首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
目的:通过噬菌体展示技术筛选得到与FGFR结合的bFGF模拟短肽,为bFGF肽类抑制剂的研发提供实验基础。方法:以Balb/c 3T3细胞为靶标,以COS-7细胞作消减,对噬菌体随机七肽库进行4轮生物淘洗,再采用ELISA检测单克隆噬菌体对Balb/c 3T3亲和性和特异性,选取阳性克隆进行DNA测序分析。结果:从富集的噬菌体中获得12个阳性克隆,获得一组疏水性七肽及共同基序PR。结论:利用肽类新药开发的重要工具--噬菌体展示技术,得到2段bFGF的受体结合模拟肽,可望作为bFGF抑制剂的先导肽。  相似文献   

2.
Hiipakka M  Saksela K 《FEBS letters》2007,581(9):1735-1741
Src-homology (SH3) domain belongs to a class of ubiquitous modular protein domains found in nature. SH3 domains have a conserved surface that recognises proline-rich peptides in ligand proteins, but additional contacts also contribute to binding. Using the SH3 domain of hematopoietic cell kinase as a test case, we show that SH3 binding properties can be profoundly altered by modifications within a hexapeptide sequence in the RT-loop region that is not involved in recognition of currently known consensus SH3 target peptides. These results highlight the role of non-conserved regions in SH3 target selection, and introduce a strategy that may be generally feasible for generating artificial SH3 domains with desired ligand binding properties.  相似文献   

3.
Because protein variants play critical roles in many diseases including TDP-43 in Amyotrophic Lateral Sclerosis (ALS), alpha-synuclein in Parkinson’s disease and beta-amyloid and tau in Alzheimer’s disease, it is critically important to develop morphology specific reagents that can selectively target these disease-specific protein variants to study the role of these variants in disease pathology and for potential diagnostic and therapeutic applications. We have developed novel atomic force microscopy (AFM) based biopanning techniques that enable isolation of reagents that selectively recognize disease-specific protein variants. There are two key phases involved in the process, the negative and positive panning phases. During the negative panning phase, phages that are reactive to off-target antigens are eliminated through multiple rounds of subtractive panning utilizing a series of carefully selected off-target antigens. A key feature in the negative panning phase is utilizing AFM imaging to monitor the process and confirm that all undesired phage particles are removed. For the positive panning phase, the target antigen of interest is fixed on a mica surface and bound phages are eluted and screened to identify phages that selectively bind the target antigen. The target protein variant does not need to be purified providing the appropriate negative panning controls have been used. Even target protein variants that are only present at very low concentrations in complex biological material can be utilized in the positive panning step. Through application of this technology, we acquired antibodies to protein variants of TDP-43 that are selectively found in human ALS brain tissue. We expect that this protocol should be applicable to generating reagents that selectively bind protein variants present in a wide variety of different biological processes and diseases.  相似文献   

4.
Biopanning has been used extensively in conjunction with purified components, but there are also examples in which mixtures of targets have been investigated. This study introduces a methodological innovation, termed iterative panning and blocking (IPAB), to extend the range of specific interactions that can be probed in mixtures. Here this procedure is used to probe a mixture of high molecular mass components of human cord blood with phage-peptide display libraries. The initial panning recovered phage that bore the consensus motif Gly-Pro-Arg-Pro, a known fibrinogen-binding motif. These phage bound specifically to purified fibrinogen. A series of peptides containing the Gly-Pro-Arg-Pro motif efficiently blocked the binding of phage having the same motif, presumably by binding to their common target. A second round of panning was performed against the same target mixture in the presence of this blocking peptide. Phage recovered from this second panning exhibited a motif (Ser-His-Tyr) that was subsequently shown to bind specifically to complement component C1q. A second peptide containing this motif specifically blocked the interaction of the phage with C1q. A third round of panning performed in the presence of both the fibrinogen- and the C1q- blocking peptides yielded phage with a new peptide motif (Asn-Pro-Phe) that also bound specifically to C1q, apparently at a new site. The three motifs isolated through this iterative process were distinct in that each was blocked only by its corresponding peptide. This IPAB strategy can be applied to many high diversity selection procedures that target complex mixtures.  相似文献   

