首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Multi-species indicators are often used to assess biodiversity trends. By combining population trends across several species they summarise trends across a community. Composite indicators such as these are useful for examining general temporal patterns and may suggest important drivers of biodiversity change. However, they may also mask substantial spatial variation in population trends, particularly when they are calculated over large spatial regions. We produced spatially-explicit indicators for farmland and woodland bird communities in the UK and further separate these into trends for generalist and specialist species within each group. We found considerable spatial variation in the indicators, which is masked by indicators calculated at the national level. The farmland community indicator showed mostly positive trends in western areas and extensive declines in south-east England. The woodland community indicator showed a north–south divide, with increases in Scotland and northern England and stability in the southern regions. For both communities, indicator trends for specialist species were more negative than those for generalists. We found no significant difference in farmland community indicators between arable land and improved grassland. Woodland specialists had significantly more negative trends in broadleaf compared to coniferous woodlands, suggesting habitat-type is one of the drivers of changes in the woodland community. These spatial patterns in bird population trends may be used to highlight regional conservation priorities and identify where those may differ from the national scale. In combination with information about other environmental changes, they may also be used to develop hypotheses about potential drivers of change. We advocate that this approach is adopted for other taxa and geographical areas.  相似文献   

2.
A new species invading a new area may cause a decrease in diversity of the community already present there. Comparison of temporal changes in species diversity of the “new” community (including alien species) with those of the “original” community (including only native species) may clarify our understanding of the effect of alien species. Using a simulation-based modelling approach we considered several scenarios describing the invasion of native communities by alien species and calculated the trends in Shannon-Wiener indices and in the numbers of species of the “original” and “new” communities during the course of the invasion. We found that despite a large increase in the population size of the invasive alien species the diversity of the original community may be little affected. Native species numbers may stay relatively constant for a long time and then suddenly collapse. The results indicate some possibly still concealed consequences of the spread of the invasive ladybird Harmonia axyridis (Pallas).  相似文献   

3.
We studied temporal dynamics of diverse moth ensembles (Arctiidae and Geometridae) in early and late succession stages of forest recovery in the montane zone of southern Ecuador. Moths were sampled using weak light sources (2 × 15 W tubes per trap) during three sampling periods (March–April 2002, wet season; October–November 2002, and August–October 2003, both “dry” seasons). Arctiid moth abundance hardly varied between sampling periods. Estimates of local diversity were lower in 2002 (wet and dry season) than in the dry season 2003, and ensemble composition was more strongly affected by sampling period rather than habitat differences. Geometridae ensembles revealed stronger temporal patterns. Geometrid abundance increased about twofold from the wet to the dry season, and temporal effects on species composition were far more pronounced that in arctiids. These differences might hint to variation in the dependence of geometrid versus arctiid larvae on ephemeral plant resources. Despite these significant temporal dynamics, in both families only a few of the more common species analyzed individually showed strong temporal changes in abundance. Almost all common species occurred as adults during all sampling periods. Therefore, even though temporal dynamics of moth ensembles are not negligible, both moth families are suitable “indicators” of community diversity and change along the succession gradient. Samples must be large enough, however, and preferably should be collated over various times of the year and in parallel, to allow for valid statements about moth diversity and species compositions in relation to habitat differences. These recommendations undermine the validity of the concept of “rapid biodiversity inventories” for speciose tropical insect communities.  相似文献   

