首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.

Consensus-based protein engineering strategy has been applied to various proteins and it can lead to the design of proteins with enhanced biological performance. Histone-like HUs comprise a protein family with sequence variety within a highly conserved 3D-fold. HU function includes compacting and regulating bacterial DNA in a wide range of biological conditions in bacteria. To explore the possible impact of consensus-based design in the thermodynamic stability of HU proteins, the approach was applied using a dataset of sequences derived from a group of 40 mesostable, thermostable, and hyperthermostable HUs. The consensus-derived HU protein was named HUBest, since it is expected to perform best. The synthetic HU gene was overexpressed in E. coli and the recombinant protein was purified. Subsequently, HUBest was characterized concerning its correct folding and thermodynamic stability, as well as its ability to interact with plasmid DNA. A substantial increase in HUBest stability at high temperatures is observed. HUBest has significantly improved biological performance at ambience temperature, presenting very low Kd values for binding plasmid DNA as indicated from the Gibbs energy profile of HUBest. This Kd may be associated to conformational changes leading to decreased thermodynamic stability and, therefore, higher flexibility at ambient temperature.

  相似文献   

2.
The genomes of virtually all free-living archaeons encode one or more deduced protein-serine/threonine/tyrosine kinases belonging to the so-called eukaryotic protein kinase superfamily. However, the distribution of their cognate protein-serine/threonine/phosphatases displays a mosaic pattern. Thermoplasma volcanium is unique among the Archaea inasmuch as it is the sole archaeon whose complement of deduced phosphoprotein phosphatases includes a member of the PPM-family of protein-serine/threonine phosphatases—a family that originated in the Eucarya. A recombinant version of this protein, TvnPPM, exhibited protein-tyrosine phosphatase in addition to its predicted protein-serine/threonine phosphatase activity in vitro. TvnPPM is the fourth member of the PPM-family shown to exhibit such dual-specific capability, suggesting that the ancestral versions of this enzyme exhibited broad substrate specificity. Unlike most other archeaons, the genome of T. volcanium lacks open reading frames encoding stereotypical protein-tyrosine phosphatases. Hence, the dual-specificity of TvnPPM may account for its seemingly aberrant presence in an archaeon.  相似文献   

3.
The Escherichia coli Lon protease degrades the E. coli DNA-binding protein HUβ, but not the related protein HUα. Here we show that the Lon protease binds to both HUβ and HUα, but selectively degrades only HUβ in the presence of ATP. Mass spectrometry of HUβ peptide fragments revealed that region K18-G22 is the preferred cleavage site, followed in preference by L36-K37. The preferred cleavage site was further refined to A20-A21 by constructing and testing mutant proteins; Lon degraded HUβ-A20Q and HUβ-A20D more slowly than HUβ. We used optical tweezers to measure the rupture force between HU proteins and Lon; HUα, HUβ, and HUβ-A20D can bind to Lon, and in the presence of ATP, the rupture force between each of these proteins and Lon became weaker. Our results support a mechanism of Lon protease cleavage of HU proteins in at least three stages: binding of Lon with the HU protein (HUβ, HUα, or HUβ-A20D); hydrolysis of ATP by Lon to provide energy to loosen the binding to the HU protein and to allow an induced-fit conformational change; and specific cleavage of only HUβ.  相似文献   

4.
5.
Thermoplasma acidophilum is a thermoacidophilic archaeon that grows optimally at pH1.8 and 56°C and has no cell wall. Plasmid pTA1 was found in some strains of the species. We sequenced plasmid pTA1 and analyzed the open reading frames (ORFs). pTA1 was found to be a circular DNA molecule of 15,723 bp. Eighteen ORFs were found; none of the gene products except ORF1 had sequence similarity to known proteins. ORF1 showed similarity to Cdc6, which is involved in genome-replication initiation in Eukarya and Archaea. T. acidophilum has two Cdc6 homologues in the genome. The homologue found in pTA1 is most similar to Tvo3, one of the three Cdc6 homologues found in the genome of Thermoplasma volcanium, among all of the Cdc6 family proteins. The phylogenetic analysis suggested that plasmid pTA1 is possibly originated from the chromosomal DNA of Thermoplasma.  相似文献   