5.
ADAM15 plays an important role in tumour development by interacting with integrins. In this study, we investigated the target peptides of the ADAM15 disintegrin domain. First, we successfully produced the recombinant human ADAM15 disintegrin domain (RADD) that could inhibit melanoma cell adhesion by using Escherichia coli. Second, four specific binding peptides (peptides A, B, C, and D) were selected using a phage display 12-mer peptide library. The screening protocol involved 4 rounds of positive panning on RADD and 2 rounds of subtractive selection with streptavidin. By using the BLAST software and a relevant protein database, integrin α ν β 3 was found to be homologous to peptide A. Synthetic peptide A had a highly inhibitory effect on RADD-integrin α v β 3 binding. The results demonstrate the potential application of short peptides for disrupting high-affinity ADAM-integrin interactions.  相似文献   

6.
Phage display is a well-known technique that facilitates the selection of peptides or proteins that bind to a desired target. Using this tool, binding elements contained in the natural immune repertoires of the source animal or from a synthetically generated collection may be selected. The unpaired variable domain of the llama's heavy-chain-only classes of immunoglobulins represents an ideal source of genetic material to create phage display libraries. Initial panning of a semi-synthetic llama library yielded only one binder to the toxin ricin. In an effort to increase the number of monoclonal phage binders selected, the Luminex xMAP technology (Luminex, Austin, TX, USA) was used in addition to the enzyme-linked immunosorbent assay (ELISA) to screen clonal populations of phage after three rounds of selection. The xMAP technology detected phage displayed single domain antibody (sdAb) bound to ricin immobilized on the surface of microspheres under equilibrium conditions. This enhanced capability led directly to the identification of additional single domain antibodies of interest. The selected sdAbs were expressed, purified, and then evaluated for their specificity as well as enhanced thermal stability in comparison to conventional immunoglobulin G (IgG). We determined equilibrium dissociation constants and demonstrated their use as effective capture molecules in sandwich immunoassays.  相似文献   

7.
【目的】获得针对单增李斯特菌的特异性单域重链抗体,并对筛选过程中特异性克隆的富集规律进行分析,为筛选具有种属特异性的噬菌体展示抗体提供参考。【方法】采用固相筛选技术,以热灭活的单增李斯特菌菌体为抗原,通过四轮常规筛选和一轮消减筛选,从驼源天然噬菌体展示文库中筛选针对单增李斯特菌的单域重链抗体。采用Phage-ELISA法,对后四轮筛选洗脱物中随机挑选的噬菌体进行鉴定,阳性克隆进行基因测序及结合特异性分析。通过多序列比对分析将获得的基因序列进行分组和统计。【结果】成功筛选到2株单增李斯特菌特异性的单域重链抗体。【结论】在优化的筛选条件下,基于全细胞的筛选方法能够获得特异性识别单增李斯特菌的单域重链抗体,消减筛选对于去除非特异性克隆是有效的和必要的。  相似文献   

8.
Atwo-step targeting strategy was used to identify improved laccases for bleaching carotenoid-containing stains on fabric. We first applied a modified phage display technique to identify peptide sequences capable of binding specifically to carotenoid stains and not to fabric. Prior deselection on the support on which the carotenoid was localized, increased stringency during the biopanning target selection process, and analysis of the phage peptides' binding to the target after acid elution and polymerase chain reaction (PCR) postacid elution, were used to isolate phage peptide libraries with increased binding selectivity and affinity. Peptide sequences were selected based on identified consensus motifs. We verified the enhanced carotenoid-binding properties of the peptide YGYLPSR and subsequently cloned and expressed C-terminal variants of laccase from Stachybotrys chartarum containing carotenoid-binding peptides YGYLPSR, IERSAPATAPPP, KASAPAL, CKASAPALC, and SLLNATK. These targeted peptide-laccase fusions demonstrate enhanced catalytic properties on stained fabrics.  相似文献   

