首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
    
Large‐scale conversion of traditional agricultural cropping systems to biofuel cropping systems is predicted to have significant impact on the hydrologic cycle. Changes in the hydrologic cycle lead to changes in rainfall and its erosive power, and consequently soil erosion that will have onsite impacts on soil quality and crop productivity, and offsite impacts on water quality and quantity. We examine regional change in rainfall erosivity and soil erosion resulting from biofuel policy‐induced land use/land cover (LULC) change. Regional climate is simulated under current and biofuel LULC scenarios for the period 1979–2004 using the Weather Research Forecast (WRF) model coupled to the NOAH land surface model. The magnitude of change in rainfall erosivity under the biofuel scenario is 1.5–3 times higher than the change in total annual rainfall. Over most of the conterminous United States (~56%), the magnitude of the change in erosivity is between ?2.5% and +2.5%. A decrease in erosivity of magnitude 2.5–10% is predicted over 23% of the area, whereas an increase of the same magnitude is predicted over 14% of the area. Corresponding to the changes in rainfall erosivity and crop cover, a decrease in soil loss is predicted over 60% of the area under the biofuel scenario. In Kansas and Oklahoma, the states in which a large fraction of land area is planted with switchgrass under the biofuel scenario, soil loss is estimated to decrease 12% relative to the baseline. This reduction in soil loss is due more to changes in the crop cover factor than changes in rainfall or rainfall erosivity. This indicates that the changes in LULC, due to future cellulosic biofuel feedstock production, can have significant implications for regional soil and water resources in the United States and we recommend detailed investigation of the trade‐offs between land use and management options.  相似文献   

2.
  总被引:4,自引:0,他引:4  
The soil heat flux determination method proposed by Gao (Boundary-Layer Meteorol 114:165–178, 2005) is discussed for (1) dry surfaces, (2) bare soil or sparse short-grass lands, and (3) dense-grass surfaces or forest. Our analysis shows that, when neglecting the contribution of soil vertical water movement to soil heat flux, the energy components measured independently will (1) still achieve balance over dry surfaces, and (2) be significantly in imbalance over bare soil or sparse short-grass lands. The mean of bare ground evaporation modeled by SiB2 is 1.58 × 10−5 m3 s−1 m−2, and the mean of soil water flux obtained by the method of Gao is 1.22 × 10−5 m3 s−1 m−2 for the Naqu site in the summer of 1998. Comparison of the bare ground evaporation with the mean of soil water flux shows a difference, the causes of which are investigated. Physically, the bare ground evaporation is equal to the sum of soil water flux and water content change in the soil surface layer. Because the bare ground evaporation is very limited for the dense-grass surfaces or forest, our analysis implies that the energy imbalance encountered over the dense-grass or forest is not caused by the fact that previous researchers neglected soil water movements in their energy budget analyses.  相似文献   

3.
  总被引:2,自引:0,他引:2  
The variability in the type of ecosystem degradation and the specificity of restoration goals can challenge restorationists’ ability to generalize about approaches that lead to restoration success. The discipline of soil ecology, which emphasizes both soil organisms and ecosystem processes, has generated a body of knowledge that can be generally useful in improving the outcomes of restoration despite this variability. Here, we propose that the usefulness of this soil ecological knowledge (SEK) for restoration is best considered in the context of the severity of the original perturbation, the goals of the project, and the resilience of the ecosystem to disturbance. A straightforward manipulation of single physical, chemical, or biological components of the soil system can be useful in the restoration of a site, especially when the restoration goal is loosely defined in terms of the species and processes that management seeks to achieve. These single‐factor manipulations may in fact produce cascading effects on several ecosystem attributes and can result in unintended recovery trajectories. When complex outcomes are desired, intentional and holistic integration of all aspects of the soil knowledge is necessary. We provide a short roster of examples to illustrate that SEK benefits management and restoration of ecosystems and suggest areas for future research.  相似文献   

4.
Soil respiration of forest ecosystems in Japan and global implications   总被引:3,自引:0,他引:3  
Within terrestrial ecosystems, soil respiration is one of the largest carbon flux components. We discuss the factors controlling soil respiration, while focusing on research conducted at the Takayama Experimental Site. Soil respiration was affected by soil temperature, soil moisture, rainfall events, typhoons, and root respiration. We consider the temporal and spatial variability of soil respiration at the Takayama Experimental Site and review the variability of annual soil respiration in Japanese forests. In the 26 compiled studies, the values of annual soil respiration ranged from 203 to 1,290 g C m−2 year−1, with a mean value of 669 g C m−2 year−1 (SD=264, CV=40). We note the need for more studies and data synthesis for the accurate prediction of soil respiration and soil carbon dynamics in Japanese forests. Finally, several methods for measuring soil respiration rates are compared and the implications of soil respiration rates for global climate change are discussed.  相似文献   

5.
    
