首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
p-Aminobenzoic acid synthase (PABA synthase) of Streptomyces griseus catalyses the conversion of chorismic acid to p-aminobenzoic acid (PABA), a precursor of the aromatic p-aminoacetophenone moiety of candicidin, a polyene macrolide antibiotic. This enzyme uses glutamine or ammonia as amino donors for PABA formation. Enzyme extracts converted [14C]chorismic acid to labelled PABA. PABA synthase was present in S. griseus IMRU 3570 only during the antibiotic producing phase. No detectable levels of the enzyme were found in cell-free extracts of nonproducing mutants of S. griseus obtained after UV mutagenesis. PABA synthase activity was found also in Streptomyces coelicolor var. aminophilus, producer of the polyene macrolide antibiotic fungimycin, but it was not present in extracts of several other streptomycetes that do not produce aromatic polyene macrolide antibiotics. PABA synthase (amidotransferase) activity was partially purified by DEAE-Bio-gel and Sephacryl S-200 filtrations. The estimated molecular weight was 50000. PABA synthase was repressed by aromatic amino acids and PABA but not by anthranilic acid. Inorganic phosphate strongly repressed but did not inhibit PABA synthase activity.  相似文献   

2.
The polyene antibiotics, including nystatin, pimaricin, amphotericin, and candicidin, comprise a family of very valuable antifungal polyketide compounds, and they are typically produced by soil actinomycetes. Previously, using a polyene cytochrome P450 hydroxylase-specific genome screening strategy, Pseudonocardia autotrophica KCTC9441 was determined to contain genes potentially encoding polyene biosynthesis. Here, sequence information of an approximately 125.7-kb contiguous DNA region in five overlapping cosmids isolated from the P. autotrophica KCTC9441 genomic library revealed a total of 23 open reading frames, which are presumably involved in the biosynthesis of a nystatin-like compound tentatively named NPP. The deduced roles for six multi-modular polyketide synthase (PKS) catalytic domains were found to be highly homologous to those of previously identified nystatin biosynthetic genes. Low NPP productivity suggests that the functionally clustered NPP biosynthetic pathway genes are tightly regulated in P. autotrophica. Disruption of a NPP PKS gene completely abolished both NPP biosynthesis and antifungal activity against Candida albicans, suggesting that polyene-specific genome screening may constitute an efficient method for isolation of potentially valuable previously identified polyene genes and compounds from various rare actinomycetes widespread in nature.  相似文献   

3.
A p-aminobenzoic synthase gene (pabS) from Streptomyces griseus IMRU 3570 involved in candicidin production was used as probe to find new aromatic polyene producing Streptomyces strains. The pab gene hybridizes with 6 out of 16 Streptomyces strains, and those strains which hybridize turned out to be polyene producers. Such strains were never before described as polyene producers.  相似文献   

4.
5.
Summary Biosynthesis of candicidin byStreptomyces acrimycini JI2236 was strongly inhibited by phosphate.p-Aminobenzoic acid (PABA) synthase activity, required for the synthesis of PABA, a candicindin precursor, was reduced by 72% in cells grown in medium supplemented with 7.5 mM phosphate. Hybridization studies showed that the DNA region ofS. acrimycini carrying thepabAB gene (encoding PABA synthase) is very similar to the homologous region ofS. griseus 3570.S. acrimycini was easily transformed with plasmids containing thepabAB gene ofS. griseus. Four transformants were studied in detail; three of the transformants synthesized higher levels of PABA synthase and two transformants produced more candicidin than control cultures transformed with pIJ699. The fourth transformant was unable to synthesize the antibiotic. Formation of PABA synthase and candicidin production was equally sensitive to phosphate regulation in transformants with thepabAB than in the untransformedS. acrimycini strain.  相似文献   

6.
Polyketide-derived pyrones are structurally diverse secondary metabolites that are represented in all three kingdoms of life and are endowed with various biological functions. The aureothin family of Streptomyces metabolites was chosen as a model to study the factors governing structural diversity and the evolutionary processes involved. This review highlights recent insights into the non-colinear aureothin and neoaureothin modular type I polyketide synthase (PKS), aromatic starter unit biosynthesis, polyketide tailoring reactions, and a non-enzymatic polyene splicing cascade. Pyrone biosynthesis in bacteria, fungi, and plants is compared. Finally, various strategies to increase metabolic diversity of aureothin derivatives through mutasynthesis, pathway engineering, and biotransformation are presented. The unusual aureothin and neoaureothin assembly lines thus not only represent a model for PKS evolution, but provided important insights into non-canonical enzymatic processes that could be employed for the production of antitumor and antifungal agents.  相似文献   