9.
In vitro selection techniques offer powerful and versatile methods to isolate nucleic acid sequences with specific activities from huge libraries. We describe an in vitro selection strategy for the de novo selection of allosteric self-cleaving ribozymes responding to pefloxacin and other quinolone derivatives. Within 16 selection cycles, highly sensitive clones responding to drug levels in the sub-micromolar range were obtained. The morpholine moiety of the quinolone derivatives was required for inhibition of the self-cleavage of the selected ribozymes: modifications of the aromatic system were tolerated better than modifications of the morpholine ring. We also present a theoretical model that analyzes the predicted fraction of ribozymes with a given binding constant and cleavage rate recovered after each selection cycle. This model precisely predicts the actual experimental values obtained with the selection procedure. It can thus be used to determine the optimal conditions for an in vitro selection of an allosteric ribozyme with a desired dissociation constant and cleavage rate for a given application.  相似文献   

10.
Peptide-phage display has been widely used to explore protein-protein interactions, however, despite the potential range of applications the use of this technology to identify peptides that bind low molecular weight organic molecules has not been explored. In this current study, we identified a phage clone (PARA-061) displaying the cyclic 7-mer peptide sequence N' AC-NPNNLSH-CGGGS C' that binds the low molecular weight organic molecule 4-acetamidophenol (4-AAP; paracetamol). To avoid occupancy of key functional groups on the target 4-AAP molecule our panning strategy was directed against insoluble complexes of 4-AAP rather than against the target linked to a stationary support or bearing an affinity tag. To augment the panning procedure we deleted phage that also bound the 4-AAP isomers, 2-AAP and 3-AAP. The identified PARA-061 peptide-phage clone displayed functional binding properties against 4-AAP in solution, able in a peptide sequence-dependant manner to prevent the in vitro hepatotoxicity of 4-AAP and reduce ( approximately 20%) the permeability of 4-AAP across a semi-permeable membrane. Molecular dynamic simulations generated a stable binding conformation between the PARA-061 peptide sequence and 4-AAP. In conclusion, we show that a phage display library can be used to identify peptide sequence-specific clones able to modulate the functional binding of a low molecular weight organic molecule. Such peptides may be expected to find utility in the next generation of hybrid polymer-based biosensing devices.  相似文献   

11.
A peptide hydropathically complementary to Big Endothelin [Big ET] residues 16-29 has been synthesized in a multimeric form starting from an octadentate polylysine core, essentially in a way similar to the procedure used for the production of multiple antigenic peptides [MAP's]. Interaction between the multimeric complementary peptide [8 delta ET] and the Big ET fragment 16-32 containing the target complementary region, also synthesized in a multimeric form [8ET], was evaluated by analytical high performance affinity chromatography and solid phase binding assays. While the binding interaction between the monomerics peptide pair was in the micromolar range, the recognition between the corresponding multimeric form was characterized by enhanced binding affinity of at least two orders of magnitude. In solution, complex formation between multimeric complementary peptide and target Big ET sequence in the monomeric and multimeric form was accompanied by precipitation at concentrations higher than 0.5 mg/mL and 0.1 mg/mL, respectively. Polyclonal antibodies raised against the multimeric target sequence recognized multimeric and monomeric ET target sequences with binding affinities similar to binding affinities exhibited by the multimeric complementary peptide. Multimerization of hydropathically complementary peptides could provide an improved opportunity to measure and thus probe quantitative binding properties of complementary peptides.  相似文献   

12.
Affinity selection of phage display peptide libraries is routinely used for isolating peptides capable of binding a range of molecules, including antibodies and receptors. This process is most successful when the selecting molecule is relatively pure, for example, a monoclonal antibody. However, isolation of peptides able to bind to target molecules present in a complex mixture is more difficult because the affinity selection process isolates peptides capable of binding to all molecules present in the mixture. Here we describe the development of a tagged polymerase chain reaction (PCR) subtractive hybridization method that is universally applicable for the targeted isolation of peptides able to bind to unique molecules within a complex mixture. We also describe a discriminatory limiting dilution PCR method that can be used to optimize hybridization conditions.  相似文献   