6.
The histone-like DNA-binding proteins (HU) serve as model molecules for protein thermostability studies, as they function in different bacteria that grow in a wide range of temperatures and show sequence diversity under a common fold. In this work, we report the cloning of the hutth gene from Thermus thermophilus, the purification and crystallization of the recombinant HUTth protein, as well as its X-ray structure determination at 1.7 Å. Detailed structural and thermodynamic analyses were performed towards the understanding of the thermostability mechanism. The interaction of HUTth protein with plasmid DNA in solution has been determined for the first time with MST. Sequence conservation of an exclusively thermophilic order like Thermales, when compared to a predominantly mesophilic order (Deinococcales), should be subject, to some extent, to thermostability-related evolutionary pressure. This hypothesis was used to guide our bioinformatics and evolutionary studies. We discuss the impact of thermostability adaptation on the structure of HU proteins, based on the detailed evolutionary analysis of the Deinococcus–Thermus phylum, where HUTth belongs. Furthermore, we propose a novel method of engineering thermostable proteins, by combining consensus-based design with ancestral sequence reconstruction. Finally, through the structure of HUTth, we are able to examine the validity of these predictions. Our approach represents a significant advancement, as it explores for the first time the potential of ancestral sequence reconstruction in the divergence between a thermophilic and a mainly mesophilic taxon, combined with consensus-based engineering.  相似文献   

7.
8.
The Archaebacterium Thermoplasma acidophilum contains a basic chromosomal protein remarkably similar to the histones of eukaryotes. Therefore, it was of interest to examine a different Archaebacterium for similar proteins. We chose to examine Sulfolobus acidocaldarius because it is thermophilic, like T. acidophilum, but nevertheless the two organisms are not particularly closely related. Two major chromosomal proteins were found in S. acidocaldarius. The smaller of these was soluble in 0.2 M H2SO4 and had a molecular weight of 14500. The larger was acid-insoluble and had a molecular weight of about 36000. Together, the proteins protected about 5% of the DNA against nuclease digestion and stabilized about 50% against thermal denaturation. Overall, the properties of these proteins were intermediate between those of the Escherichia coli protein HU and T. acidophilum protein HTa.  相似文献   

9.
The histone-like protein HU isolated from Escherichia coli exhibited, after several purification steps, a Mg2+-dependent nuclease activity. We show here that this activity can be dissociated from HU by a denaturation-renaturation step, and is due to a small fraction of ribosomal protein S16 co-purifying with HU. S16 is an essential component of the 30S ribosomal particles. We have cloned, overproduced, and purified a histidine-tagged S16 and shown that this protein is a DNA-binding protein carrying a Mg2+-Mn2+-dependent endonuclease activity. This is an unexpected property for a ribosomal protein.  相似文献   

10.
In this study, a gene coding for thermophilic serine protease of the ClpP class from the thermoacidophilic archaeon Thermoplasma volcanium (Tpv) was cloned and expressed in Escherichia coli. The primary sequence and domain analysis of this enzyme showed similarities (50–60% similarity) to signal peptide peptidases (SppA) of bacteria and other archaea. An increase of about tenfold in the activity was achieved by overexpression of Tpv SppA in E. coli, as detected by enzyme assays conducted using Ala-Ala-Phe-pNa and N-Suc-Ala-Ala-Pro-Phe-pNA as substrates. The recombinant enzyme, purified using an anion exchange column chromatography, displayed an apparent molecular mass of 26 kDa on SDS-PAGE analysis. Purified Tpv SppA was active in a broad range of pH and temperature with maximal activity at 60°C and between pH 7.5 and pH 8.0. The activity of the enzyme was strongly inhibited by inhibitors typical for serine proteases, i.e., chymostatin and PMSF. The activity of the Tpv SppA and the stability at high temperature were significantly enhanced in the presence of 5 mM Ca2+ ions. Our multiple sequence alignment data revealed a conserved Ser/Lys catalytic dyad in Tpv SppA that comprised Ser76 (nucleophile) and Lys128 (general base) residues. A search for a transmembrane domain using automated programs did not predict any signal peptide associated with the Tpv SppA and, therefore, suggested a cytoplasmic location for this enzyme.  相似文献   