4.
The local spatial congruence between climate changes and community changes has rarely been studied over large areas. We proposed one of the first comprehensive frameworks tracking local changes in community composition related to climate changes. First, we investigated whether and how 12 years of changes in the local composition of bird communities were related to local climate variations. Then, we tested the consequences of this climate‐induced adjustment of communities on Grinnellian (habitat‐related) and Eltonian (function‐related) homogenization. A standardized protocol monitoring spatial and temporal trends of birds over France from 2001 to 2012 was used. For each plot and each year, we used the spring temperature and the spring precipitations and calculated three indices reflecting the thermal niche, the habitat specialization, and the functional originality of the species within a community. We then used a moving‐window approach to estimate the spatial distribution of the temporal trends in each of these indices and their congruency with local climatic variations. Temperature fluctuations and community dynamics were found to be highly variable in space, but their variations were finely congruent. More interestingly, the community adjustment to temperature variations was nonmonotonous. Instead, unexplained fluctuations in community composition were observed up to a certain threshold of climate change intensity, above which a change in community composition was observed. This shift corresponded to a significant decrease in the relative abundance of habitat specialists and functionally original species within communities, regardless of the direction of temperature change. The investigation of variations in climate and community responses appears to be a central step toward a better understanding of climate change effects on biodiversity. Our results suggest a fine‐scale and short‐term adjustment of community composition to temperature changes. Moreover, significant temperature variations seem to be responsible for both the Grinnellian and Eltonian aspects of functional homogenization.  相似文献   

5.
Understanding how climate change affects the structure and function of communities is critical for gauging its full impact on biodiversity. To date, community-level changes have been poorly documented, owing, in part, to the paucity of long-term datasets. To circumvent this, the use of ‘space-for-time’ substitution—the forecasting of temporal trends from spatial climatic gradients—has increasingly been adopted, often with little empirical support. Here we examine changes from 1975 to 2001 in three community attributes (species richness, body mass and occupancy) for 404 assemblages of terrestrial winter avifauna in North America containing a total of 227 species. We examine the accuracy of space-for-time substitution and assess causal associations between community attributes and observed changes in annual temperature using a longitudinal study design. Annual temperature and all three community attributes increased over time. The trends for the three community attributes differed significantly from the spatially derived predictions, although richness showed broad congruence. Correlations with trends in temperature were found with richness and body mass. In the face of rapid climate change, applying space-for-time substitution as a predictive tool could be problematic with communities developing patterns not reflected by spatial ecological associations.  相似文献   

6.
Rapid climatic changes and increasing human influence at high elevations around the world will have profound impacts on mountain biodiversity. However, forecasts from statistical models (e.g. species distribution models) rarely consider that plant community changes could substantially lag behind climatic changes, hindering our ability to make temporally realistic projections for the coming century. Indeed, the magnitudes of lags, and the relative importance of the different factors giving rise to them, remain poorly understood. We review evidence for three types of lag: “dispersal lags” affecting plant species’ spread along elevational gradients, “establishment lags” following their arrival in recipient communities, and “extinction lags” of resident species. Variation in lags is explained by variation among species in physiological and demographic responses, by effects of altered biotic interactions, and by aspects of the physical environment. Of these, altered biotic interactions could contribute substantially to establishment and extinction lags, yet impacts of biotic interactions on range dynamics are poorly understood. We develop a mechanistic community model to illustrate how species turnover in future communities might lag behind simple expectations based on species’ range shifts with unlimited dispersal. The model shows a combined contribution of altered biotic interactions and dispersal lags to plant community turnover along an elevational gradient following climate warming. Our review and simulation support the view that accounting for disequilibrium range dynamics will be essential for realistic forecasts of patterns of biodiversity under climate change, with implications for the conservation of mountain species and the ecosystem functions they provide.  相似文献   

7.
Unplanned urban development threatens natural ecosystems. Assessing ecosystem recovery after anthropogenic disturbances and identifying plant species that may facilitate vegetation regeneration are critical for the conservation of biodiversity and ecosystem services in urban areas. At the periphery of Mexico City, illegal human settlements produced different levels of disturbance on natural plant communities developed on a lava field near the Ajusco mountain range. We assessed natural regeneration of plant communities 20 years after the abandonment of the settlements, in sites that received low (manual harvesting of non-timber forest products), medium (removal of aboveground vegetation), and high (removal of substrate and whole vegetation) disturbance levels. We also tested the potential facilitative role played by dominant tree and shrub species. Plant diversity and vegetation biomass decreased as disturbance level increased. Sites with high disturbance level showed poor regeneration and the lowest species similarity compared to the least disturbed sites. Six dominant species (i.e., those with the highest abundance, frequency, and/or basal area) were common to all sites. Among them, three species (the tree Buddleja cordata, and two shrubs, Ageratina glabrata and Sedum oxypetalum) were identified as potential facilitators of community regeneration, because plant density and species richness were significantly higher under their canopies than at open sites. We propose that analyzing community structural traits of the successional vegetation (such as species diversity and biomass) and identifying potential facilitator species are useful steps in assessing the recovery ability of plant communities to anthropogenic disturbances, and in designing restoration strategies.  相似文献   

