首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Despite the potential for infectious agents harbored by other species to become emerging human pathogens, little is known about why some agents establish successful cross-species transmission, while others do not. The simian immunodeficiency viruses (SIVs), certain variants of which gave rise to the human HIV-1 and HIV-2 epidemics, have demonstrated tremendous success in infecting new host species, both simian and human. SIVsm from sooty mangabeys appears to have infected humans on several occasions, and was readily transmitted to nonnatural Asian macaque species, providing animal models of AIDS. Here we describe the first in-depth analysis of the tremendous SIVsm quasispecies sequence variation harbored by individual sooty mangabeys, and how this diverse quasispecies adapts to two different host species-new nonnatural rhesus macaque hosts and natural sooty mangabey hosts. Viral adaptation to rhesus macaques was associated with the immediate amplification of a phylogenetically related subset of envelope (env) variants. These variants contained a shorter variable region 1 loop and lacked two specific glycosylation sites, which may be selected for during acute infection. In contrast, transfer of SIVsm to its natural host did not subject the quasispecies to any significant selective pressures or bottleneck. After 100 d postinfection, variants more closely representative of the source inoculum reemerged in the macaques. This study describes an approach for elucidating how pathogens adapt to new host species, and highlights the particular importance of SIVsm env diversity in enabling cross-species transmission. The replicative advantage of a subset of SIVsm variants in macaques may be related to features of target cells or receptors that are specific to the new host environment, and may involve CD4-independent engagement of a viral coreceptor conserved among primates.  相似文献   

2.
B Tao  P N Fultz 《Journal of virology》1995,69(4):2031-2037
A prototypic simian immunodeficiency virus (SIVsmm9), isolated from a naturally infected sooty mangabey (Cercocebus atys), was passaged in vivo in a pig-tailed macaque (Macaca nemestrina) having the identifier PBj. When PBj died of a typical AIDS-like syndrome 14 months after infection, the virus isolated from its tissues was subsequently shown to differ from SIVsmm9 genetically and biologically. Most notably, this isolate, SIVsmmPBj14 (SIV-PBj14), is the most virulent primate lentivirus known: it induces acute disease and death within 6 to 10 days after intravenous inoculation into pig-tailed macaques. Between the time of infection with SIVsmm9 and isolation of SIV-PBj14, isolates were obtained periodically from peripheral blood mononuclear cells of PBj. To establish the temporal relationship between evolution of new biologic properties and fixation of specific mutations in the virus population, these sequential SIV-PBj isolates were characterized for unique properties of SIV-PBj14 that appeared to correlate with acute lethal disease. These properties included the ability to replicate in quiescent macaque peripheral blood mononuclear cells, to activate and induce proliferation of CD4+ and CD8+ cells, and to exhibit cytopathicity for mangabey CD4+ lymphocytes. Consistent with earlier studies, a major change in biologic properties occurred between 6 (SIV-PBj6) and 10 (SIV-PBj10) months, with the SIV-PBj8 quasispecies exhibiting properties of both earlier and later isolates. Multiple biologic clones derived from the 6-, 8-, and 10-month isolates also exhibited diverse phenotypes. For example, one SIV-PBj10 biologic clone resembled SIVsmm9 phenotypically, whereas three other biologic clones resembled SIV-PBj14. To evaluate genetic changes, proviral DNA of the biologic clones generated from SIV-PBj6, -PBj8, and -PBj10 was amplified by PCR in the U3 enhancer portion of the long terminal repeats (LTR) and the V1 region of env, where the greatest nucleotide diversity between SIVsmm9 and SIV-PBj14 resided. Nucleotide sequence data indicated that all biologically cloned viruses are distinct and that insertions/duplications of 3 to 27 nucleotides (in multiples of three) had accumulated stepwise in the env V1 region, beginning with SIV-PBj8. In addition, one of four SIV-PBj8 biologic clones had a 22-bp duplication in the LTR which is characteristic of SIV-PBj14. When virus mixtures containing different proportions of two SIV-PBj10 biologic clones with opposite phenotypes were tested, the SIV-PBj14 phenotype was clearly dominant, since mixtures with as few as 10% of the viruses being SIV-PBj14-like exhibited all the properties of the lethal isolate.(ABSTRACT TRUNCATED AT 400 WORDS)  相似文献   