Accurate estimates of the spatial variability of soil organic matter (SOM) are necessary to properly evaluate soil fertility and soil carbon sequestration potential. In plains and gently undulating terrains, soil spatial variability is not closely related to relief, and thus digital soil mapping (DSM) methods based on soil–landscape relationships often fail in these areas. Therefore, different predictors are needed for DSM in the plains. Time-series remotely sensed data, including thermal imagery and vegetation indices provide possibilities for mapping SOM in such areas. Two low-relief agricultural areas (Peixian County, 28 km × 28 km and Jiangyan County, 38 km × 50 km) in northwest and middle Jiangsu Province, east China, were chosen as case study areas. Land surface diurnal temperature difference (DTD) extracted from moderate resolution imaging spectroradiometer (MODIS) land surface temperature (LST), and soil-adjusted vegetation index (SAVI) at the peak of growing season calculated from Landsat ETM+ image were used as predictors. Regression kriging (RK) with a mixed linear model fitted by residual maximum likelihood (REML) and residuals interpolated by simple kriging (SK) were used to model and map SOM spatial distribution; ordinary kriging (OK) was used as a baseline comparison. The root mean squared error, mean error and mean absolute error calculated from leave-one-out cross-validation were used to assess prediction accuracy. Results showed that the proposed covariates provided added value to the observations. SAVI aggregated to MODIS resolution was able to identify local highs and lows not apparent from the DTD imagery alone. Despite the apparent similarity of the two areas, the spatial structure of residuals from the linear mixed models were quite different; ranges on the order of 3 km in Jiangyan but 16 km in Peixian, and accuracy of best models differed by a factor of two (3.3 g/kg and 6.3 g/kg SOM, respectively). This suggests that time-series remotely sensed data can provide useful auxiliary variable for mapping SOM in low-relief agricultural areas, with three important cautions: (1) image dates must be carefully chosen; (2) vegetation indices should supplement diurnal temperature differences, (3) model structure must be calibrated for each area.  相似文献   

6.
Vegetation dynamics in rangelands and other ecosystems are known to be mediated by topoedaphic properties. Vegetation monitoring programs, however, often do not consider the impact of soils and other sources of landscape heterogeneity on the temporal patterns observed. Ecological sites (ES) comprise a land classification system based on soil, topographic, and climate variations that can be readily applied by land managers to classify topoedaphic properties at monitoring locations. We used a long-term (>40 y) vegetation record from southeastern Arizona, USA to test the utility of an ES classification for refining interpretations of monitoring data in an area of relatively subtle soil differences. We focused on two phenomena important to rangeland management in the southeastern Arizona region: expansion of the native tree velvet mesquite (Prosopis velutina Woot.) and spread of the introduced perennial grass Lehmann lovegrass (Eragrostis lehmanniana Nees). Specifically, we sought to determine if a quantitative, ES-specific analysis of the long-term record would (1) improve detection of changes in plant species having heightened ecological or management importance and (2) further clarify topoedaphic effects on vegetation trajectories. We found that ES class membership was a significant factor explaining spatiotemporal variation in velvet mesquite canopy cover, Lehmann lovegrass basal cover, and Lehmann lovegrass density measurements. In addition, we observed that the potential magnitude of velvet mesquite and Lehmann lovegrass increases varied substantially among ES classes. Our study brings attention to a practical land management tool that might be called upon to increase the effectiveness of vegetation-based indicators of ecosystem change.  相似文献   

