] increased, indicative of a species with a strategy of P storage rather than increased growth. Presumably this is an adaptation to low and fluctuating P conditions. However, the negative effect of increasing [P] on growth is surprising. In contrast, increasing [N] resulted in higher growth rates across ecotypes. This study highlights the importance of understanding differences in growth and toxin production between ecotypes in response to environmental conditions in order to more effectively predict blooms and toxin yields.  相似文献   

14.
Harmful algal blooms are a serious worldwide environmental problem. Algicidal microorganisms, especially bacteria, have attracted extensive attention as possible agents for inhibiting water blooms. Such capabilities, however, are rarely reported for fungi. In this work, a fungal strain, Trichaptum abietinum 1302BG, is studied for its capability to inhibit four phytoplankton species: Microcystis aeruginosa FACH-918, Microcystis flos-aquae FACH-1028, Oocystis borgei FACH-1108, and Microcystis aeruginosa PCC 7806. The results show that the chlorophyll-a from these phytoplankton species co-cultured with Trichaptum abietinum 1302BG decreases rapidly 24 h after inoculation, and phytoplankton cells almost completely disappear 48 h after incubation. These results suggest that the fungus strain has great potential for the degradation of phytoplankton species. To the best of our knowledge, this is the first report of a white-rot fungus that can inhibit harmful algae blooms species.  相似文献   

15.
The toxic dinoflagellate Alexandrium catenella has been detected in the southern Chile since 1972, causing severe negative impacts on public health and aquaculture activities. Several environmental factors have been determined to affect growth and toxin production in Alexandrium strains. The aim of this study was to determine the effect of four combined conditions of two temperatures (10 and 15 °C) and two salinities (15 and 35 psu) on the growth and the Paralytic Shellfish Poisoning (PSP) toxin content and composition in four Chilean strains of A. catenella (PFB41, PFB42, PFB37 and PFB38), isolated during a summer outbreak occurred in southern Chile in 2009. The growth curves showed a higher effect of the salinity in strains PFB41 and PFB42 than in strains PFB37 and PFB38. The values of growth rates and maximum cell densities ranged from 0.25 to 0.73 div day−1 and 1.1 × 104 to 5.2 × 104 cells mL−1, respectively. All of the strains showed the highest values for both growth parameters at 15 °C and 35 psu. In general, growth parameters were higher at 35 psu independently of the temperature. On the other hand, the total PSP toxin content ranged widely from 3.99 to 239 fmol cell−1. The highest values of PSP toxin content were attained at 10 °C and 35 psu for all of the strains, at both stages of growth. All of the strains displayed different toxin compositions, with neoSTX, GTX4-1, GTX3-2 and GTX5 being the main toxins detected. The results showed significant differences in the absolute values of growth and toxin production parameters among the strains grown under the same culture conditions, and for each strain grown under different combined conditions of temperature and salinity. These findings demonstrate that abiotic factors can differentially affect the population dynamics of the A. catenella toxic genotypes, thus making it extremely difficult to predict the ecological behavior of this species in the field in terms of the intensity of a potential outbreak.  相似文献   