11.
The multistep kinetics through which DNA-binding proteins bind their targets are heavily studied, but relatively little attention has been paid to proteins leaving the double helix. Using single-DNA stretching and fluorescence detection, we find that sequence-neutral DNA-binding proteins Fis, HU and NHP6A readily exchange with themselves and with each other. In experiments focused on the Escherichia coli nucleoid-associated protein Fis, only a small fraction of protein bound to DNA spontaneously dissociates into protein-free solution. However, if Fis is present in solution, we find that a concentration-dependent exchange reaction occurs which turns over the bound protein, with a rate of kexch = 6 × 104 M−1s−1. The bacterial DNA-binding protein HU and the yeast HMGB protein NHP6A display the same phenomenon of protein in solution accelerating dissociation of previously bound labeled proteins as exchange occurs. Thus, solvated proteins can play a key role in facilitating removal and renewal of proteins bound to the double helix, an effect that likely plays a major role in promoting the turnover of proteins bound to DNA in vivo and, therefore, in controlling the dynamics of gene regulation.  相似文献   

12.
The histone-like (HU) protein is one of the major nucleoid-associated proteins involved in DNA supercoiling and compaction into bacterial nucleoid as well as in all DNA-dependent transactions. This small positively charged dimeric protein binds DNA in a non-sequence specific manner promoting DNA super-structures. The majority of HU proteins are highly conserved among bacteria; however, HU protein from Mycoplasma gallisepticum (HUMgal) has multiple amino acid substitutions in the most conserved regions, which are believed to contribute to its specificity to DNA targets unusual for canonical HU proteins. In this work, we studied the structural dynamic properties of the HUMgal dimer by NMR spectroscopy and MD simulations. The obtained all-atom model displays compliance with the NMR data and confirms the heterogeneous backbone flexibility of HUMgal. We found that HUMgal, being folded into a dimeric conformation typical for HU proteins, has a labile α-helical body with protruded β-stranded arms forming DNA-binding domain that are highly flexible in the absence of DNA. The amino acid substitutions in conserved regions of the protein are likely to affect the conformational lability of the HUMgal dimer that can be responsible for complex functional behavior of HUMgal in vivo, e.g. facilitating its spatial adaptation to non-canonical DNA-targets.  相似文献   

13.
By using a functional approach of reconstituting detergent-solubilized membrane proteins into liposomes and following their function in patch-clamp experiments, we identified a novel mechanosensitive (MS) channel in the thermophilic cell wall-less archaeon Thermoplasma volcanium. Sodium dodecyl sulfate polyacrylamide gel electrophoresis (SDS-PAGE) of the enriched protein fractions revealed a band of approx 15 kDa comparable to MscL, the bacterial MS channel of large conductance. 20 N-terminal residues determined by protein microsequencing, matched the sequence to an unknown open reading frame in the genome of a related species Thermoplasma acidophilum. The protein encoded by the T. acidophilum gene was cloned and expressed in Escherichia coli and reconstituted into liposomes. When examined for function, the reconstituted protein exhibited properties typical of an MS ion channel: 1) activation by negative pressure applied to the patch-clamp pipet, 2) blockage by gadolinium, and 3) activation by the anionic amphipath trinitrophenol. In analogy to the nomenclature used for bacterial MS channels, the MS channel of T. acidophilum was termed MscTA. Secondary structural analysis indicated that similar to MscL, the T. acidophilum MS protein may have two transmembrane domains, suggesting that MS channels of thermophilic Archaea belong to a family of structurally related MscL-like ion channels with two membrane-spanning regions. When the mscTA gene was expressed in the mscL knockout strain and the MscTA protein reconstituted into liposomes, the gating of MscTA was charaterized by very brief openings of variable conductance. In contrast, when the mscTA gene was expressed in the wild-type mscL + strain of E. coli, the gating properties of the channel resembled MscL. However, the channel had reduced conductance and differed from MscL in its kinetics and in the free energy of activation, suggesting that MscTA and MscL can form functional complexes and/or modulate each other activity. Similar to MscL, MscTA exhibited an increase in activity in liposomes made of phospholipids having shorter acyl chain, suggesting a role of hydrophobic mismatch in the function of prokaryotic MS channels.  相似文献   