3.
Polymerase chain reaction techniques were used to identify simian immunodeficiency virus (SIV) SIVsmm gag sequences in genomic DNA isolated from peripheral blood mononuclear cells from naturally infected asymptomatic seropositive and seronegative sooty mangabeys (Cercocebus atys) and from experimentally infected but asymptomatic rhesus macaques (Macaca mulatta). The results indicate that most if not all SIV-seronegative mangabeys from the colony at the Yerkes Primate Center are in fact infected with SIVsmm despite their lack of humoral immune response, confirming previous immunological and virological observations made by our laboratory. Sequence analysis of these particular gag fragments from the mangabey revealed an average of 88% nucleotide sequence homology but 97% amino acid identity with the previously published sequence of the SIVsmmH4 clone. The significance of this finding relative to the asymptomatic state of SIV-infected mangabeys and disease-susceptible SIV-infected rhesus macaques is discussed.  相似文献   

4.
Simian immunodeficiency virus (SIV) infection of rhesus macaques causes immune depletion and disease closely resembling human AIDS and is well recognized as the most relevant animal model for the human disease. Experimental investigations of viral pathogenesis and vaccine protection primarily involve a limited set of related viruses originating in sooty mangabeys (SIVsmm). The diversity of human immunodeficiency virus type 1 (HIV-1) has evolved in humans in about a century; in contrast, SIV isolates used in the macaque model evolved in sooty mangabeys over millennia. To investigate the possible consequences of such different evolutionary histories for selection pressures and observed diversity in SIVsmm and HIV-1, we isolated, sequenced, and analyzed 20 independent isolates of SIVsmm, including representatives of 7 distinct clades of viruses isolated from natural infection. We found SIVsmm diversity to be lower overall than HIV-1 M group diversity. Reduced positive selection (i.e., less diversifying evolution) was evident in extended regions of SIVsmm proteins, most notably in Gag p27 and Env gp120. In addition, the relative diversities of proteins in the two lineages were distinct: SIVsmm Env and Gag were much less diverse than their HIV-1 counterparts. This may be explained by lower SIV-directed immune activity in mangabeys relative to HIV-1-directed immunity in humans. These findings add an additional layer of complexity to the interpretation and, potentially, to the predictive utility of the SIV/macaque model, and they highlight the unique features of human and simian lentiviral evolution that inform studies of pathogenesis and strategies for AIDS vaccine design.  相似文献   

5.
Genetic diversity of simian immunodeficiency virus   总被引:1,自引:0,他引:1  
We have demonstrated that the genetic diversity of simian immunodeficiency virus from African green monkeys (SIVagm) is much greater than that observed previously for individual HIV-1, HIV-2, or SIVmac isolates. Extensive genetic variation among SIVagm isolates and the high prevalence of green monkey infection without disease suggest that the virus has been in the green monkey population for a long time. We have also demonstrated that SIV from a sooty mangabey monkey (isolate SMM-7) is closer to SIVmac and HIV-2 than to HIV-1 and SIVagm. The extensive genetic diversity of SIVagm and the relatedness of SIVsmm to HIV-2 warrant continued examination of SIVagm and SIVsmm isolates from dispersed geographic regions. SIV strains much more closely related to HIV-1, HIV-2, or SIVmac may be found which would be reasonable candidates for recent cross-species transmission.  相似文献   

6.
Two of 25 healthy pet sooty mangabey (SM) monkeys (Cercocebus atys) living in West Africa were seropositive by immunoblot when surveyed for antibody to simian immunodeficiency virus of macaques (SIVmac). SIVsmLIB1 was isolated from one of the pet sooty mangabeys. Nucleotide sequence data showed that this isolate is a member of the SIVsm/human immunodeficiecy virus type 2 (HIV-2)/SIVmac group of primate lentiviruses. Furthermore, sequence comparisons revealed extensive genetic diversity among SIVsm isolates similar to that observed previously in SIV isolates from naturally infected African green monkeys. These observations provide additional evidence for monkey-human cross-species transmission of SIVsm as the source of HIV-2 infection of human.  相似文献   

