首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 28 毫秒
1.
Phenoxybenzamine causes a long-lasting inactivation of the opiate receptors of the mu- and delta-type in homogenates of guinea-pig brain. The effect is selectively prevented when, before exposure to phenoxybenzamine, the homogenate is pre-incubated with ligands of high affinity for either of the two binding sites, i.e. dihydromorphine for the mu-receptor and Tyr-D-Ala-Gly-Phe-D-Leu for the delta-receptor. In contrast, Tyr-D-Ala-Gly-Phe-L-Leu amide, which has high affinities for both binding sites, protects both receptor sites.  相似文献   

2.
The effects of MgCl2 on the binding of tritiated ligands to opioid binding sites in homogenates of guinea-pig brain in HEPES buffer have been studied. The binding of tritiated mu-, delta-, and kappa-opioid agonists was promoted in a concentration-dependent manner over a range of MgCl2 concentrations from 0.1 mM to 10 mM, as was binding of the nonselective antagonists [3H]diprenorphine and [3H]naloxone. At concentrations of MgCl2 above 10 mM reversal of this effect was observed. The effects of MgCl2 on binding parameters differed at each site. The promoting effects of MgCl2 were mimicked by MnCl2, CaCl2, and MgSO4, but CoCl2 and ZnCl2 were inhibitory. Following treatment of guinea-pig brain synaptosomes at pH 11.5 to eliminate G proteins, the binding of the mu-opioid agonist [3H][D-Ala2, MePhe4, Gly-ol5]enkephalin and [3H]naloxone was much reduced but binding of [3H]diprenorphine was unaffected. Under these conditions MgCl2 still promoted binding of [3H]diprenorphine. The results suggest that Mg2+ ions promote binding by an action at the opioid receptor, even in the absence of G protein, and that opioid antagonists may differ in their recognition of opioid receptor binding sites.  相似文献   

3.
The binding of the unselective opioid antagonist [3H]diprenorphine to homogenates prepared from rat brain and from guinea-pig brain and cerebellum has been studied in HEPES buffer containing 10 mM Mg2+ ions. Sequential displacement of bound [3H]diprenorphine by ligands with selectivity for mu-, delta-, and kappa-opioid receptors uncovers the multiple components of binding. In the presence of cold ligands that occupy all mu-, delta-, and kappa-sites, opioid binding still remains. This binding represents 20% of total specific sites and is displaced by naloxone. The nature of these undefined opioid binding sites is discussed.  相似文献   

4.
[3H]Guanidinoethylmercaptosuccinic acid (GEMSA), a potent inhibitor of enkephalin convertase, binds to membrane and soluble fractions of tissue homogenates saturably and reversibly with a KD of 6 nM. Specific binding accounts for greater than 95% of total binding. The highest levels of [3H]GEMSA binding occur in the pituitary gland and the brain, with much lower levels in peripheral tissues. GEMSA, guanidinopropylsuccinic acid, 2-mercaptomethyl-3-guanidinothiopropionic acid, aminopropylmercaptosuccinic acid, [Leu] enkephalin-Arg, and [Met]enkephalin-Arg inhibit [3H] GEMSA binding to crude rat brain homogenates, to crude bovine pituitary homogenates, and to pure enkephalin convertase with equal potencies. Their Ki values against [3H]GEMSA binding are similar to their Ki values against enkephalin convertase activity. EDTA and 1,10-phenanthroline markedly inhibit both binding and enzymatic activity. The ratio of the Vmax for 5-dimethylaminonaphthalene-1-sulfonyl-Phe-Leu-Arg to the Bmax (maximal number of binding sites) for [3H]GEMSA is about 2,000 min-1 in both pure enzyme preparations and crude tissue homogenates. [3H] GEMSA binding activity is found only in fractions containing enkephalin convertase during enzyme purification from bovine pituitary by L-arginine affinity chromatography. These data confirm that [3H]GEMSA binds only to enkephalin convertase in crude homogenates under our assay conditions. CoCl2 activates enzyme activity without altering the Ki of GEMSA against enzymatic hydrolysis and weakly inhibits [3H] GEMSA binding by increasing the KD.  相似文献   

5.
Solubilization of Sodium Channel from Human Brain   总被引:1,自引:0,他引:1  
[3H]Tetrodotoxin binds to a single class of receptor sites in homogenates of human brain with a KD of 9.1 nM at 0 degree C and a maximal binding capacity of 5.9 pmol/mg of protein. This tetrodotoxin receptor has been solubilized, and several parameters influencing the efficiency of this critical step have been studied. Treatment of brain membranes with 2% (wt/vol) Nonidet P-40 solubilizes up to 38% of the tetrodotoxin receptor sites. The duration of this solubilization step must not exceed 15 min at an optimal pH of 6.8. The binding activity is most stable when exogenous phosphatidylcholine is added to the soluble receptor with a phosphatidylcholine/detergent ratio of 1:5.  相似文献   

