首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
Ribonucleotides are the most common non-canonical nucleotides incorporated into DNA during replication, and their processing leads to mutations and genome instability. Yeast mutation reporter systems demonstrate that 2–5 base pair deletions (Δ2–5bp) in repetitive DNA are a signature of unrepaired ribonucleotides, and that these events are initiated by topoisomerase 1 (Top1) cleavage. However, a detailed understanding of the frequency and locations of ribonucleotide-dependent mutational events across the genome has been lacking. Here we present the results of genome-wide mutational analysis of yeast strains deficient in Ribonucleotide Excision Repair (RER). We identified mutations that accumulated over thousands of generations in strains expressing either wild-type or variant replicase alleles (M644G Pol ε, L612M Pol δ, L868M Pol α) that confer increased ribonucleotide incorporation into DNA. Using a custom-designed mutation-calling pipeline called muver (for mutationes verificatae), we observe a number of surprising mutagenic features. This includes a 24-fold preferential elevation of AG and AC relative to AT dinucleotide deletions in the absence of RER, suggesting specificity for Top1-initiated deletion mutagenesis. Moreover, deletion rates in di- and trinucleotide repeat tracts increase exponentially with tract length. Consistent with biochemical and reporter gene mutational analysis, these deletions are no longer observed upon deletion of TOP1. Taken together, results from these analyses demonstrate the global impact of genomic ribonucleotide processing by Top1 on genome integrity.  相似文献   

3.
4.
DNA topoisomerase I (Top1) generates transient DNA single-strand breaks via the formation of cleavage complexes in which the enzyme is linked to the 3'-phosphate of the cleavage strand. The anticancer drug camptothecin (CPT) poisons Top1 by trapping cleavage complexes, thereby inducing Top1-linked single-strand breaks. Such DNA lesions are converted into DNA double-strand breaks (DSBs) upon collision with replication forks, implying that DSB repair pathways could be involved in the processing/repair of Top1-mediated DNA damage. Here we report that Top1-mediated DNA damage is repaired primarily by homologous recombination, a major pathway of DSB repair. Unexpectedly, however, we found that nonhomologous end joining (NHEJ), another DSB repair pathway, has no positive role in the relevant repair; notably, DT40 cell mutants lacking either of the NHEJ factors (namely, Ku70, DNA-dependent protein kinase catalytic subunit, and DNA ligase IV) were resistant to killing by CPT. In addition, we showed that the absence of NHEJ alleviates the requirement of homologous recombination in the repair of CPT-induced DNA damage. Our results indicate that NHEJ can be a cytotoxic pathway in the presence of CPT, shedding new light on the molecular mechanisms for the formation and repair of Top1-mediated DNA damage in vertebrates. Thus, our data have significant implications for cancer chemotherapy involving Top1 inhibitors.  相似文献   

5.
6.
We report an altered pattern of genetic instability for Streptomyces coelicolor when the bacterium harbored a foreign transposon, Tn4560. Deletions, amplifications, and circularizations of the linear 8.7-Mb chromosome occurred more frequently at sites adjacent to native insertion elements, notably IS1649. In contrast, deletions, amplifications, and circularizations of a wild-type strain happened at heterogeneous sites within the chromosome. In 50 strains examined, structural changes removed or duplicated hundreds of contiguous S. coelicolor genes, altering up to 33% of the chromosome. S. coelicolor shows a bias toward one type of genetic instability during this particular assault from the environment, the invasion of foreign DNA.  相似文献   

7.
The replication fork temporarily stalls when encountering an obstacle on the DNA, and replication resumes after the barrier is removed. Simultaneously, activation of the replication checkpoint delays the progression of S phase and inhibits late origin firing. Camptothecin (CPT), a topoisomerase I (Top1) inhibitor, acts as a DNA replication barrier by inducing the covalent retention of Top1 on DNA. The Timeless-Tipin complex, a component of the replication fork machinery, plays a role in replication checkpoint activation and stabilization of the replication fork. However, the role of the Timeless-Tipin complex in overcoming the CPT-induced replication block remains elusive. Here, we generated viable TIPIN gene knock-out (KO) DT40 cells showing delayed S phase progression and increased cell death. TIPIN KO cells were hypersensitive to CPT. However, homologous recombination and replication checkpoint were activated normally, whereas DNA synthesis activity was markedly decreased in CPT-treated TIPIN KO cells. Proteasome-dependent degradation of chromatin-bound Top1 was induced in TIPIN KO cells upon CPT treatment, and pretreatment with aphidicolin, a DNA polymerase inhibitor, suppressed both CPT sensitivity and Top1 degradation. Taken together, our data indicate that replication forks formed without Tipin may collide at a high rate with Top1 retained on DNA by CPT treatment, leading to CPT hypersensitivity and Top1 degradation in TIPIN KO cells.  相似文献   