16.
谢晓玲  周蓉  邓自发 《生态学报》2014,34(5):1224-1234
研究了铜绿微囊藻(Microcystis aeruginosa)和斜生栅藻(Scenedesmus obliquus)低温和低光照限制后的超补偿效应,以及共培养条件下的竞争效应。结果表明,低温和低光照均显著抑制微藻的生长发育,但低温对铜绿微囊藻的抑制效应更强,而斜生栅藻则对低光胁迫更敏感。经过低光和低温培养后,铜绿微囊藻和斜生栅藻在恢复正常培养时藻细胞密度短期内都表现出超补偿增长效应,但不同藻类超补偿模式不同,斜生栅藻补偿生长时间不超过1周,而铜绿微囊藻的补偿效应可以持续10天;此外,统计结果表明铜绿微囊藻细胞密度对低温限制解除表现出更显著的补偿生长,斜生栅藻则在低光解除后表现出更强的超补偿效应。微藻叶绿素a指标在光恢复条件下都表现出显著的补偿效应,但温度恢复过程中叶绿素a含量与藻密度增长不同步,低温胁迫对恢复正常培养后微藻叶绿素a的形成产生了一定的负效应;铜绿微囊藻产毒株(912)在两种恢复模式下脱氢酶活性显著高于对照,产毒株(912)脱氢酶活性的补偿响应明显高于其它两种材料。共培养实验结果表明斜生栅藻同铜绿微囊藻产毒株(912)相比处于竞争劣势,而在同无毒株(469)的共培实验中,尽管连续正常培养情况下两者竞争能力差异不显著,但在恢复培养条件下斜生栅藻竞争能力显著高于后者。因此产毒型铜绿微囊藻低温和低光后的补偿生长效应以及对斜生栅藻的竞争优势可能是蓝藻爆发的内源性机制之一。  相似文献   

17.
The effect of temperature (26 °C, 28 °C, 30 °C and 35 °C) on the growth of native CAAT-3-2005 Microcystis aeruginosa and the production of Chlorophyll-a (Chl-a) and Microcystin-LR (MC-LR) were examined through laboratory studies. Kinetic parameters such as specific growth rate (μ), lag phase duration (LPD) and maximum population density (MPD) were determined by fitting the modified Gompertz equation to the M. aeruginosa strain cell count (cells mL−1). A 4.8-fold increase in μ values and a 10.8-fold decrease in the LPD values were found for M. aeruginosa growth when the temperature changed from 15 °C to 35 °C. The activation energy of the specific growth rate (Eμ) and of the adaptation rate (E1/LPD) were significantly correlated (R2 = 0.86). The cardinal temperatures estimated by the modified Ratkowsky model were minimum temperature = 8.58 ± 2.34 °C, maximum temperature = 45.04 ± 1.35 °C and optimum temperature = 33.39 ± 0.55 °C.Maximum MC-LR production decreased 9.5-fold when the temperature was increased from 26 °C to 35 °C. The maximum production values were obtained at 26° C and the maximum depletion rate of intracellular MC-LR was observed at 30–35 °C. The MC-LR cell quota was higher at 26 and 28 °C (83 and 80 fg cell−1, respectively) and the MC-LR Chl-a quota was similar at all the different temperatures (0.5–1.5 fg ng−1).The Gompertz equation and dynamic model were found to be the most appropriate approaches to calculate M. aeruginosa growth and production of MC-LR, respectively. Given that toxin production decreased with increasing temperatures but growth increased, this study demonstrates that growth and toxin production processes are uncoupled in M. aeruginosa. These data and models may be useful to predict M. aeruginosa bloom formation in the environment.  相似文献   

18.
Occurrence of toxic cyanobacterial blooms has become a worldwide problem, increasing the risk of human poisoning due to consumption of seafood contaminated with cyanotoxins. Though no such cases of human intoxication due to toxic blooms have been reported so far from India, most of the studies related to blooms have been restricted to reporting of a bloom and/or antimicrobial activity of its extract. Detailed toxicity study of cyanobacterial blooms are lacking. A study on the toxicity of a dense bloom (14.56 × 106 trichomes L−1) of the marine diazotrophic cyanobacteria, Trichodesmium erythraeum, observed in the coastal waters of Phoenix Bay, Port Blair, Andamans was undertaken. The significance of this bloom is that it was a single species and had conspicuously inhibited the growth of other phytoplankton and complete exclusion of zooplankton from the bloom region, intimating the involvement of toxins in the bloom. The cyanobacterial extracts showed prominent antimicrobial activity against certain human pathogenic bacteria and fungi. Studies on the toxicity of the cyanobacterial extracts was carried out using brine shrimp bioassay, 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT) assay and comet assay. The cyanobacterial extract exhibited toxic effect to Artemia salina causing mortality of up to 40% after 48 h at a concentration of 1 mg mL−1, while it induced cytotoxicity in cell lines (HepG2 and HaCat) and caused DNA damage in human lymphocytes in vitro.  相似文献   