8.
Land‐use and land‐cover (LULC) change is one of the largest drivers of biodiversity loss and carbon emissions globally. We use the tropical rainforests of the Amazon, the Congo basin and South‐East Asia as a case study to investigate spatial predictive models of LULC change. Current predictions differ in their modelling approaches, are highly variable and often poorly validated. We carried out a quantitative review of 48 modelling methodologies, considering model spatio‐temporal scales, inputs, calibration and validation methods. In addition, we requested model outputs from each of the models reviewed and carried out a quantitative assessment of model performance for tropical LULC predictions in the Brazilian Amazon. We highlight existing shortfalls in the discipline and uncover three key points that need addressing to improve the transparency, reliability and utility of tropical LULC change models: (1) a lack of openness with regard to describing and making available the model inputs and model code; (2) the difficulties of conducting appropriate model validations; and (3) the difficulty that users of tropical LULC models face in obtaining the model predictions to help inform their own analyses and policy decisions. We further draw comparisons between tropical LULC change models in the tropics and the modelling approaches and paradigms in other disciplines, and suggest that recent changes in the climate change and species distribution modelling communities may provide a pathway that tropical LULC change modellers may emulate to further improve the discipline. Climate change models have exerted considerable influence over public perceptions of climate change and now impact policy decisions at all political levels. We suggest that tropical LULC change models have an equally high potential to influence public opinion and impact the development of land‐use policies based on plausible future scenarios, but, to do that reliably may require further improvements in the discipline.  相似文献   

9.
Describing the spatial and temporal dynamics of communities is essential for understanding the impacts of global environmental change on biodiversity and ecosystem functioning. Trait‐based approaches can provide better insight than species‐based (i.e. taxonomic) approaches into community assembly and ecosystem functioning, but comparing species and trait dynamics may reveal important patterns for understanding community responses to environmental change. Here, we used a 33‐year database of fish monitoring to compare the spatio‐temporal dynamics of taxonomic and trait structure in North Sea fish communities. We found that the majority of variation in both taxonomic and trait structure was explained by a pronounced spatial gradient, with distinct communities in the southern and northern North Sea related to depth, sea surface temperature, salinity and bed shear stress. Both taxonomic and trait structure changed significantly over time; however taxonomically, communities in the south and north diverged towards different species, becoming more dissimilar over time, yet they converged towards the same traits regardless of species differences. In particular, communities shifted towards smaller, faster growing species with higher thermal preferences and pelagic water column position. Although taxonomic structure changed over time, its spatial distribution remained relatively stable, whereas in trait structure, the southern zone of the North Sea shifted northward and expanded, leading to homogenization. Our findings suggest that global environmental change, notably climate warming, will lead to convergence towards traits more adapted for novel environments regardless of species composition.  相似文献   

10.
The analysis of benthic assemblages is a valuable tool to describe the ecological status of transitional water ecosystems, but species are extremely sensitive and respond to both microhabitat and seasonal differences. The identification of changes in the composition of the macrobenthic community in specific microhabitats can then be used as an “early warning” for environmental changes which may affect the economic and ecological importance of lagoons, through their provision of Ecosystem Services. From a conservational point of view, the appropriate definition of the spatial aggregation level of microhabitats or local communities is of crucial importance. The main objective of this work is to assess the role of the spatial scale in the analysis of lagoon biodiversity. First, we analyze the variation in the sample coverage for alternative aggregations of the monitoring stations in three lagoons of the Po River Delta. Then, we analyze the variation of a class of entropy indices by mixed effects models, properly accounting for the fixed effects of biotic and abiotic factors and random effects ruled by nested sources of variability corresponding to alternative definitions of local communities. Finally, we address biodiversity partitioning by a generalized diversity measure, namely the Tsallis entropy, and for alternative definitions of the local communities. The main results obtained by the proposed statistical protocol are presented, discussed and framed in the ecological context.  相似文献   