8.
Camptothecin (CPT) and related chemotherapeutic drugs induce formation of DNA topoisomerase I (Top1) covalent or cleavage complexes (Top1ccs) that block leading-strand DNA synthesis and elicit DNA Double Stranded Breaks (DSB) during S phase. The Fanconi Anemia (FA) pathway is implicated in tolerance of CPT-induced DNA damage yet the mechanism of FA pathway activation by Top1 poisons has not been studied. We show here that the FA core complex protein FANCA and monoubiquitinated FANCD2 (an effector of the FA pathway) are rapidly mobilized to chromatin in response to CPT treatment in several human cancer cell lines and untransformed primary human dermal fibroblasts. FANCD2 depletion using siRNA leads to impaired recovery from CPT-induced inhibition or DNA synthesis, persistence of γH2AX (a DSB marker) and reduced cell survival following CPT treatment. The E3 ubiquitin ligase Rad18 is necessary for CPT-induced recruitment of FANCA and FANCD2 to chromatin. Moreover, Rad18-depletion recapitulates the DNA synthesis and survival defects of FANCD2-deficiency in CPT-treated cells. It is well-established that Rad18 promotes FA pathway activation and DNA damage tolerance in response to bulky DNA lesions via a mechanism involving PCNA monoubiquitination. In contrast, PCNA monoubiquitination is not involved in Rad18-mediated FA pathway activation or cell survival following acquisition of CPT-induced DSB. Moreover, while Rad18 is implicated in recombinational repair of DSB via an E3 ligase-independent mechanism, we demonstrate that Rad18 E3 ligase activity is essential for appropriate FA pathway activation and DNA damage tolerance after CPT treatment. Taken together, our results define a novel pathway of Rad18-dependent DSB repair that is dissociable from known Rad18-mediated DNA repair mechanisms based on its independence from PCNA ubiquitination and requirement for E3 ligase activity.Key words: camptothecin, Rad18, topoisomerase I, double strand breaks, Fanconi anemia  相似文献   

9.
The activity of DNA topoisomerase I (Top1), an enzyme that regulates DNA topology, is impacted by DNA structure alterations and by the anticancer alkaloid camptothecin (CPT). Here, we evaluated the effect of the acetaldehyde-derived DNA adduct, N2-ethyl-2′-deoxyguanosine (N2-ethyl-dG), on human Top1 nicking and closing activities. Using purified recombinant Top1, we show that Top1 nicking-closing activity remains unaffected in N2-ethyl-dG adducted oligonucleotides. However, the N2-ethyl-dG adduct enhanced CPT-induced Top1–DNA cleavage complexes depending on the relative position of the N2-ethyl-dG adduct with respect to the Top1 cleavage site. The Top1-mediated DNA religation (closing) was selectively inhibited when the N2-ethyl-dG adduct was present immediately 3′ from the Top1 site (position +1). In addition, when the N2-ethyl-dG adduct was located at the −5 position, CPT enhanced cleavage at an alternate Top1 cleavage site immediately adjacent to the adduct, which was then at position +1 relative to this new alternate Top1 site. Modeling studies suggest that the ethyl group on the N2-ethyl-dG adduct located at the 5′ end of a Top1 site (position +1) sterically blocks the dissociation of CPT from the Top1–DNA complex, thereby inhibiting further the religation (closing) reaction.  相似文献   

10.
11.
Camptothecin (CPT) and related chemotherapeutic drugs induce formation of DNA Topoisomerase I (Top1) covalent or cleavage complexes (Top1ccs) that block leading-strand DNA synthesis and elicit DNA Double Stranded Breaks (DSB) during S phase. The Fanconi Anemia (FA) pathway is implicated in tolerance of CPT-induced DNA damage yet the mechanism of FA pathway activation by Top1 poisons has not been studied. We show here that the FA core complex protein FANCA and monoubiquitinated FANCD2 (an effector of the FA pathway) are rapidly mobilized to chromatin in response to CPT treatment in several human cancer cell lines and untransformed primary human dermal fibroblasts. FANCD2 depletion using siRNA leads to impaired recovery from CPT-induced inhibition or DNA synthesis, persistence of γH2AX (a DSB marker) and reduced cell survival following CPT treatment. The E3 ubiquitin ligase Rad18 is necessary for CPT-induced recruitment of FANCA and FANCD2 to chromatin. Moreover, Rad18-depletion recapitulates the DNA synthesis and survival defects of FANCD2-deficiency in CPT-treated cells. It is well-established that Rad18 promotes FA pathway activation and DNA damage tolerance in response to bulky DNA lesions via a mechanism involving PCNA monoubiquitination. In contrast, PCNA monoubiquitination is not involved in Rad18-mediated FA pathway activation or cell survival following acquisition of CPT-induced DSB. Moreover, while Rad18 is implicated in recombinational repair of DSB via an E3 ligase-independent mechanism, we demonstrate that Rad18 E3 ligase activity is essential for appropriate FA pathway activation and DNA damage tolerance after CPT treatment. Taken together, our results define a novel pathway of Rad18-dependent DSB repair that is dissociable from known Rad18-mediated DNA repair mechanisms based on its independence from PCNA ubiquitination and requirement for E3 ligase activity.  相似文献   