7.
The biosynthesis by Streptomyces griseus of candicidin, an aromatic polyene macrolide antibiotic, was inhibited by L-tryptophan, L-phenylalanine and, to a lesser degree, by L-tyrosine. A mixture of the three aromatic amino acids inhibited candicidin biosynthesis to a greater extent than did each amino acid separately. L-Tryptophan strongly inhibited the incorporation of the labelled precursors propionate or 4-aminobenzoic acid into candicidin. Incorporation of propionate into candicidin was 50% inhibited by 2.5 mM-tryptophan. Inhibition by tryptophan did not require protein synthesis as the same effect was observed in cells in which protein synthesis was prevented by chloramphenicol. The inhibitory effect of L-tryptophan was partially reversed by exogenous 4-aminobenzoic acid suggesting that this effect is exerted at the level of 4-aminobenzoic acid synthase.  相似文献   

8.
Combinatorial biosynthesis for new drug discovery   总被引:5,自引:0,他引:5  
Combinatorial biosynthesis involves interchanging secondary metabolism genes between antibiotic-producing microorganisms to create unnatural gene combinations or hybrid genes if only part of a gene is exchanged. Novel metabolites can be made by both approaches, due to the effect of a new enzyme on a metabolic pathway or to the formation of proteins with new enzymatic properties. The method has been particularly successful with polyketide synthase (PKS) genes: derivatives of medically important macrolide antibiotics and unusual polycyclic aromatic compounds have been produced by novel combinations of the type I and type II PKS genes, respectively. Recent extensions of the approach to include deoxysugar biosynthesis genes have expanded the possibilities for making new microbial metabolites and discovering valuable drugs through the genetic engineering of bacteria.  相似文献   

9.
Nonactin is the parent compound of a group of highly atypical polyketide metabolites produced by Streptomyces griseus subsp. griseus ETH A7796. In this paper we describe the isolation, sequencing, and analysis of 15? omitted?559 bp of chromosomal DNA, containing the potential nonactin biosynthesis gene cluster, from S. griseus subsp. griseus ETH A7796. Fourteen open reading frames were observed in the DNA sequence. Significantly, type II polyketide synthase (PKS) homologues were discovered in an apparent operon structure, which also contained the nonactate synthase gene (nonS), clustered with the tetranactin resistance gene. The deduced products of two of the genes (nonK and nonJ) are quite unusual ketoacyl synthase (KAS) alpha and KASbeta homologues. We speculate that nonactic acid, the polyketide precursor of nonactin, is synthesized by a type II PKS system.  相似文献   

10.
The biosynthetic gene cluster for the 26-membered ring of the polyene macrolide pimaricin extends for about 110 kilobase pairs of contiguous DNA in the genome of Streptomyces natalensis. Two sets of polyketide synthase (PKS) genes are separated by a group of small polyketide-functionalizing genes. Two of the polyketide synthase genes, pimS0 and pimS1, have been fully sequenced and disrupted proving the involvement of each of these genes in pimaricin biosynthesis. The pimS0 gene encodes a relatively small acetate-activating PKS (approximately 193 kDa) that appears to work as a loading protein which "presents" the starter unit to the second PKS subunit. The pimS1 gene encodes a giant multienzyme (approximately 710 kDa) harboring 15 activities responsible for the first four cycles of chain elongation in pimaricin biosynthesis, resulting in formation of the polyene chromophore.  相似文献   

11.
Polyene antibiotic biosynthesis gene clusters   总被引:8,自引:0,他引:8  
Over the past 15 years the biosynthetic gene clusters for numerous bioactive polyketides have been intensively studied and recently this work has been extended to the antifungal polyene macrolides. These compounds consist of large macrolactone rings that have a characteristic series of conjugated double bonds, as well as an exocyclic carboxyl group and an unusual mycosamine sugar. The biosynthetic gene clusters for nystatin, pimaricin, amphotericin and candicidin have been investigated in detail. These clusters contain the largest modular polyketide synthase genes reported to date. This body of work also provides insights into the enzymes catalysing the unusual post-polyketide modifications, and the genes regulating antibiotic biosynthesis. The sequences also provide clues about the evolutionary origins of polyene biosynthetic genes. Successful genetic manipulation of the producing organisms leading to production of polyene analogues indicates good prospects for generating improved antifungal compounds via genetic engineering.  相似文献   