11.
Conservation decisions are well supported by predictive spatial models that indicate the relative ecological condition of a given place. The intent of this 90 m pixel landscape condition model is to use nationally available spatial data from the USA, Mexico, and Canada to express assumptions regarding the relative ecological effects of land uses on terrestrial natural communities and species. This approach emphasizes and updateable and transparent design which takes advantage of empirical biodiversity data from the USA to both calibrate and validate the model. Map layers depicting infrastructure, land use, and modified vegetation were each scored for site impact and distance decay, and then combined into one map surface. Field observations from Natural Heritage Programs, each scored for relative ecological condition (in categories A = excellent to D = poor), were used to calibrate distance decay parameters. Some 90,000 observations for at-risk species, invasive plant species, and natural communities were used for model validation. Statistically significant distinctions in ecological condition among validation samples were predicted by the resultant spatial model. Variation in landscape condition was then summarized by regional U.S. Landscape Conservation Cooperatives (LCCs) in terms of areas approximating A–D condition. Montane and desert LCCs scored on average much higher in area approximating “A” and “B” landscape condition, while LCCs with more substantial agricultural and urban footprints scored overwhelmingly within the “D” range of condition. Similar analyses illustrated range-wide scoring of landscape condition for major vegetation types across temperate North America.  相似文献   

12.
13.
We monitored nine butterfly communities with varying degrees of human disturbance by conducting a census twice a month during 1980 by the line transect method in and around Tsukuba City, central Japan. We analyzed the biodiversity and community structures using the generalist/specialist concept. The site (community) order based on decreasing human disturbance was positively correlated with butterfly species diversity (H′), species richness (the total number of species), and the number of specialist species in a community, but not with the number of generalist species. The number of generalist species was rather constant, irrespective of the degree of human disturbance. Thus, both the butterfly species diversity and species richness were more dependent on the specialists than the generalists. Our analyses also showed that the generalist species were distributed widely over the communities, and they maintained high population densities, resulting in high rank status in abundance in a community, with more spatial variation in density per species. Specialist species showed the opposite trends. These results demonstrate that the generalist/specialist concept is a powerful tool applicable to analyse the biodiversity and structure of natural communities.  相似文献   

14.
1. Ecosystems are often exposed to broad‐scale environmental change, which can potentially synchronise community dynamics and biodiversity trends. Detection of temporal coherence may, however, depend on the metrics used and their sensitivity to detect change, requiring several lines of evidence to elucidate the full range of temporal responses to environmental change. 2. Here, we tested whether the patterns of synchrony among littoral invertebrate communities of Swedish lakes over 20 years (1988–2007) differed when analysed using univariate (taxon richness, evenness, Shannon diversity and total abundance) or multivariate (temporal turnover in community composition) metrics. We included both culturally acidified and circumneutral lakes to examine whether anthropogenic stress influenced the patterns of synchrony. 3. Average total abundance, taxon richness and temporal turnover in community composition changed monotonically with time, while evenness and Shannon diversity fluctuated around a long‐term mean. However, among‐lake variability was high, resulting in a weak temporal coherence. Only trends of temporal turnover changed synchronously across lakes, irrespective of their acidification history. 4. Spatially synchronous trends in turnover across lakes were correlated with increasing water colour and decreasing sulphate concentrations, showing the importance of regional drivers of spatiotemporal coherence. 5. Our results underpin an increasing body of evidence that the detection of diversity patterns varies among metrics that ignore (taxon richness, evenness, Shannon diversity) or consider (turnover) species identities. More generally, our results suggest that community‐level studies of synchrony are suitable for elucidating the role of intrinsic versus extrinsic factors in mediating complex community assembly processes in the long term. This, in turn, contributes to our understanding of temporal patterns of biodiversity.  相似文献   