7.
Transfusion of blood from a simian immunodeficiency virus (SIV)- and simian T-cell lymphotropic virus-infected sooty mangabey (designated FGb) to rhesus and pig-tailed macaques resulted in the development of neurologic disease in addition to AIDS. To investigate the role of SIV in neurologic disease, virus was isolated from a lymph node of a pig-tailed macaque (designated PGm) and the cerebrospinal fluid of a rhesus macaque (designated ROn2) and passaged to additional macaques. SIV-related neuropathogenic effects were observed in 100% of the pig-tailed macaques inoculated with either virus. Lesions in these animals included extensive formation of SIV RNA-positive giant cells in the brain parenchyma and meninges. Based upon morphology, the majority of infected cells in both lymphoid and brain tissue appeared to be of macrophage lineage. The virus isolates replicated very well in pig-tailed and rhesus macaque peripheral blood mononuclear cells (PBMC) with rapid kinetics. Differential replicative abilities were observed in both PBMC and macrophage populations, with viruses growing to higher titers in pig-tailed macaque cells than in rhesus macaque cells. An infectious molecular clone of virus derived from the isolate from macaque PGm (PGm5.3) was generated and was shown to have in vitro replication characteristics similar to those of the uncloned virus stock. While molecular analyses of this virus revealed its similarity to SIV isolates from sooty mangabeys, significant amino acid differences in Env and Nef were observed. This virus should provide an excellent system for investigating the mechanism of lentivirus-induced neurologic disease.  相似文献   

8.
Simian immunodeficiency virus of sooty mangabeys (SIVsmm) is recognized as the progenitor of human immunodeficiency virus type 2 (HIV-2) and has been transmitted to humans on multiple occasions, yet the epidemiology and genetic diversity of SIVsmm infection in wild-living populations remain largely unknown. Here, we report the first molecular epidemiological survey of SIVsmm in a community of approximately 120 free-ranging sooty mangabeys in the Ta? Forest, C?te d'Ivoire. Fecal samples (n = 39) were collected from 35 habituated animals (27 females and 8 males) and tested for SIVsmm virion RNA (vRNA). Viral gag (800 bp) and/or env (490 bp) sequences were amplified from 11 different individuals (eight females and three males). Based on the sensitivity of fecal vRNA detection and the numbers of samples analyzed, the prevalence of SIVsmm infection was estimated to be 59% (95% confidence interval, 0.35 to 0.88). Behavioral data collected from this community indicated that SIVsmm infection occurred preferentially in high-ranking females. Phylogenetic analysis of gag and env sequences revealed an extraordinary degree of genetic diversity, including evidence for frequent recombination events in both the recent and distant past. Some sooty mangabeys harbored near-identical viruses (<2% interstrain distance), indicating epidemiologically linked infections. These transmissions were identified by microsatellite analyses to involve both related (mother/daughter) and unrelated individuals, thus providing evidence for vertical and horizontal transmission in the wild. Finally, evolutionary tree analyses revealed significant clustering of the Ta? SIVsmm strains with five of the eight recognized groups of HIV-2, including the epidemic groups A and B, thus pointing to a likely geographic origin of these human infections in the eastern part of the sooty mangabey range.  相似文献   

9.
We derived two infectious molecular clones of SIV from sooty mangabey monkeys (Cercocebus atys) and compared them by restriction enzyme mapping and limited DNA sequencing to other known primate lentiviruses. These analyses show that SIVsmm is closely related to, but distinct from, SIVmac and HIV-2. Our data suggest that SIVmac may have been derived from SIVsmm by cross-species transmission in captivity.  相似文献   