6.
Complete separation of the [3H]ethylketocyclazocine [( 3H]EKC) specific binding (kappa subtype) from tritiated Tyr-D-Ala2-Me-Phe4-Gly-ol5 enkephalin (DAGO) and Tyr-D-Ala2-L-Leu5-enkephalin (DALA) binding (mu-and delta-subtypes, respectively) was achieved by Sepharose-6B chromatography and sucrose density gradient centrifugation of digitonin solubilized frog brain membranes. The apparent sedimentation coefficient (s20.w) for the kappa receptor-detergent complex was 13.1 S and the corresponding Stokes radius 64 A. The isolated fractions exhibited high affinity for EKC and bremazocine, whereas mu- and delta-specific ligands were unable to compete for the [3H]EKC binding sites, indicating that the kappa subtype represents a separate molecular to compete for the [3H]EKC binding sites, indicating that the kappa subtype represents a separate molecular entity from the mu and delta receptor sites.  相似文献   

7.
The Wellcome Foundation lecture, 1982. Opioid peptides and their receptors   总被引:8,自引:0,他引:8  
The remarkable feature of the opioid system is the complexity of its ligands and their interactions with the mu-, delta- and kappa-binding sites. The three endogenous opioid precursors give rise to more than ten opioid fragments. The fragments of pro-opiocortin and pro-enkephalin have affinities mainly to the mu- and delta-binding sites and those of pro-dynorphin have a preference for the kappa-binding site. It is important to realize that some of the larger fragments may have pharmacological actions that are of a non-opioid character. As the endogenous opioid peptides bind to more than one of the types of binding sites, it was necessary to obtain synthetic compounds that bind almost exclusively at one site. There are now agonists for which this aim has been achieved but we still require antagonists that are exclusively selective for only one opioid site. The results obtained with opioid peptides or non-peptides having such qualities would be the physiological basis for a correlation of the binding at mu-, delta- and kappa-receptors with their pharmacological effects. Furthermore, since almost all endogenous opioid ligands are degraded by peptidases, it is necessary to synthesize non-toxic inhibitors of those peptidases that play a role in opioid transmission. Related to this problem is the need to develop methods for the study of the release of various endogenous opioid peptides under physiological conditions.  相似文献   

8.
Structural requirements for dermorphin opioid receptor binding   总被引:2,自引:0,他引:2  
Structural features influencing binding activity of dermorphin to opioid receptors have been investigated in the rat brain through the synthesis and evaluation of binding affinity of a series of synthetic dermorphin analogs. Tritiated dermorphin was used as primary ligand. The single population of high affinity dermorphin binding sites present in the rat brain is clearly of an opioid nature since bound radiolabeled dermorphin was fully displaced with high affinity either by morphine or naloxone. Displacement of tritiated dermorphin by all alkaloid opiates or dermorphin related peptides tested was monophasic, consistent with simple competitive inhibition at a single population of binding sites. Dermorphin (Tyr-D-Ala-Phe-Gly-Tyr-Pro-Ser-NH2) was the most potent competitor in all experiments. The D-configuration of the amino acid residue in position 2 was found to be of crucial importance for binding. Replacement of D-Ala2 with L-Ala led to a deleterious effect, this analog being 1/5000th as potent as dermorphin in displacing bound tritiated dermorphin from its receptor. Shorter dermorphin homologs, dermorphin-(1-4)-NH2 and dermorphin-(1-3)-NH2, were found to be 20 and 40-fold less potent, respectively, than dermorphin. The C-terminal carboxamide function is of significant importance for manifestation of the full intrinsic binding potency of dermorphin. Deamidated dermorphin had 1/5th the potency of the parent peptide. This suggests that while the whole dermorphin sequence is required for the expression of the full intrinsic binding activity of the molecule, the N-terminal tripeptide is a key structure as it contains the features which allow receptor recognition.  相似文献   