15.
Understanding how species respond to human activities is paramount to ecology and conservation science, one outstanding question being how large-scale patterns in land use affect biodiversity. To facilitate answering this question, we propose a novel analytical framework that combines environmental niche models, multi-grain analyses, and species traits. We illustrate the framework capitalizing on the most extensive dataset compiled to date for the butterflies of Italy (106,514 observations for 288 species), assessing how agriculture and urbanization have affected biodiversity of these taxa from landscape to regional scales (3–48 km grains) across the country while accounting for its steep climatic gradients. Multiple lines of evidence suggest pervasive and scale-dependent effects of land use on butterflies in Italy. While land use explained patterns in species richness primarily at grains ≤12 km, idiosyncratic responses in species highlighted “winners” and “losers” across human-dominated regions. Detrimental effects of agriculture and urbanization emerged from landscape (3-km grain) to regional (48-km grain) scales, disproportionally affecting small butterflies and butterflies with a short flight curve. Human activities have therefore reorganized the biogeography of Italian butterflies, filtering out species with poor dispersal capacity and narrow niche breadth not only from local assemblages, but also from regional species pools. These results suggest that global conservation efforts neglecting large-scale patterns in land use risk falling short of their goals, even for taxa typically assumed to persist in small natural areas (e.g., invertebrates). Our study also confirms that consideration of spatial scales will be crucial to implementing effective conservation actions in the Post-2020 Global Biodiversity Framework. In this context, applications of the proposed analytical framework have broad potential to identify which mechanisms underlie biodiversity change at different spatial scales.  相似文献   

16.
Rapid urbanization throughout the world is expected to cause extensive loss of biodiversity in the upcoming decades. Disturbances associated with urbanization frequently operate over multiple spatial scales such that local species extirpations have been attributed both to localized habitat degradation and to regional changes in land use. Urbanization also may shape stream communities by restricting species dispersal within and among stream reaches. In this patch-dynamics view, anthropogenic disturbances and isolation jointly reduce stream biodiversity in urbanizing landscapes. We evaluated predictions of stream invertebrate community composition and abundance based on variation in environmental conditions at five distinct spatial scales: stream habitats, reaches, riparian corridors and watersheds and their spatial location within the larger three-river basin. Despite strong associations between biodiversity loss and human density in this study, local stream habitat and stream reach conditions were poor predictors of community patterns. Instead, local community diversity and abundance were more accurately predicted by riparian vegetation and watershed landscape structure. Spatial coordinates associated with instream distances provided better predictions of stream communities than any of the environmental data sets. Together, results suggest that urbanization in the study region was associated with reduced stream invertebrate diversity through the alteration of landscape vegetation structure and patch connectivity. These findings suggest that maintaining and restoring watershed vegetation corridors in urban landscapes will aid efforts to conserve freshwater biodiversity.  相似文献   

17.
Species richness is unevenly distributed on the Earth, with biodiversity gradients of various spatial scales supposedly being affected by abiotic as well as biotic factors including community traits such as body size spectra and relative abundance patterns. To explore large-scale spatial variation in species diversity and their processes, tidepool fish communities were investigated through an intensive field work conducted on 55 shore sites in south-western Japan. Multiple ecological measures were taken into account to assess changes in local community structures with changes in the number of species. Biomass (total fish wet weight) per unit area showed no systematic change with latitude, while taxa richness and number of individuals tended to increase toward lower latitudes. In addition, median fish body weight scaled positively with latitude, which was more conspicuous in Blenniidae than in Gobiidae. The latitudinal gradient of diversity in tidepool fish assemblages appears to be characterized by partitioning of total biomass that tends to stay constant across latitudes, suggesting the phenomenon of “biomass compensation” whereby body size and abundance/diversity change in opposite directions with latitude. Our study highlights that biomass compensation can be part of processes involved in generating gradients of species richness even without an apparent energy/resource gradient.  相似文献   