10.
11.
Sooty mangabeys naturally infected with simian immunodeficiency virus (SIV) do not develop immunodeficiency despite the presence of viral loads of 105 to 107 RNA copies/ml. To investigate the basis of apathogenic SIV infection in sooty mangabeys, three sooty mangabeys and three rhesus macaques were inoculated intravenously with SIVmac239 and evaluated longitudinally for 1 year. SIVmac239 infection of sooty mangabeys resulted in 2- to 4-log-lower viral loads than in macaques and did not reproduce the high viral loads observed in natural SIVsmm infection. During acute SIV infection, polyclonal cytotoxic T-lymphocyte (CTL) activity coincident with decline in peak plasma viremia was observed in both macaques and mangabeys; 8 to 20 weeks later, CTL activity declined in the macaques but was sustained and broadly directed in the mangabeys. Neutralizing antibodies to SIVmac239 were detected in the macaques but not the mangabeys. Differences in expression of CD38 on CD8+ T lymphocytes or in the percentage of naive phenotype T cells expressing CD45RA and CD62L-selection did not correlate with development of AIDS in rhesus macaques. In macaques, the proportion of CD4+ T lymphocytes expressing CD25 declined during SIV infection, while in mangabeys, CD25-expressing CD4+ T lymphocytes increased. Longitudinal evaluation of cytokine secretion by flow cytometric analysis of unstimulated lymphocytes revealed elevation of interleukin-2 and gamma interferon in a macaque and only interleukin-10 in a concurrently infected mangabey during acute SIV infection. Differences in host responses following experimental SIVmac239 infection may be associated with the divergent outcome in sooty mangabeys and rhesus macaques.  相似文献   

12.
It has been established that many simian immunodeficiency virus (SIV) isolates utilize the orphan receptors GPR15 and STRL33 about as efficiently as the chemokine receptor CCR5 for entry into target cells. Most studies were performed, however, with coreceptors of human origin. We found that SIV from captive rhesus macaques (SIVmac) can utilize both human and simian CCR5 and GPR15 with comparable efficiencies. Strikingly, however, only human STRL33 (huSTRL33), not rhesus macaque STRL33 (rhSTRL33), functioned efficiently as an entry cofactor for a variety of isolates of SIVmac and SIV from sooty mangabeys. A single amino acid substitution of S30R in huSTRL33 impaired coreceptor activity, and the reverse change in rhSTRL33 greatly increased coreceptor activity. In comparison, species-specific sequence variations in N-terminal tyrosines in STRL33 had only moderate effects on SIV entry. These results show that a serine residue located just outside of the cellular membrane in the N terminus of STRL33 is critical for SIV coreceptor function. Interestingly, STRL33 derived from sooty mangabeys, a natural host of SIV, also contained a serine at the corresponding position and was used efficiently as an entry cofactor. These results suggest that STRL33 is not a relevant coreceptor in the SIV/macaque model but may play a role in SIV replication and transmission in naturally infected sooty mangabeys.  相似文献   

13.
To understand how natural sooty mangabey hosts avoid AIDS despite high levels of simian immunodeficiency virus (SIV) SIVsm replication, we inoculated mangabeys and nonnatural rhesus macaque hosts with an identical inoculum of uncloned SIVsm. The unpassaged virus established infection with high-level viral replication in both macaques and mangabeys. A species-specific, divergent immune response to SIV was evident from the first days of infection and maintained in the chronic phase, with macaques showing immediate and persistent T-cell proliferation, whereas mangabeys displayed little T-cell proliferation, suggesting subdued cellular immune responses to SIV. Importantly, only macaques developed (CD4+)-T-cell depletion and AIDS, thus indicating that in mangabeys limited immune activation is a key mechanism to avoid immunodeficiency despite high levels of SIVsm replication. These studies demonstrate that it is the host response to infection, rather than properties inherent to the virus itself, that causes immunodeficiency in SIV-infected nonhuman primates.  相似文献   

14.
Naturally simian immunodeficiency virus (SIV)-infected sooty mangabeys do not progress to AIDS despite high-level virus replication. We previously showed that the fraction of CD4(+)CCR5(+) T cells is lower in sooty mangabeys compared to humans and macaques. Here we found that, after in vitro stimulation, sooty mangabey CD4(+) T cells fail to upregulate CCR5 and that this phenomenon is more pronounced in CD4(+) central memory T cells (T(CM) cells). CD4(+) T cell activation was similarly uncoupled from CCR5 expression in sooty mangabeys in vivo during acute SIV infection and the homeostatic proliferation that follows antibody-mediated CD4(+) T cell depletion. Sooty mangabey CD4(+) T(CM) cells that express low amounts of CCR5 showed reduced susceptibility to SIV infection both in vivo and in vitro when compared to CD4(+) T(CM) cells of rhesus macaques. These data suggest that low CCR5 expression on sooty mangabey CD4(+) T cells favors the preservation of CD4(+) T cell homeostasis and promotes an AIDS-free status by protecting CD4(+) T(CM) cells from direct virus infection.  相似文献   