7.
 应用KMnO4氧化法测定分析了六盘山林区天然次生林(杂灌林、山杨(Populus davidanda)和辽东栎(Querces liaotungensis)林)、农田、草地和人工林(13、18和25年华北落叶松(Larix principis-rupprechtii))土壤活性有机碳含量及分配比例的差异。结果表明:农田和草地土壤活性有机碳含量比天然次生林分别低60%和36%,差异主要在0~70 cm土层;人工林比农田和草地分别高129%和29%,差异主要在0~50 cm土层。农田和草地土壤活性有机碳分配比例比天然次生林分别低11%和4%以上, 差异主要在0~20 cm与70~110 cm土层;人工林比农田和草地分别高13.3%和5.3%,差异主要在0~110 cm土层。土壤活性有机碳含量和分配比例随土层加深而递减,其中天然次生林和人工林土壤活性有机碳含量随土层加深而递减的幅度比农田和草地中大,农田土壤活性有机碳分配比例随土层加深而递减幅度较大。不同土地利用方式间土壤活性有机碳含量的差异比活性有机碳分配比例的差异大,土壤活性有机碳含量随土层加深而递减的幅度比分配比例随土层加深而递减的幅度大。这可能由土壤有机碳的输入、稳定性、质量和根系分布等差异所致。结果说明土壤活性有机碳含量和分配比例随天然次生林变成农田或草地而降低,随农田或草地中造林而增加,且土壤活性有机碳含量的变化幅度比分配比例大。另外,土壤活性有机碳含量和分配比例在土壤剖面的分布也随土地利用变化而改变,其中活性有机碳含量的变化幅度比分配比例大。  相似文献   

8.
土壤侵蚀对土壤肥力及土地生物生产力的影响   总被引:25,自引:2,他引:25  
通过对红壤坡地不同土地利用方式土壤肥力及土地生物生产力的空间分异研究,揭示了土壤侵蚀对土壤肥力和土地生产力的负面影响.即侵蚀导致N、P、K等土壤速效养分含量减少及其在坡面上部的相对贫乏和下部的相对富集;土壤有机质含量降低;土壤机械组成中砂、粉、粘粒比率发生变化,表现为土壤沙化,土地生物生产力下降.  相似文献   

9.
Desert perennials as plant and soil indicators in Eastern Arabia   总被引:4,自引:0,他引:4  
Böer  Benno  Sargeant  Donna 《Plant and Soil》1998,199(2):261-266
Soils of different Eastern Arabian vegetation types, dominated by five desert perennials have been analysed for their texture, salinity and surface hardness. The vegetation types were analysed for plant species richness and composition. Special emphasis was given to Abu Dhabi's widespread terrestrial perennials Cyperus conglomeratus Rottb., Haloxylon salicornicum (Moq.) Bge., Pennisetum divisum (Gmel.) Henr., Seidlitzia rosmarinus Ehrenb. ex Bge. and Zygophyllum mandavillei Hadidi. The results show some important relationships between soils and plants. C. conglomeratus indicates the lowest soil salinity levels and the finest texture. P. divisum indicates the highest species richness and S. rosmarinus indicates the lowest species richness. Z. mandavillei indicates the highest salinity levels, the largest soil particle size, and the hardest soil surfaces.  相似文献   

10.
    
Inoculating soils with microbiota that benefit the germination and growth of endangered plant species could improve their revegetation success and conservation status. While ecosystem degradation can disrupt beneficial plant–soil-microbial interactions, the prospect of reintroducing native plant-associated soil microbiota during revegetation could help to restore these important ecological links and assist the recovery of key species. We address the role of soil microbiota on germination and seedling fitness traits of the endangered Acacia whibleyana (Fabaceae) through a 17-week greenhouse experiment. Soil treatments included local soil, potting medium, three inoculation ratios (3:1, 1:1, 1:3 local soil: potting medium), sterilized local soil and sterilized potting medium. Soil sterilization reduced the time to first seed germination, indicating a role of soil microbiota on germination. The 1:1 whole soil inoculation saw reduced germination rates compared with either pure local or potting-medium treatments, and the slower germination times observed in live soils confirmed the strong influence of soil microbiota on the timing of germination. We report evidence that poor inoculation strategies can adversely impact germination of this endangered Acacia. Furthermore, our findings suggest that careful assessment of microbiota associated with A. whibleyana could help to improve germination and recruitment during its revegetation and conservation management.  相似文献   