18.
Anthropogenic landscapes are associated with biodiversity loss and large shifts in species composition and traits. These changes predict the identities of winners and losers of future global change, and also reveal which environmental variables drive a taxon's response to land use change. We explored how the biodiversity of native bee species changes across forested, agricultural, and urban landscapes. We collected bee community data from 36 sites across a 75,000 km2 region, and analyzed bee abundance, species richness, composition, and life‐history traits. Season‐long bee abundance and richness were not detectably different between natural and anthropogenic landscapes, but community phenologies differed strongly, with an early spring peak followed by decline in forests, and a more extended summer season in agricultural and urban habitats. Bee community composition differed significantly between all three land use types, as did phylogenetic composition. Anthropogenic land use had negative effects on the persistence of several life‐history strategies, including early spring flight season and brood parasitism, which may indicate adaptation to conditions in forest habitat. Overall, anthropogenic communities are not diminished subsets of contemporary natural communities. Rather, forest species do not persist in anthropogenic habitats, but are replaced by different native species and phylogenetic lineages preadapted to open habitats. Characterizing compositional and functional differences is crucial for understanding land use as a global change driver across large regional scales.  相似文献   

19.
The search for consistent patterns of organisation in parasite communities remains a central theme in parasite community ecology. However, to date, much evidence comes from studies without replication in both space and time; when replicate communities are examined, repeatable patterns are rarely observed. Here we determine, using nested subset analyses, whether the infracommunities of ectoparasites and endoparasites of a benthic marine fish (Sebastes capensis) show non-random structure. Then we examine the spatial repeatability of parasite community structure across the host's distribution in the southern Pacific, and the temporal repeatability of ectoparasite community structure from one locality. In total, 537 fish were captured from different latitudes (between 11 degrees S and 52 degrees S) along the Pacific coast of South America; a further 122 specimens were captured in two other years from one of the sampling localities, Valdivia (40 degrees S). In spite of variation in fish sizes among samples, fish size generally did not correlate with either ecto- or endoparasite species richness. The ecto- and endoparasite species richness of the component communities were also not correlated with fish sample size across the nine localities. Significant nested patterns were found in the ectoparasite communities of S. capensis at all eight localities, except at latitude 52 degrees S. Significant nested patterns were also found in the endoparasite infracommunities of S. capensis at seven of the nine localities, the exceptions being those from latitudes 11 degrees S and 20 degrees S. On a temporal scale, significant nestedness was observed in the ectoparasite infracommunities of S. capensis during each of the 3 years of sampling at Valdivia. In general, the same parasite species are responsible for the repeatability of nested patterns, though their importance varies among localities. The spatial and temporal predictability of the parasite community structure in S. capensis may be associated with the fish's benthic habitat and territorial behavior, suggesting that host biology may be a key determinant of the structure of parasite communities.  相似文献   

20.
The Luxury Effect hypothesizes a positive relationship between wealth and biodiversity within urban areas. Understanding how urban development, both in terms of socio‐economic status and the built environment, affects biodiversity can contribute to the sustainable development of cities, and may be especially important in the developing world where current growth in urban populations is most rapid. We tested the Luxury Effect by analysing bird species richness in relation to income levels, as well as human population density and urban cover, in landscapes along an urbanization gradient in South Africa. The Luxury Effect was supported in landscapes with lower urbanization levels in that species richness was positively correlated with income level where urban cover was relatively low. However, the effect was reversed in highly urbanized landscapes, where species richness was negatively associated with income level. Tree cover was also positively correlated with species richness, although it could not explain the Luxury Effect. Species richness was negatively related to urban cover, but there was no association with human population density. Our model suggests that maintaining green space in at least an equal proportion to the built environment is likely to provide a development strategy that will enhance urban biodiversity, and with it, the positive benefits that are manifest for urban dwellers. Our findings can form a key contribution to a wider strategy to expand urban settlements in a sustainable way to provide for the growing urban population in South Africa, including addressing imbalances in environmental justice across income levels and racial groups.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号