12.
Two subclusters from Streptomyces mycarofaciens,a midecamycin producer,were clonedand partially sequenced.One region was located at the 5' end of the mid polyketide synthase(PKS)genesand contained the genes midA,midB and midC.The other region was at the 3' end of the PKS genes andcontained midK,midI and midH.Analysis of the nucleotide sequence revealed that these genes encodedTDP-glucose synthase(midA),dTDP-glucose dehydratase(midB),aminotransferase(midC),methyltransferase(midK),glycosyltransferase(midI)and an assistant gene(midH).All of these genes areinvolved in the biosynthesis of dTDP-D-mycaminose,the first deoxysugar of midecamycin,and intransferring the mycaminose to the midecamycin aglycone in S.mycarofaciens.Similar to gene pairsdes Ⅷ/desⅦ in S.venezuelae and tylMⅢ/tylMⅡ in S.fradiae,the product of midH probablyfunctions as an auxiliary protein required by the MidI protein for efficient glycosyltransfer in midecamycinbiosynthesis.  相似文献   

13.
Phosphate strongly repressed the formation of p-aminobenzoic acid (PABA) synthase, an enzyme involved in candicidin biosynthesis. Expression in Streptomyces lividans of the pabS gene (encoding PABA synthase) of Streptomyces griseus is repressed by phosphate at concentrations above 0.1 mM. However, expression of the pabS gene in Escherichia coli is not regulated by phosphate. Phosphate control of the expression of the pabS gene was observed in all plasmids containing the original 4.5-kb BamHI fragment, whereas no phosphate regulation was found when an upstream 1-kb fragment that carries the pabS promoter was deleted. Using the promoter-probe plasmid pIJ424, a '114-bp' promoter was cloned. Expression of the promoterless kanamycin phosphotransferase gene when fused to the '114-bp' promoter was strongly reduced by phosphate (90% at 5 mM concentration). The '114-bp' promoter has been sequenced and the first transcribed nucleotide identified by S1 mapping. The '114-bp' fragment is A + T-rich (54%), as compared to the Streptomyces genome (70-73% GC). The presence of a phosphate control sequence (pcs) in the upstream region of the pabS gene is proposed.  相似文献   

14.
Räty K  Kantola J  Hautala A  Hakala J  Ylihonko K  Mäntsälä P 《Gene》2002,293(1-2):115-122
We have cloned and sequenced polyketide synthase (PKS) genes from the aclacinomycin producer Streptomyces galilaeus ATCC 31,615. The sequenced 13.5-kb region contained 13 complete genes. Their organization as well as their protein sequences showed high similarity to those of other type II PKS genes. The continuous region included the genes for the minimal PKS, consisting of ketosynthase I (aknB), ketosynthase II (aknC), and acyl carrier protein (aknD). These were followed by the daunomycin dpsC and dpsD homologues (aknE2 and F, respectively), which are rare in type II PKS clusters. They are associated with the unusual starter unit, propionate, used in the biosynthesis of aklavinone, a common precursor of aclacinomycin and daunomycin. Accordingly, when aclacinomycins minimal PKS genes were substituted for those of nogalamycin in the plasmid carrying genes for auramycinone biosynthesis, aklavinone was produced in the heterologous hosts. In addition to the minimal PKS, the cloned region included the PKS genes for polyketide ketoreductase (aknA), aromatase (aknE1) and oxygenase (aknX), as well as genes putatively encoding an aklanonic acid methyl transferase (aknG) and an aklanonic acid methyl ester cyclase (aknH) for post-polyketide steps were found. Moreover, the region carried genes for an activator (aknI), a glycosyl transferase (aknK) and an epimerase (aknL) taking part in deoxysugar biosynthesis.  相似文献   

15.
Although bacterial polyketides are of considerable biomedical interest, the molecular biology of polyketide biosynthesis in Bacillus spp., one of the richest bacterial sources of bioactive natural products, remains largely unexplored. Here we assign for the first time complete polyketide synthase (PKS) gene clusters to Bacillus antibiotics. Three giant modular PKS systems of the trans-acyltransferase type were identified in Bacillus amyloliquefaciens FZB 42. One of them, pks1, is an ortholog of the pksX operon with a previously unknown function in the sequenced model strain Bacillus subtilis 168, while the pks2 and pks3 clusters are novel gene clusters. Cassette mutagenesis combined with advanced mass spectrometric techniques such as matrix-assisted laser desorption ionization-time of flight mass spectrometry and liquid chromatography-electrospray ionization mass spectrometry revealed that the pks1 (bae) and pks3 (dif) gene clusters encode the biosynthesis of the polyene antibiotics bacillaene and difficidin or oxydifficidin, respectively. In addition, B. subtilis OKB105 (pheA sfp(0)), a transformant of the B. subtilis 168 derivative JH642, was shown to produce bacillaene, demonstrating that the pksX gene cluster directs the synthesis of that polyketide. The GenBank accession numbers for gene clusters pks1(bae), pks2, and pks3(dif) are AJ 634060.2, AJ 6340601.2, and AJ 6340602.2, respectively.  相似文献   