12.
Ribonucleotide monophosphates (rNMPs) are among the most frequent form of DNA aberration, as high ratios of ribonucleotide triphosphate:deoxyribonucleotide triphosphate pools result in approximately two misincorporated rNMPs/kb of DNA. The main pathway for the removal of rNMPs is by RNase H2. However, in a RNase H2 knock-out yeast strain, a topoisomerase I (Top1)-dependent mutator effect develops with accumulation of short deletions within tandem repeats. Proposed models for these deletions implicated processing of Top1-generated nicks at rNMP sites and/or sequential Top1 binding, but experimental support has been lacking thus far. Here, we investigated the biochemical mechanism of the Top1-induced short deletions at the rNMP sites by generating nicked DNA substrates bearing 2′,3′-cyclic phosphates at the nick sites, mimicking the Top1-induced nicks. We demonstrate that a second Top1 cleavage complex adjacent to the nick and subsequent faulty Top1 religation led to the short deletions. Moreover, when acting on the nicked DNA substrates containing 2′,3′-cyclic phosphates, Top1 generated not only the short deletion, but also a full-length religated DNA product. A catalytically inactive Top1 mutant (Top1-Y723F) also induced the full-length products, indicating that Top1 binding independent of its enzymatic activity promotes the sealing of DNA backbones via nucleophilic attacks by the 5′-hydroxyl on the 2′,3′-cyclic phosphate. The resealed DNA would allow renewed attempt for repair by the error-free RNase H2-dependent pathway in vivo. Our results provide direct evidence for the generation of short deletions by sequential Top1 cleavage events and for the promotion of nick religation at rNMP sites by Top1.  相似文献   

13.
The Saccharomyces cerevisiae TOP3 gene encodes the type IA topoisomerase (Top3p) that is highly conserved in evolution. Deletion of TOP3 leads to a reduction in cell viability, hyper-recombination between repetitive DNA sequences, and abnormalities in both cell cycle progression and responses to DNA damaging agents. Deletion of SGS1, encoding the sole RecQ family helicase in S. cerevisiae, strongly suppresses the phenotypic effects of loss of TOP3 function. Here, we show that many of the adverse phenotypic effects of TOP3 deletion can also be partially alleviated by disruption of homologous recombination (HR) functions. This genetic interaction is seen both in strains deleted for TOP3 and in wild-type strains over-expressing a dominant-negative Top3p mutant form that confers a top3-like phenotype. Moreover, we show that this genetic interaction is conserved in the distantly-related fission yeast, Schizosaccharomyces pombe. Our results implicate topoisomerase III enzymes in recombination repair events required for cellular protection against DNA damaging agents and DNA replication inhibitors.  相似文献   

14.
Friedreich ataxia is caused by an expanded (GAA•TTC)n sequence, which is unstable during intergenerational transmission and in most patient tissues, where it frequently undergoes large deletions. We investigated the effect of DSB repair on instability of the (GAA•TTC)n sequence. Linear plasmids were transformed into Escherichia coli so that each colony represented an individual DSB repair event. Repair of a DSB within the repeat resulted in a dramatic increase in deletions compared with circular templates, but DSB repair outside the repeat tract did not affect instability. Repair-mediated deletions were independent of the orientation and length of the repeat, the location of the break within the repeat or the RecA status of the strain. Repair at the center of the repeat resulted in deletion of approximately half of the repeat tract, and repair at an off-center location produced deletions that were equivalent in length to the shorter of the two repeats flanking the DSB. This is consistent with a single-strand annealing mechanism of DSB repair, and implicates erroneous DSB repair as a mechanism for genetic instability of the (GAA•TTC)n sequence. Our data contrast significantly with DSB repair within (CTG•CAG)n repeats, indicating that repair-mediated instability is dependent on the sequence of the triplet repeat.  相似文献   