9.
Nicotinic acid adenine dinucleotide phosphate (NAADP) is a potent Ca(2+)-mobilizing agent in invertebrate eggs that has recently been shown to be active in certain mammalian and plant systems. Little, however, is known concerning the properties of putative NAADP receptors. Here, for the first time, we report binding sites for NAADP in brain. In contrast to sea urchin egg homogenates, [(32)P]NAADP bound reversibly to multiple sites in brain membranes. The rank order of potency of NAADP, 2',3'-cyclic NAADP and 3'-NAADP in displacing [(32)P]NAADP was, however, the same in the two systems and in agreement with their ability to mobilize Ca(2+) from homogenates. These data indicate that [(32)P]NAADP likely binds to receptors mediating Ca(2+) mobilization. Autoradiography revealed striking heterogeneity in the distribution of [(32)P]NAADP binding sites throughout the brain. Our data strongly support a role for NAADP-induced Ca(2+) signaling in the brain.  相似文献   

10.
The rat NMDAR1 (N-methyl-D-aspartate receptor) was expressed transiently in human embryonic kidney cells. Transfected cell homogenates showed saturable [3H]MK-801 binding activity that was best fit by a single high-affinity site with a KD of 9 nM and a Bmax of 113 fmol of binding sites/mg of protein. Antibodies raised against the peptide sequence NMDAR1 (929-938) coupled to keyhole limpet haemocyanin specifically recognised a single band with M(r) 117,000 in immunoblots from adult rat brain. In the transfected cells, the antibody recognised two bands: one with M(r) 117,000, which was coincident with that from brain membranes, and one with M(r) 97,000, which was identified as nonglycosylated NMDAR1 subunit. These results identify the NMDAR1 of rat brain and further show that the homooligomer binds MK-801, albeit at low efficiency.  相似文献   

11.
The relationship between structure and activity of insect oostatic decapeptide (Aed-TMOF) analogues in flesh fly was analyzed. The highest oostatic activity was exhibited by the pentapetide and tetrapeptide analogues, H-Tyr-Asp-Pro-Ala-Pro-OH and H-Tyr-Asp-Pro-Ala-OH, respectively. The tetrapeptide, either native or tritiated, was used to study its metabolism in the ovaries and hemolymph and to detect putative binding sites in the flesh fly ovaries and head. A high metabolism of the tetrapeptide with a half-life in the hemolymph and ovaries less than 1h was determined. The initial limiting step in the degradation is tyrosine(1) cleavage. Other degradation products were detected only transiently in low quantities. Using tritiated tetrapeptide, we found that only very low specific binding was detected in the homogenates of ovaries and in the rough membrane preparation in the presence and absence of protease inhibitors.  相似文献   

12.
Opioid activity of peptides and wound healing of the skin   总被引:1,自引:0,他引:1  
The binding of dalargin, its four analogues and FK-33824, DADLE, met-enkephalin and morphine to peripheral mu- and delta-receptors and to brain receptors has been investigated in comparison with their influence on skin wound healing in rats. It has been shown that only substances with opiate activity, including morphine, stimulated wound healing. No correlation between wound healing effect of peptides and their binding to a definite receptor has been found. Naloxone inhibited wound healing and suppressed opiate peptide-mediated healing process. It is suggested that endogenous opiate peptides are involved in the maintenance of structural homeostasis.  相似文献   

13.
Side chain modifications were introduced to endomorphin 2 (E2) to improve its binding properties and biological activity. A number of C-terminal modifications decreased the binding affinity to the mu-opioid receptor and the intrinsic activity in rat brain membranes. The exception was E2-ol, which showed increased binding affinity to MOR and higher potency in stimulating [(35)S]GTPgammaS binding. N-methylation of Phe(3) (MePhe(3)) attenuated the binding affinity and produced a rightward shift of [(35)S]GTPgammaS binding curves. All derivatives had lower intrinsic activity than E2. Some of the modified peptides partially inhibited, while YPF-benzyl-allyl-amide fully inhibited, the E2 or [d-Ala(2),MePhe(4),Gly(5)ol]enkephalin stimulated [(35)S]GTPgammaS binding. Marked differences were found between the results obtained using tritiated E2, tritiated naloxone, and [(35)S]GTPgammaS binding, indicating the possible involvement of multiple binding sites. The data presented demonstrate that the C-terminal amide group has an essential role in the regulation of the binding and the agonist/antagonist properties of E2.  相似文献   