11.
Enhanced release of CO2 to the atmosphere from soil organic carbon as a result of increased temperatures may lead to a positive feedback between climate change and the carbon cycle, resulting in much higher CO2 levels and accelerated global warming. However, the magnitude of this effect is uncertain and critically dependent on how the decomposition of soil organic C (heterotrophic respiration) responds to changes in climate. Previous studies with the Hadley Centre's coupled climate–carbon cycle general circulation model (GCM) (HadCM3LC) used a simple, single‐pool soil carbon model to simulate the response. Here we present results from numerical simulations that use the more sophisticated ‘RothC’ multipool soil carbon model, driven with the same climate data. The results show strong similarities in the behaviour of the two models, although RothC tends to simulate slightly smaller changes in global soil carbon stocks for the same forcing. RothC simulates global soil carbon stocks decreasing by 54 Gt C by 2100 in a climate change simulation compared with an 80 Gt C decrease in HadCM3LC. The multipool carbon dynamics of RothC cause it to exhibit a slower magnitude of transient response to both increased organic carbon inputs and changes in climate. We conclude that the projection of a positive feedback between climate and carbon cycle is robust, but the magnitude of the feedback is dependent on the structure of the soil carbon model.  相似文献   

12.
The hypothesis that body size of land snail species increases with aridity in Israel and Palestine because large snails lose relatively less water due to their lower surface to volume ratio has been investigated. Data on rainfall amplitudes of 84 land snail species in Israel and Palestine and on their body sizes were used to test for interspecific correlations between body size and rainfall. Four methods, means of body sizes in rainfall categories, the midpoint method, the across-species method, and a phylogenetically controlled analysis (CAIC) showed that there is no significant correlation between body size of land snail species and their rainfall amplitude in Israel and Palestine. The lack of an interspecific correlation between body size and rainfall amplitude may be the result of conflicting selective forces on body size.  相似文献   

13.
檀满枝  陈杰 《生态学报》2009,29(6):3147-3153
应用模糊c-均值算法对土壤进行连续分类时,其输出的土壤模糊隶属度值具有成分数据的结构特点.直接基于土壤隶属度数据实施普通克里格插值,其空间预测结果缺乏可信度.因此,在进行插值预测之前,必须对土壤模糊隶属度值进行必要的数据转换.研究采用对数正态变换方法、对称对数比转换方法和非对称对数比转换方法对土壤模糊隶属度值进行数据转换,分析了各种数据转换形式对插值结果及其精度的影响.结果表明,对样点土壤模糊隶属度进行简单对数正态转换,其插值结果空间上任意点的土壤对于不同类别的隶属度之和均不为1,因此这样的插值结果理论上缺乏可行性.数据经非对称对数比转换和对称对数比转换后,插值结果均满足各个位置组分之和为1和非负限制,二者相比,后者对区域总体趋势的反映较前者好,且精度较高.因此,在应用对称对数比方法对样点土壤模糊隶属度值进行数据转换的基础上,应用克里格技术实施空间插值可以获得最佳预测结果.  相似文献   

14.
对陆地表层动力学的研究对象、研究内容及其基本理论方法作了阐述,以多学科综合的观点定义了陆地表层系统,包括时空尺度范围的约定、状态变量的选择、物质循环以及外界因子等的讨论;依据物质和能量守恒原理建立了陆地表层系统的非线性控制方程组,表述了各圈层之间物质循环和能量循环过程、反馈关系及其动力学联系;讨论了控制方程组的整体运作功能以及人类活动对陆地表层系统的影响.  相似文献   

15.
    
Soil pathogens affect plant community structure and function through negative plant–soil feedbacks that may contribute to the invasiveness of non‐native plant species. Our understanding of these pathogen‐induced soil feedbacks has relied largely on observations of the collective impact of the soil biota on plant populations, with few observations of accompanying changes in populations of specific soil pathogens and their impacts on invasive and noninvasive species. As a result, the roles of specific soil pathogens in plant invasions remain unknown. In this study, we examine the diversity and virulence of soil oomycete pathogens in freshwater wetland soils invaded by non‐native Phragmites australis (European common reed) to better understand the potential for soil pathogen communities to impact a range of native and non‐native species and influence invasiveness. We isolated oomycetes from four sites over a 2‐year period, collecting nearly 500 isolates belonging to 36 different species. These sites were dominated by species of Pythium, many of which decreased seedling survival of a range of native and invasive plants. Despite any clear host specialization, many of the Pythium species were differentially virulent to the native and non‐native plant species tested. Isolates from invaded and noninvaded soils were equally virulent to given individual plant species, and no apparent differences in susceptibility were observed between the collective groups of native and non‐native plant species.  相似文献   