15.
16.
17.
DNA ligase IV (Dnl4 in budding yeast) is a specialized ligase used in non-homologous end joining (NHEJ) of DNA double-strand breaks (DSBs). Although point and truncation mutations arise in the human ligase IV syndrome, the roles of Dnl4 in DSB repair have mainly been examined using gene deletions. Here, Dnl4 catalytic point mutants were generated that were severely defective in auto-adenylation in vitro and NHEJ activity in vivo, despite being hyper-recruited to DSBs and supporting wild-type levels of Lif1 interaction and assembly of a Ku- and Lif1-containing complex at DSBs. Interestingly, residual levels of especially imprecise NHEJ were markedly higher in a deletion-based assay with Dnl4 catalytic mutants than with a gene deletion strain, suggesting a role of DSB-bound Dnl4 in supporting a mode of NHEJ catalyzed by a different ligase. Similarly, next generation sequencing of repair joints in a distinct single-DSB assay showed that dnl4-K466A mutation conferred a significantly different imprecise joining profile than wild-type Dnl4 and that such repair was rarely observed in the absence of Dnl4. Enrichment of DNA ligase I (Cdc9 in yeast) at DSBs was observed in wild-type as well as dnl4 point mutant strains, with both Dnl4 and Cdc9 disappearing from DSBs upon 5′ resection that was unimpeded by the presence of catalytically inactive Dnl4. These findings indicate that Dnl4 can promote mutagenic end joining independently of its catalytic activity, likely by a mechanism that involves Cdc9.  相似文献   

18.
19.
DNA can adopt many structures that differ from the canonical B-form, and several of these non-canonical DNA structures have been implicated in genetic instability associated with human disease. Earlier, we found that Z-DNA causes DNA double-strand breaks (DSBs) in mammalian cells that can result in large-scale deletions and rearrangements. In contrast, the same Z-DNA-forming CG repeat in Escherichia coli resulted in only small contractions or expansions within the repeat. This difference in the Z-DNA-induced mutation spectrum between mammals and bacteria might be due to different mechanisms for DSB repair; in mammalian cells, non-homologous end-joining (NHEJ) is a major DSB repair pathway, while E. coli do not contain this system and typically use homologous recombination (HR) to process DSBs. To test the extent to which the different DSB repair pathways influenced the Z-DNA-induced mutagenesis, we engineered bacterial E.coli strains to express an inducible NHEJ system, to mimic the situation in mammalian cells. Mycobacterium tuberculosis NHEJ proteins Ku and ligase D (LigD) were expressed in E.coli cells in the presence or absence of HR, and the Z-DNA-induced mutations were characterized. We found that the presence of the NHEJ mechanism markedly shifted the mutation spectrum from small deletions/insertions to large-scale deletions (from 2% to 24%). Our results demonstrate that NHEJ plays a role in the generation of Z-DNA-induced large-scale deletions, suggesting that this pathway is associated with DNA structure-induced destabilization of genomes from prokaryotes to eukaryotes.  相似文献   

20.
Repetitive DNA sequences with the potential to form alternative DNA conformations, such as slipped structures and cruciforms, can induce genetic instability by promoting replication errors and by serving as a substrate for DNA repair proteins, which may lead to DNA double-strand breaks (DSBs). However, the contribution of each of the DSB repair pathways, homologous recombination (HR), non-homologous end-joining (NHEJ) and single-strand annealing (SSA), to this sort of genetic instability is not fully understood. Herein, we assessed the genome-wide distribution of repetitive DNA sequences in the Mycobacterium smegmatis, Mycobacterium tuberculosis and Escherichia coli genomes, and determined the types and frequencies of genetic instability induced by direct and inverted repeats, both in the presence and in the absence of HR, NHEJ, and SSA. All three genomes are strongly enriched in direct repeats and modestly enriched in inverted repeats. When using chromosomally integrated constructs in M. smegmatis, direct repeats induced the perfect deletion of their intervening sequences ∼1,000-fold above background. Absence of HR further enhanced these perfect deletions, whereas absence of NHEJ or SSA had no influence, suggesting compromised replication fidelity. In contrast, inverted repeats induced perfect deletions only in the absence of SSA. Both direct and inverted repeats stimulated excision of the constructs from the attB integration sites independently of HR, NHEJ, or SSA. With episomal constructs, direct and inverted repeats triggered DNA instability by activating nucleolytic activity, and absence of the DSB repair pathways (in the order NHEJ>HR>SSA) exacerbated this instability. Thus, direct and inverted repeats may elicit genetic instability in mycobacteria by 1) directly interfering with replication fidelity, 2) stimulating the three main DSB repair pathways, and 3) enticing L5 site-specific recombination.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号