14.
Brain astroglial cells, whether from a bulk isolated preparation or in culture, have been shown to take up serotonin actively. [3H]imipramine has been proposed as a specific label for serotonin uptake sites in brain. We therefore studied the binding of [3H]imipramine to C6 astroglial cells in culture to determine if some of the binding of this radioligand in brain homogenates is actually to serotonin transporting sites on glia. [3H]Imipramine binds saturably (Bmax = 202 fmol/mg protein) and with high affinity (KD = 1.72 nM) to C6 cells. This binding is competitively inhibited by other tricyclic antidepressants. The C6 cells actively transport [3H]serotonin with a Km of 2 microM and a Vmax of 1080 fmol/10(6) cells/min. However, the pharmacological profile for inhibition of serotonin uptake does not correlate with the pharmacological profile for inhibition of [3H]imipramine binding. These results suggest that the binding of [3H]imipramine to astroglial cells is not related to their capacity for active uptake of serotonin. Further, in brain homogenates, some of the binding of [3H]imipramine may not be to neuronal uptake sites but rather may be to sites on astroglial cells.  相似文献   

15.
125I-SCH 23982, an antagonist with high affinity and selectivity for the D-1 subtype of dopamine receptors, has recently been synthesized. Densities of D-1 receptors in rat brain obtained from autoradiographic studies using this iodinated ligand are 5- to 10-fold less than densities reported with tritiated analogues such as [3H]SCH 23390. A direct comparison of these two ligands using striatal homogenates confirmed this discrepancy. One explanation for this difference is that 125I-SCH 23982 labels a subset of the sites labeled by [3H]SCH 23390. However, the distributions of sites labeled by the ligands in autoradiograms of horizontal sections of rat brain were virtually identical. Furthermore, 127I-SCH 23982 displaced 100% of the specifically bound [3H]SCH 23390 in striatal homogenates with a Hill coefficient of approximately 1. These results are not consistent with the existence of a subset of receptors recognized by 125I-SCH 23982 and suggest that both ligands label the same population of receptors. An alternative explanation for the discrepancy in Bmax values is that an unlabeled inhibitor is present in commercial preparations of 125I-SCH 23982. When all of the solvent (including any volatile inhibitors) was removed from commercial preparations of 125I-SCH 23982 prior to use in radioligand binding experiments, the discrepancy in Bmax values was eliminated.  相似文献   

16.
The binding of [3H]spiperone to membranes of the nucleus accumbens of the rat brain was studied in vitro and found to be of high affinity, rapid, saturable, reversible and stereospecific. Dissociation and saturation experiments indicated the presence of two specific binding sites with apparent dissociation constants of 70 pM and greater than 1 nM. Specific binding with 25 pM [3H]spiperone represented greater than 90% of total binding and was displaced by dopaminergic agonists, neuroleptic drugs and ergot derivatives. The rank order of potency for the ergot derivatives was bromocryptine greater than pergolide greater than lergotrile, and that for D-2 antagonists was domperidone greater than sulpiride greater than molindone greater than metoclopramide. Noradrenergic, histaminergic and serotonergic components of the binding were not detected. [3H]Spiperone binds to high-affinity sites in homogenates of nucleus accumbens, which are likely to be D-2 receptors.  相似文献   

17.
Dermorphin, Tyr-DAla-Phe-Gly-Tyr-Pro-Ser-NH2, a potent opioid peptide isolated from amphibian skin, is endowed with outstanding structural and biological features. It has no common structure with mammalian opioid peptides and is a unique example of a peptide, synthesized by an animal cell, which contains a D-amino acid in its native sequence. We have undertaken a complete evaluation of the receptor selectivity of dermorphin, together with the binding characteristics and receptor distribution of [3H]dermorphin in the rat brain. 1. Dermorphin was tested for its relative affinity to mu-, delta- and chi-opioid receptors by determining its potency in displacing the selective mu-receptor ligand [3H]Tyr-DAla-Gly-MePhe-Gly-ol (where Gly-ol = glycinol), the prototypic delta-receptor ligand [3H]Tyr-DPen-Gly-Phe-DPen (where DPen = beta, beta-dimethylcysteine) and the chi ligand [3H]ethylketocyclazocine from rat brain and/or guinea pig cerebellum membrane preparations. Inhibitory constant (Ki) values of dermorphin were 0.7 nM, 62 nM and greater than 5000 nM respectively for mu, delta and chi sites, indicating a selectivity ratio Ki(delta)/Ki(mu) = 88. Under similar conditions, Tyr-DAla-Gly-MePhe-Gly-ol, which is regarded as one of the most selective high-affinity mu-agonist available, exhibited a selectivity ratio of 84. 2. Specific binding properties of tritium-labeled dermorphin (52 Ci/mmol) were characterized in the rat brain. Equilibrium measurements performed over a large range of concentrations revealed a single homogeneous population of high-affinity binding sites (Kd = 0.46 nM; Bmax = 92 fmol/mg membrane protein). 3. Profound differences were observed in the potencies displayed by various selective opiates and opioids ligands in inhibiting the specific binding of [3H]dermorphin. The rank order of potency was in good agreement with that obtained with other mu-selective radiolabeled ligands. 4. Receptor autoradiography in vitro was used to visualize the distribution of [3H]dermorphin binding sites in rat brain. The labeling pattern paralleled that observed using other mu probes. Binding parameters and selectivity profile of [3H]dermorphin on slide-mounted sections were similar to those obtained with membrane homogenates. 5. Finally, intracerebroventricular administration of synthetic dermorphin into mice showed that this peptide is the most potent analgesic known to date, being up to 5 and 670 times more active than beta-endorphin and morphine, respectively. Higher doses induced catalepsy. The overall data collected demonstrate that dermorphin is the first among the naturally occurring peptides to be highly potent and nearly specific super-agonist towards the morphine (mu) receptor.(ABSTRACT TRUNCATED AT 400 WORDS)  相似文献   