16.
 回顾了半干旱地区天然草地灌丛化的成因和机理、灌丛化导致草地土壤水分和养分空间异质性及其对生态系统生物地球化学过程的影响,以及土壤异质性与土地退化关系等方面的研究进展,周期性气候干旱和过度放牧是天然草地灌丛化的主要原因,伴随灌木入侵而出现的草地土壤水分和养分的空间异质性,是造成生态系统水分和养分流失,以及土壤加速侵蚀的原因之一。因此,半干旱地区天然草地的灌丛化应得到一定的控制,使群落中灌丛保持适宜的密度,以避免生态系统水分和养分的损失。  相似文献   

17.
Dryland salinity is caused by rising saline water tables, the result of relatively recent landscape-scale clearance of deep-rooted vegetation. One obvious solution to this problem is the reintroduction of deep-rooted vegetation into these landscapes, most likely non-deciduous trees. Ideally, continually-transpiring deep-rooted trees would remove moisture from throughout the soil profile, increasing the capacity of the soil to store water, thus lowering water tables by effectively reducing the number of rainfall events that contribute to groundwater recharge. In this study, we examined how water use by a Eucalyptus sideroxylon A. Cunn. ex Woolls plantation, growing in a salinity-prone landscape, varied in response to rainfall events across four years of sap flux monitoring. Responses of the plantation were observed across multiple seasons, from above average to well below average rainfall. We observed that the plantation forest, while capable of continuous water use during drought, was also quite responsive to rainfall events. During the driest periods, during which shallow soil moisture was reduced to a stable minimum, the forest continued using water at around 1 mm/day. Generally we observed increases in forest water use following only 5 mm of rainfall, in contrast to 20 mm for neighbouring native vegetation. We compared a range of plausible empirical models for describing forest water use responses to rainfall. The best model demonstrated that rainfall size, post-rainfall PET and the interaction between rainfall size and antecedent soil moisture made significant contributions to variation in forest water use across rainfall events. Interestingly, the model showed that all else equal, higher antecedent soil moisture tended to reduce potential increases in forest water use in response to rainfall.  相似文献   

18.
19.
The mechanisms permitting the co-existence of tree and grass in savannas have been a source of contention for many years. The two main classes of explanations involve either competition for resources, or differential sensitivity to disturbances. Published models focus principally on one or the other of these mechanisms. Here we introduce a simple ecohydrologic model of savanna vegetation involving both competition for water, and differential sensitivity of trees and grasses to fire disturbances. We show how the co-existence of trees and grasses in savannas can be simultaneously controlled by rainfall and fire, and how the relative importance of the two factors distinguishes between dry and moist savannas. The stability map allows to predict the changes in vegetation structure along gradients of rainfall and fire disturbances realistically, and to clarify the distinction between climate- and disturbance-dependent ecosystems.  相似文献   

20.
The occurrence of selected plant-parasitic nematodes in the hemlock-hardwood-white pine, boreal forest, tundra, and oak-hickory associations in some northern states was compared. Helicotylenchus platyurus and Xiphinema americanum were not found in the boreal forest and tundra, and occurred infrequently in the hemlock-hardwood-white pine areas. They were found frequently, however, in the oak-hickory forest of Iowa. It is questioned that vegetational differences among the areas account directly for the major differences in nematode occurrence. Presence and absence of nematodes and their numbers in the oak-hickory association were clustered by similarity coefficients by sites and correlated with soil pH, percentage organic matter, percentage sand-silt-clay, and field capacity. Of the soil factors measured, pH gave the strongest correlations with nematode numbers. Xiphinema chambersi was found only in soils with a pH between 4.5 and 6.4 while the largest numbers of H. platyurus, H. pseudorobustus, and X. americanum occurred in soil above pH 6.0.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号