15.
Antigenic epitopes on the major core (gag) protein of isolates of simian and human immunodeficiency virus (SIV and HIV) were compared using a panel of eleven mouse monoclonal antibodies (Mabs) that recognized nine distinct gag epitopes. Viral isolates used for comparison were HIV-1IIIb, HIV-2ROD, and SIV isolates from macaque (SIVmac), sooty mangabey (SIVsm-UCD), African green monkey (SIVagm), and stump-tailed macaque (SIVstm-UCD). The relatedness of the various HIV and SIV isolates, as determined by Mabs to core protein epitopes, paralleled that ascertained by genetic sequencing.  相似文献   

16.
Lymphoid tissue immunopathology is a characteristic feature of chronic HIV/SIV infection in AIDS-susceptible species, but is absent in SIV-infected natural hosts. To investigate factors contributing to this difference, we compared germinal center development and SIV RNA distribution in peripheral lymph nodes during primary SIV infection of the natural host sooty mangabey and the non-natural host pig-tailed macaque. Although SIV-infected cells were detected in the lymph node of both species at two weeks post infection, they were confined to the lymph node paracortex in immune-competent mangabeys but were seen in both the paracortex and the germinal center of SIV-infected macaques. By six weeks post infection, SIV-infected cells were no longer detected in the lymph node of sooty mangabeys. The difference in localization and rate of disappearance of SIV-infected cells between the two species was associated with trapping of cell-free virus on follicular dendritic cells and higher numbers of germinal center CD4+ T lymphocytes in macaques post SIV infection. Our data suggests that fundamental differences in the germinal center microenvironment prevent productive SIV infection within the lymph node germinal centers of natural hosts contributing to sustained immune competency.  相似文献   

17.
Natural host sooty mangabeys (SM) infected with simian immunodeficiency virus SIVsmm do not develop AIDS despite high viremia. SM and other natural hosts express very low levels of CCR5 on CD4(+) T cells, and we recently showed that SIVsmm infection and robust replication occur in vivo in SM genetically lacking CCR5, indicating the use of additional entry pathways. SIVsmm uses several alternative coreceptors of human origin in vitro, but which molecules of SM origin support entry is unknown. We cloned a panel of putative coreceptors from SM and tested their ability to mediate infection, in conjunction with smCD4, by pseudotypes carrying Envs from multiple SIVsmm subtypes. smCXCR6 supported efficient infection by all SIVsmm isolates with entry levels comparable to those for smCCR5, and smGPR15 enabled entry by all isolates at modest levels. smGPR1 and smAPJ supported low and variable entry, whereas smCCR2b, smCCR3, smCCR4, smCCR8, and smCXCR4 were not used by most isolates. In contrast, SIVsmm from rare infected SM with profound CD4(+) T cell loss, previously reported to have expanded use of human coreceptors, including CXCR4, used smCXCR4, smCXCR6, and smCCR5 efficiently and also exhibited robust entry through smCCR3, smCCR8, smGPR1, smGPR15, and smAPJ. Entry was similar with both known alleles of smCD4. These alternative coreceptors, particularly smCXCR6 and smGPR15, may support virus replication in SM that have restricted CCR5 expression as well as SM genetically lacking CCR5. Defining expression of these molecules on SM CD4(+) subsets may delineate distinct natural host target cell populations capable of supporting SIVsmm replication without CD4(+) T cell loss.  相似文献   