14.
15.
Acetylation and deacetylation reactions result in biologically important modifications that are involved in normal cell function and cancer development. These reactions, carried out by protein acetyltransferase enzymes, act by transferring an acetyl group from acetyl-coenzymeA (Ac-CoA) to various substrate proteins. Such protein acetylation remains poorly understood in Archaea, and has been only partially described. Information processing in Archaea has been reported to be similar to that in eukaryotes and distinct from the equivalent bacterial processes. The human N-acetyltransferase Ard1 (hArd1) is one of the acetyltransferases that has been found to be overexpressed in various cancer cells and tissues, and knockout of the hArd1 gene significantly reduces growth rate of the cancer cell lines. In the present study, we determined the crystal structure of Thermoplasma volcanium Ard1 (Tv Ard1), which shows both ligand-free and multiple ligand-bound forms, i.e.,Ac-CoA- and coenzyme A (CoA)-bound forms. The difference between ligand-free and ligand-bound chains in the crystal structure was used to search for the interacting residues. The re-orientation and position of the loop between β4 and α3 including the phosphate-binding loop (P-loop) were observed, which are important for the ligand interaction. In addition, a biochemical assay to determine the N-acetyltransferase activity of Tv Ard1 was performed using the T.volcanium substrate protein Alba (Tv Alba). Taken together, the findings of this study elucidate ligand-free form of Tv Ard1 for the first time and suggest multiple modes of binding with Ac-CoA and CoA.  相似文献   

16.
The liquid crystalline chromosomes of dinoflagellates are the alternative to the nucleosome-based organization of chromosomes in the eukaryotes. These nucleosome-less chromosomes have to devise novel ways to maintain active parts of the genome. The dinoflagellate histone-like protein HCc3 has significant sequence identity with the bacterial DNA-binding protein HU. HCc3 also has a secondary structure resembling HU in silico. We have examined HCc3 in its recombinant form. Experiments on DNA-cellulose revealed its DNA-binding activity is on the C-terminal domain. The N-terminal domain is responsible for intermolecular oligomerization as demonstrated by cross-linking studies. However, HCc3 could not complement Escherichia coli HU-deficient mutants, suggesting functional differences. In ligation assays, HCc3-induced DNA concatenation but not ring closure as the DNA-bending HU does. The basic HCc3 was an efficient DNA condensing agent, but it did not behave like an ordinary polycationic compound. HCc3 also induced specific structures with DNA in a concentration-dependent manner, as demonstrated by atomic force microscopy (AFM). At moderate concentration of HCc3, DNA bridging and bundling were observed; at high concentrations, the complexes were even more condensed. These results are consistent with a biophysical role for HCc3 in maintaining extended DNA loops at the periphery of liquid crystalline chromosomes.  相似文献   

17.
Protein HU binds specifically to kinked DNA   总被引:22,自引:8,他引:14  
We have purified the main four-way junction DNA-binding protein of Escherichia coli, and have found It to be the well-known HU protein. HU protein recognizes with high-affinity one of the angles present in the junction, a molecule with the shape of an X. Other DNA structures characterized by sharp bends or kinks, like bulged duplex DNAs containing unpaired bases, are also bound. HU protein appears to inhibit cruciform extrusion from supercoiled inverted repeat (palindromic) DNA, either by constraining supercoiling or by trapping a metastable interconversion intermediate. All these properties are analogous to the properties of the mammalian chromatin protein HMG1. We suggest that HU is a prokaryotic HMG1-like protein rather than a histone-like protein.  相似文献   