13.
While cell surface antigens represent the most common targets for antibody-based cancer therapy, isolation of new antibodies specific for these targets from single-chain Fv phage display libraries has been hindered by limitations associated with traditional selection techniques. Solid phase panning is often associated with conformational changes to the target protein due to its immobilization on plastic tubes that can limit the ability of the isolated scFv to bind to conformational epitopes and solution panning methods require the use of secondary tags that often mask desired sequences and create unintended epitopes. Commonly utilized cell-based panning methods typically yield a panel of single-chain Fv (scFv) molecules that are specific for numerous cell surface antigens, often obscuring the desired clones. Here, we describe a novel cell sorter-based system to isolate single-chain Fv molecules specific for defined antigen targets expressed on stably-transformed mammalian cells. We employed these methods to isolate promising scFv clones that bind specifically to the Müllerian inhibiting substance type II receptor, a cell surface ovarian cancer antigen that has proven to be a difficult target for selection strategies.  相似文献   

14.
The whole proteome of any organism is too complicated to be analyzed in a simple one-step process and direct attempts for the entire proteome analysis normally lead to considerable loss of information. A practical approach is the targeting of the specific structural feature of interest using chromatography. This approach simplifies the proteome while preserving most of the vital information necessary for analysis. Selection of peptides with specific amino acids (cysteine, histidine and methionine) or N- or C-terminal peptides is an accepted procedure for proteome simplification when general analysis is desired. While selection of enzymatically and non-enzymatically modified proteins and peptides is used when post-translational modifications are targeted. Protein interaction with small molecules as well as other proteins also has been studied using chromatographic selection methods.  相似文献   

15.
为了筛选转铁蛋白黏附肽,应用噬菌体表面展示技术经过三轮生物淘选,成功地从随机七肽库中得到黏附转铁蛋白的重组噬菌体克隆,经过相对亲和力常数测定和DNA测序得到4个转铁蛋白黏附肽的序列。实验中以回收率和选择比为操作参数,对淘选进行了优化,并发展了一种基于噬菌体滴度的相对亲和力常数测定方法。转铁蛋白受体是一种有效的肿瘤标记物,利用转铁蛋白为载体可以实现药物靶向运输,因此转铁蛋白黏附肽将是重组蛋白质药物连接转铁蛋白的有用标签。  相似文献   

16.
In this paper, single-stranded (ss)DNA aptamers with capability to distinguish differentiated PC12 cells from normal PC12 cells were selected by subtractive systematic evolution of ligands by exponential enrichment (SELEX) method. Before each round of selection, randomized ssDNAs were incubated with regular PC12 cells to eliminate those that recognize the common cellular components of both differentiated and undifferentiated PC12 cells. After six rounds of cell-based selection, both of individual aptamers and aptamers of the sixth round pool were found binding to differentiated PC12 cells, but not to the parental PC12 cells. The aptamers of the starting pool showed no such binding. Sequence analysis illustrated that the amount of G content in central random region of these aptamers was much higher than that of the starting pool, which would be expected to be average. The aptamers obtained from this method were also able to identify differentiated PC12 cells from a mixture of both normal and differentiated cells. The results indicate that subtractive SELEX is a useful tool in finding ligands to specific biological markers that distinguish a subtype of cells from cells of homologous origin, such as carcinoma cells among normal epithelial tissues. Both these aptamers and their markers may play important roles in basic research and clinical diagnosis.  相似文献   