18.
Pathogenic HIV infections of humans and simian immunodeficiency virus (SIV) infections of rhesus macaques are characterized by generalized immune activation and progressive CD4(+) T cell depletion. In contrast, natural reservoir hosts for SIV, such as sooty mangabeys, do not progress to AIDS and show a lack of aberrant immune activation and preserved CD4(+) T cell populations, despite high levels of SIV replication. Here we show that sooty mangabeys have substantially reduced levels of innate immune system activation in vivo during acute and chronic SIV infection and that sooty mangabey plasmacytoid dendritic cells (pDCs) produce markedly less interferon-alpha in response to SIV and other Toll-like receptor 7 and 9 ligands ex vivo. We propose that chronic stimulation of pDCs by SIV and HIV in non-natural hosts may drive the unrelenting immune system activation and dysfunction underlying AIDS progression. Such a vicious cycle of continuous virus replication and immunopathology is absent in natural sooty mangabey hosts.  相似文献   

19.
A serologic survey of primates living in a French zoo allowed identification of three cases of infection with simian immunodeficiency virus in sooty mangabeys (Cercocebus atys) (SIVsm). Viral isolates, which were designated SIVsmFr66, SIVsmFr74, and SIVsmFr85, were obtained after short-term culture of mangabey lymphoid cells. Phylogenetic analysis of gag and env sequences amplified directly from mangabey tissues showed that the three SIVsmFr were genetically close and that they constituted a new subtype within the diverse SIVsm–SIVmac–human immunodeficiency virus type 2 (HIV-2) group. We could reconstruct the transmission events that likely occurred in 1986 between the three animals and evaluate the divergence of SIVsmFr sequences since transmission. The estimated rate of mutation fixation was 6 × 10−3 substitutions per site per year, which was as high as the rate found for SIVmac infection in macaques. These data indicated that SIVsmFr replicated at a high rate in mangabeys, despite the nonpathogenic character of infection in this host. The viral load evaluated by competitive PCR reached 20,000 viral DNA copies per 106 lymph node cells. In addition, productively infected cells were readily detected in mangabey lymphoid tissues by in situ hybridization. The amounts of viral RNA in plasma ranged from 105 to 107 copies per ml. The cell-associated and plasma viral loads were as high as those seen in susceptible hosts (humans or macaques) during the asymptomatic stage of HIV or SIVmac infections. Thus, the lack of pathogenicity of SIVsm for its natural host cannot be explained by limited viral replication or by tight containment of viral production.  相似文献   

20.
The extent of zoonotic infections in rural Sierra Leone, where both feral and pet sooty mangabeys harbor divergent members of the human immunodeficiency virus type 2 (HIV-2)-sooty mangabey simian immunodeficiency virus (SIVsm) family, was tested in blood samples collected from 9,309 human subjects in 1993. Using HIV-1- and HIV-2-specific enzyme immunoassays and confirmatory Western blot analysis to test for antibodies to SIVsm-related lentiviruses, we found only nine subjects (0.096%) who tested positive for HIV: seven tested positive for HIV-1 and two tested positive for HIV-2. Compared with other rural West African communities, Sierra Leone displayed the lowest seroprevalence (0.021%) of HIV-2 infection yet reported, much lower than the previously reported seroprevalence in SIVsm-infected feral and household pet sooty mangabeys. Heteroduplex analysis demonstrated that two of the newly found HIV-1 strains belonged to subtype A, the most common HIV-1 subtype in Africa, but this is the first report of subtype A in Sierra Leone. The two HIV-2-infected individuals harbored two distinct HIV-2 strains, designated 93SL1 and 93SL2. Phylogenetic analysis indicated that HIV-2 93SL1 is a member of HIV-2 subtype A, the first strain of this HIV-2 subtype found in Sierra Leone. In contrast, HIV-2 93SL2 belongs to none of the five previously characterized HIV-2 subtypes (A to E) but is a new subtype, herein designated F, having the most divergent transmembrane sequences yet reported for HIV-2. The fact that both of the two most divergent HIV-2 subtypes known, E and F, are rare and found as single occurrences in persons from Sierra Leone may be related to the fact that this small region of West Africa also contains free-living and household pet sooty mangabeys with highly divergent variants of SIVsm. This finding provides support for the hypotheses that new HIV-2 subtypes result from independent cross-species transmission of SIVsm to the human population and that these single-occurrence transmission events had not spread widely into the population by 1993.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号