18.
The ability of a variety of chemical and physical agents to stimulate DNA repair synthesis in human cell cultures was tested by a simplified scintillometric procedure, with the use of hydroxyurea (HU) to suppress DNA replicative synthesis. After incubation with [3H]thymidine, the radioactivity incorporated in to DNA was determined in controls (C) and treated (T) cultures and in the corresponding HU series (CHU, THU). The ratios THU/CHU and THU/T:CHU/C, indicating absolute and relative increases of DNA radioactivity, were calculated. When both ratios were significantly higher than 1, they were taken as indices of DNA repair stimulation, whereas, no stimulation in inferred when both of them are ?1. The scintillometric estimate of DNA repair was always in agreement with the autoradiographic observations, so that the procedure adopted can be used as a rapid test for screening investigations.Agents giving a relative but no an absolute increase of DNA radioactivity are generally not inducers of repair synthesis as estimated by autoradiography. However, the same scintillometric results are also occasionally observed with DNA repair inducers, such as methyl methanesulphonate (MMS) and ethyl methanesulphonate (EMS), owing to alterations of thymidine pool radioactivity. These chemicals, besides affecting the levels of labelled precursors in the intracellular pool in the T series, differently modified the increase of pool radioactivity which is a regular effect of HU. With such chemicals, DNA repair synthesis can be detected only after normalization of th DNA radioactivity on the basis of pool alterations.The quantitative value of the autoradiographic estimate of DNA repair is also affected by the changes in the radioactivity of the thymidine pool although autoradiography retains its qualitative value.Dimethylnitrosamine, mitomycin C and potassium dichromate, described by other authors as inducers of DNA repair, also gave negative results by the scintillometric procedure after normalization of DNA radioactivities. However, in our hands, these agents were unable to stimulated repair synthesis, according to the results of autoradiography and isopynic centrifugation.The proposed scintillometric procedure is effective in indicating false negative inducers of DNA repair, not giving rise to false positives.  相似文献   

19.
To determine whether density mapping (DM) is more accurate for detection and quantification of pathologic air trapping (pAT) in patients after lung transplantation compared to other CT air trapping measures. One-hundred forty-seven lung and heart-lung transplant recipients underwent CT-examinations at functional residual capacity (FRC) and total lung capacity (TLC) and PFT six months after lung transplantation. Quantification of air trapping was performed with the threshold-based method in expiration (EXP), density mapping (DM) and the expiratory to inspiratory ratio of the mean lung density (E/I-ratio MLD). A non-rigid registration of inspiration-expiration CT-data with a following voxel-to-voxel mapping was carried out for DM. Systematic variation of attenuation ranges was performed for EXP and DM and correlated with the ratio of residual volume to total lung capacity (RV/TLC) by Spearman rank correlation test. AT was considered pathologic if RV/TLC was above the 95th percentile of the predicted upper limit of normal values. Receiver operating characteristic (ROC) analysis was performed. The optimal attenuation range for the EXP method was from -790 HU to -950 HU (EXP-790 to -950HU ) (r = 0.524, p<0.001) to detect air trapping. Within the segmented lung parenchyma, AT was best defined as voxel difference less than 80 HU between expiration and registered inspiration using the DM method. DM correlated best with RV/TLC (r = 0.663, p<0.001). DM and E/I-ratio MLD showed a larger AUC (0.78; 95% CI 0.69–0.86; 0.76, 95% CI 0.67–0.85) than EXP -790 HU to -950 HU (0.71, 95% CI 0.63–0.78). DM and E/I-ratio MLD showed better correlation with RV/TLC and are more suited quantitative CT-methods to detect pAT in lung transplant patients than the EXP-790HU to -950HU.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号