18.
In previous communications [4, 38] we published that [3H]Met-enkephalin-Arg6-Phe7 (MERF) binds to opioid (kappa2 and delta) and sigma2 sites in frog and rat brain membrane preparations, however no binding to kappa1 sites could be established. In the present paper we compare the frog, rat and guinea pig brain membrane fractions with respect to their MERF binding data. No qualitative differences were found between the three species but specific binding of labelled MERF was maximal in frog brain and lowest in guinea pig brain, which corresponds to their kappa2 opioid receptor distribution. The naloxone resistant binding was also present in all investigated species and varied from 25% in frog and guinea pig cerebrum, to 50% in rat cerebrum and cerebellum, but no naloxone inhibition was found in guinea pig cerebellum where no kappa2 opioid receptors have been found. The presence of sigma2-like receptor was demonstrated in each investigated membrane fraction with displacement experiments using (-)N-allyl-normetazocine as competitor of tritiated MERF. It was shown that this site was responsible for 60-80% of [3H]MERF binding. The remaining part of the naloxone resistant labelled MERF binding could be displaced only with endogenous opioid peptides as met-enkephalin, dynorphin and beta-endorphin. The eventual physiological role of multiple MERF receptors is discussed.  相似文献   

19.
Summary A carrier protein fraction (CPF) from larval haemolymph was found to influence binding and catabolism of tritiated juvenile hormone (JH) in homogenates of larval epidermis. The CPF reduced binding of tritiated JH in all of the particulate fractions but did not alter the relative binding pattern when compared with JH alone. The CPF also protected the hormone from degradative enzymes in the membrane vesicle and microsomal + cytosol fractions but not in the nuclear and mitochondrial fractions. Preliminary evidence exists for high-affinity binding sites for JH in the nuclear and mitochondrial fractions. We conclude that the CPF influences catabolism of the tritiated JH but does not participate in subcellular recognition of JH in homogenized target tissue.Mention of a proprietary product in this paper does not constitute an endorsement of that product by the U.S. Department of Agriculture  相似文献   

20.
In guinea-pig brain, [3H]bremazocine has a binding capacity of 27.2 pmol/g wet tissue, which is statistically different from that of [3H]ethylketazocine (14.7 pmol/g wet tissue) or the sum of the individual binding capacities of mu-, delta-, and kappa-selective ligands (15.0 pmol/g wet tissue). Saturation studies of [3H]bremazocine performed in the presence of unlabelled mu-, delta-, and kappa-blockers still reveal a homogeneous population of binding sites. [3H]Bremazocine under suppressed conditions displays at these sites a Kd of 2.51 nM with a binding capacity of 9.15 pmol/g wet tissue. We have performed the pharmacological characterization of these additional opioid binding sites. Displacement curves measured with a number of opioid substances were all best fitted to a one-site model. The stereoselectivity of these additional sites was demonstrated by using two groups of stereoisomers. Oripavine and benzomorphan opioids were among the most potent drugs at the [3H]bremazocine sites (mu + delta + kappa suppressed). Diprenorphine, bremazocine, cyclazocine, and ethylketazocine displayed apparent affinities constants (1/Ka) of 8.66, 7.57, 21.4, and 38.0 nM, respectively at those sites. The kappa-selective drugs U50488, U69593, PD117302, and tifluadom were inhibitors of the binding of [3H]bremazocine at these sites with apparent affinities of 113, 268, 76.9, and 47.9 nM. All mu- or delta-selective drugs tested in this study have caused weak or no inhibition of the binding. Correlation analyses were done between the different affinities measured at the [3H]bremazocine sites (mu + delta + kappa suppressed) and those observed at the known mu-, delta-, and kappa-sites of the guinea-pig brain.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号