16.
Deductions from the molecular analysis of the 65,000-bp stigmatellin biosynthetic gene cluster are reported. The biosynthetic genes (stiA-J) encode an unusual bacterial modular type I polyketide synthase (PKS) responsible for the formation of this aromatic electron transport inhibitor produced by the myxobacterium Stigmatella aurantiaca. Involvement of the PKS gene cluster in stigmatellin biosynthesis is shown using site-directed mutagenesis. One module of the PKS is assumed to be used iteratively during the biosynthetic process, which seems to involve an unusual transacylation of the biosynthetic intermediate from an acyl carrier protein domain back to the preceding ketosynthase domain. Finally, the polyketide chain which is presumably catalyzed by a novel C-terminal domain in StiJ that does not resemble thioesterases, is cyclized and aromatized. The presented results of feeding experiments are in good agreement with the proposed biosynthetic scheme. In contrast to all other PKS type I systems reported to date, each module of StiA-J is encoded on a separate gene. The gene cluster contains a "stand alone" O-methyltransferase and two unusual O-methyltransferase domains embedded in the PKS. In addition, inactivation of a cytochrome P450 monooxygenase-encoding gene involved in post-PKS hydroxylation of the aromatic ring leads to the formation of two novel stigmatellin derivatives.  相似文献   

17.
Genes for biosynthesis of a Streptomyces sp. FR-008 heptaene macrolide antibiotic with antifungal and mosquito larvicidal activity were cloned in Escherichia coli using heterologous DNA probes. The cloned genes were implicated in heptaene biosynthiesis by gene replacement. The FR-008 antibiotic contains a 38-membered, poiyketide-derived macrolide ring. Southern hybridization using probes encoding domains of the type i modular erythromycin polyketide synthase (PKS) showed that the Streptomyces sp. FR-008 PKS gene cluster contains repeated sequences spanning c. 105 kb of contiguous DNA; assuming c. 5 kb for each PKS module, this is in striking agreement with the expectation for the 21-step condensation process required for synthesis of the FR-008 carbon chain. The methods developed for transformation and gene replacement in Streptomyces sp. FR-008 make it possible to genetically manipulate polyene macrolide production, and may later lead to the biosynthesis of novel polyene macrolides.  相似文献   

18.
SEARCHPKS is a software for detection and analysis of polyketide synthase (PKS) domains in a polypeptide sequence. Modular polyketide synthases are unusually large multi-enzymatic multi-domain megasynthases, which are involved in the biosynthesis of pharmaceutically important natural products using an assembly-line mechanism. This program facilitates easy identification of various PKS domains and modules from a given polypeptide sequence. In addition, it also predicts the specificity of the potential acyltransferase domains for various starter and extender precursor units. SEARCHPKS is a user-friendly tool for correlating polyketide chemical structures with the organization of domains and modules in the corresponding modular polyketide synthases. This program also allows the user to extensively analyze and assess the sequence homology of various polyketide synthase domains, thus providing guidelines for carrying out domain and module swapping experiments. SEARCHPKS can also aid in identification of polyketide products made by PKS clusters found in newly sequenced genomes. The computational approach used in SEARCHPKS is based on a comprehensive analysis of various characterized clusters of modular polyketide synthases compiled in PKSDB, a database of modular polyketide synthases. SEARCHPKS can be accessed at http://www.nii.res.in/searchpks.html.  相似文献   

19.
20.
S J Kakavas  L Katz    D Stassi 《Journal of bacteriology》1997,179(23):7515-7522
The genes encoding the polyketide synthase (PKS) portion of the niddamycin biosynthetic pathway were isolated from a library of Streptomyces caelestis NRRL-2821 chromosomal DNA. Analysis of 40 kb of DNA revealed the presence of five large open reading frames (ORFs) encoding the seven modular sets of enzymatic activities required for the synthesis of a 16-membered lactone ring. The enzymatic motifs identified within each module were consistent with those predicted from the structure of niddamycin. Disruption of the second ORF of the PKS coding region eliminated niddamycin production, demonstrating that the cloned genes are involved in the biosynthesis of this compound.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号