17.
Gelatinases A and B, which are members of the matrix metalloproteinase (MMP) family, play essential roles in cancer development and metastasis, as they can break down basal membranes. Therefore, the determination and inhibition of gelatinases is essential for cancer treatment. Peptides that can specifically block each gelatinase may, therefore, be useful for cancer treatment. In this study, subtractive panning was carried out using a 12-mer peptide library to identify peptides that block gelatinase A activity (MMP-2), which is a key pharmacological target. Using this method, 17 unique peptide sequences were determined. MMP-2 inhibition by these peptides was evaluated through zymogram analyses, which revealed that four peptides inhibited MMP-2 activity by at least 65%. These four peptides were synthesized and used for in vitro wound healing using human umbilical vein endothelial cells, and two peptides, AOMP12 and AOMP29, were found to inhibit wound healing by 40%. These peptides are, thus, potential candidates for MMP-2 inhibition for cancer treatment. Furthermore, our findings suggest that our substractive biopanning screening method is a suitable strategy for identifying peptides that selectively inhibit MMP-2.  相似文献   

18.
Previously we have shown (Hebert et al. [1999] J. Cell Biochem. 73:248-258) that among many cell lines the CBP2 gene product, Hsp47, eludes its retention receptor, erd2P, resulting in the appearance of Hsp47 on the cell surface associated with the tetraspanin protein CD9. Since Hsp47 possesses a highly restricted binding cleft, random peptide display libraries were used to characterize peptides binding to Hsp47 and then to target this protein on carcinoma cell lines in vitro. Comparison of the clones obtained from panning revealed little specific homology based on sequence alone. To determine whether carcinoma cells expressing Hsp47 could selectively take up the selected bacteriophages, traditional immunofluorescence and confocal microscopy were employed. These studies revealed that phage-displaying Hsp47 binding peptides bound to cell lines expressing Hsp47 and that the peptides were rapidly taken up to a location coincident with Hsp47 staining. These observations were confirmed by cytometric analyses. These data indicate that CBP2 product may provide a molecular target for chemotherapy and/or imaging of malignancies.  相似文献   

19.
Rahim A  Coutelle C  Harbottle R 《BioTechniques》2003,35(2):317-20, 322, 324
Gene therapy clinical trials have highlighted the importance of specific cellular/tissue targeting of gene delivery vectors. Phage display libraries are powerful tools for the selection of novel peptide ligands as targeting moieties because of their high-throughput screening potential. However, a severe rate-limiting step in this procedure in terms of time, numbers, and cost is the sequence identification of selected phages. Here we describe the application of Pyrosequencing technology for sequencing phage isolates after panning a random 7-mer peptide expressing phage library against the A549 bronchial epithelial cell line to search for enrichment of possible targeting peptides. Pyrosequencing allows sequencing of 96 phages at one time in approximately 45 min at only a sixth of the cost of conventional sequencing methods. Using this technology, we have identified four sequences of interest. A phage binding assay revealed that three of the four sequences show a significant increase in binding abilities and specificity for A549 cells when compared to an unrelated cell line.  相似文献   

20.
Janecka A  Staniszewska R  Gach K  Fichna J 《Peptides》2008,29(11):2066-2073
Centrally acting plant opiates, such as morphine, are the most frequently used analgesics for the relief of severe pain, even though their undesired side effects are serious limitation to their usefulness. The search for new therapeutics that could replace morphine has been mainly focused on the development of peptide analogs or peptidomimetics with high selectivity for one receptor type and high bioavailability, that is good blood-brain barrier permeability and enzymatic stability. Drugs, in order to be effective, must be able to reach the target tissue and to remain metabolically stable to produce the desired effects. The study of naturally occurring peptides provides a rational and powerful approach in the design of peptide therapeutics. Endogenous opioid peptides, endomorphin-1 and endomorphin-2, are two potent and highly selective mu-opioid receptor agonists, discovered only a decade ago, which display potent analgesic activity. However, extensive studies on the possible use of endomorphins as analgesics instead of morphine met with failure due to their instability. This review deals with the recent investigations that allowed determine degradation pathways of endomorphins in vitro and in vivo and propose modifications that will lead to more stable analogs.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号