19.
The rpoB gene encoding for β subunit of RNA polymerase is a target of mutations leading to rifampicin resistant (Rifr) phenotype of bacteria. Here we have characterized rpoB/Rifr system in Pseudomonas aeruginosa and Pseudomonas putida as a test system for studying mutational processes. We found that in addition to the appearance of large colonies which were clearly visible on Rif selective plates already after 24 h of plating, small colonies grew up on these plates for 48 h. The time-dependent appearance of the mutant colonies onto selective plates was caused by different levels of Rif resistance of the mutants. The Rifr clusters of the rpoB gene were sequenced and analyzed for 360 mutants of P. aeruginosa and for 167 mutants of P. putida. The spectrum of Rifr mutations characterized for P. aeruginosa grown at 37 °C and that characterized for P. putida grown at 30 °C were dissimilar but the differences almost disappeared when the mutants of both strain were isolated at the same temperature, at 30 °C. The strong Rifr phenotype of P. aeruginosa and P. putida was accompanied only with substitutions of these residues which belong to the putative Rif-binding pocket. Approximately 70% of P. aeruginosa mutants, which were isolated at 37 °C and expressed weak Rifr phenotype, contained base substitutions in the N-terminal cluster of the rpoB gene. The differences in the spectra of mutations at 30 °C and 37 °C can be explained by temperature-sensitive growth of several mutants in the presence of rifampicin. Thus, our results imply that both the temperature for the growth of bacteria and the time for isolation of Rifr mutants from selective plates are critical when the rpoB/Rifr test system is employed for comparative studies of mutagenic processes in Pseudomonas species which are conventionally cultivated at different temperatures.  相似文献   

20.
High levels of nutrients in fish ponds by fish farming may cause significant eutrophication leading to a loss in species richness and a decrease of cover of aquatic plants to phytoplankton dominance. This shift can be represented by a tipping point where a significant change in the state of the ecosystem is observed such as a change from high to low aquatic plants species richness and cover. A total of 100 fish ponds were studied during five years in the Dombes region, France, to determine tipping points in aquatic plant richness and cover using chlorophyll α (CHL), water transparency, Total N (TN) and Total P (TP) gradients with two statistical methods. The relationships between tipping points, nutrient loads and yearly variations in weather conditions were also evaluated. Looking at the five years data, tipping points were observed in aquatic plant richness at 6 and 60 μg/L for CHL, and at 3.90 mg/L for TN concentration; as well as at 70 cm for water transparency, but no tipping point was found with TP. For aquatic plant cover, tipping points were observed at 11 μg/L for CHL, 2.42 mg/L for TN, 0.05 mg/L for TP, and at 62 cm for water transparency. These tipping points showed a significant decrease of aquatic plant species richness and cover, linked to the nutrient concentrations which drive the competition between the primary producers phytoplankton and aquatic plants. However, tipping points could vary significantly between years. The inter-annual variability may be due to an early occurrence of phytoplankton blooms in some ponds in a year preventing the establishment of aquatic plants, and thus influencing the value of tipping points. Weather conditions influence the competition between primary producers by impacting chlorophyll α and nutrients concentrations. When weather conditions supported increased nutrient concentrations, the development of phytoplankton and aquatic plants was facilitated and tipping points in aquatic plant richness and cover occurred with relatively high values. Thus, a significant decrease of plant cover and richness occurred at higher level of nutrients compared to the other years. In these cases, aquatic plants dominated over phytoplankton for the spring period, and also often during summer. In conclusion, tipping points observed are mainly linked to the competition between aquatic plants and phytoplankton. In shallow and eutrophic systems like fish ponds where nutrients are not a limiting resource, weather conditions act temporarily during spring as the main regulator of this competition.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号