首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
Bacillus neutral proteases were purified using bacitracin-silica as an affinity medium. Several chromatographic procedures were investigated, including high speed runs on columns with 40- to 60-microns silica particles. The high speed procedure enabled the purification of 4.9 mg of B. subtilis neutral protease directly from 165-ml culture supernatant within 1.5 h. The neutral proteases of B. polymyxa and B. stearothermophilus were also purified. The latter enzyme was further concentrated by a second affinity chromatography step, using Sepharose with glycyl-D-phenylalanine as a ligand. During the purification procedures isopropanol was used to prevent autodigestion of the enzymes.  相似文献   

2.
The thermostable Thermus aquaticus DNA polymerase (Taq Pol) has been the key factor in transforming the initial PCR method into one with huge impact in molecular biology and biotechnology. Therefore, the development of effective affinity adsorbents for the purification of Taq Pol, as well as other DNA polymerases, attracts the attention of the enzyme manufacturers and the research laboratories. In this report we describe a simple protocol for the purification of Taq Pol from E. coli lysates, leading to enzymes of high specific activity and purity. The protocol is based on a single affinity chromatography step, featuring an immobilized ligand selected from a structure-biased combinatorial library of dNTP-mimetic synthetic ligands. The ligand library was screened for its ability to bind and purify Taq Pol from E. coli lysates. One immobilized ligand (mABSGu) of the general formula X-Trz-Y, bearing 9-aminoethylguanine (AEGu) and aniline-2-sulfonic acid (mABS) linked on the triazine scaffold (Trz), displayed the highest purifying ability. Adsorption equilibrium studies with this affinity ligand and Taq Pol determined a dissociation constant (KD) of 0.12 mM for the respective complex, whereas ATP prevented the formation of the mABSGu-Taq Pol complex. The mABSGu affinity adsorbent was exploited in the development of a facile Taq Pol purification protocol, affording homogeneous enzyme (>99% purity, approximately 61 500 U/mg) in a single chromatography step. Quality control tests showed that Taq Pol purified on the mABSGu affinity adsorbent is free of nucleic acids and contaminating nuclease activities.  相似文献   

3.
M J Mendes  A Karmali  P Brown 《Biochimie》1988,70(10):1369-1372
Jack bean (Canivalia ensiformis) urease (EC3.5.1.5) was purified in one-step by ligand affinity chromatography using epoxy-activated Sepharose 6B-urea. The yield of the purified enzyme was about 80% with a specific activity of about 500 U/mg of protein. The enzyme was apparently homogeneous when analyzed by SDS-PAGE and native PAGE. The protein band on native PAGE coincided with the stained band of urease activity. The affinity column could be regenerated and reused several times without any loss of binding capacity and resolution. Affinity gels containing either acetamide or semicarbazide as affinity ligands were also found to be useful for the isolation of urease.  相似文献   

4.
One-step affinity purification protocol for human telomerase.   总被引:13,自引:3,他引:10       下载免费PDF全文
Human telomerase is a ribonucleoprotein (RNP) enzyme, comprising protein components and an RNA template that catalyses telomere elongation through the addition of TTAGGG repeats. Telomerase function has been implicated in aging and cancer cell immortalization. We report a rapid and efficient one-step purification protocol to obtain highly active telomerase from human cells. The purification is based on affinity chromatography of nuclear extracts with antisense oligonucleotides complementary to the template region of the human telomerase RNA component. Bound telomerase is eluted with a displacement oligonucleotide under mild conditions. The resulting affinity-purified telomerase is active in PCR-amplified telomerase assays. The purified telomerase complex has a molecular mass of approximately 550 kDa compared to the approximately 1000 kDa determined for the telomerase RNP in unfractionated nuclear extracts. The purification protocol provides a rapid and efficient tool for functional and structural studies of human telomerase.  相似文献   

5.
It was found that alginate binds to glucoamylase, presumably through the recognition of starch binding domain of the latter. The present work exploits this for purification of glucoamylases from commercial preparation of Aspergillus niger and crude culture filtrate of Bacillus amyloliquefaciens by affinity precipitation technique in a single-step protocol. Glucoamylase is selectively precipitated using alginate as macroaffinity ligand and later eluted with 1.0 M maltose. In the case of A. niger, 81% activity is recovered with 28-fold purification. The purified glucoamylase gave a single band on SDS-PAGE corresponding to 78 kDa molecular weight. The developed affinity precipitation process also works efficiently for purification of Bacillus amyloliquefaciens glucoamylase from its crude culture filtrate, giving 78% recovery with 38-fold purification. The purified preparation showed a major band corresponding to 62 kDa and a faint band about 50 kDa on SDS-PAGE. The latter corresponds to the molecular weight for alpha-amylase of Bacillus amyloliquefaciens.  相似文献   

6.
A Domingos  A Karmali  P R Brown 《Biochimie》1989,71(11-12):1179-1184
Amidases (acylamide amidohydrolase EC 3.5.1.4) from mutant strains (i.e., B6, AI3, AIU1N, OUCH 4 and L10) of Pseudomonas aeruginosa were purified in one-step by ligand affinity chromatography using Epoxy-activated Sepharose 4B-acetamide. The yields of the purified enzymes were about 90% for all mutant strains with purification factors of about 10 and were apparently homogeneous when analysed by SDS-PAGE and native PAGE. The protein bands on native PAGE coincided with the stained band of enzyme activity for all amidase preparations. Affinity columns had a maximum binding capacity of 0.5 mg amidase protein/ml of sedimented gel and could be regenerated and reused several times without any loss of binding capacity and resolution. Affinity gels containing either semicarbazide or urea were also found useful for the isolation of amidase. The differences in substrate specificity of these amidases reported previously were also observed in the elution behaviour of these enzymes from the affinity columns.  相似文献   

7.
A method is described for the rapid isolation of the activated murein precursors UDP-N-acetyl-muramyl-pentapeptide (UDP-MurNAc-pentapeptide) and UDP-MurNAc-tripeptide from Bacillus cereus. After accumulation of the precursors by inhibition of murein synthesis either in the presence of vancomycin (for the pentapeptide precursor) or D-cycloserine (for the tripeptide precursor) the cells were extracted with boiling water. Prior to high pressure liquid chromatography the material was freed from acid precipitable material. UDP-MurNAc-penta- and tripeptide were separated from other components by reversed-phase HPLC on Hypersil ODS using isocratic elution conditions with sodium phosphate buffer. The precursors were obtained with at least 98% purity and a yield of about 50 mumol from a 10-l culture of B. cereus.  相似文献   

8.
Several lines of evidence have pointed to a role of urokinase-type plasminogen activator receptor (uPAR) as a modulator of certain biochemical processes that are active during tumor invasion and metastasis. Consequently, the structure and function of this receptor have been studied extensively, using recombinantly produced uPAR that has been purified by either affinity chromatography using its cognate ligand, the urokinase-type plasminogen activator (uPA), or a monoclonal anti-uPAR antibody (R2), or by hydroxyapatite. Here, we present a new method for the efficient one-step affinity purification of recombinant uPAR exploiting a high-affinity synthetic peptide antagonist (AE152). The corresponding parent peptide was originally identified in a random phage-display library and subsequently subjected to affinity maturation by combinatorial chemistry. This study compares the affinity purification of a soluble, recombinant uPAR using the monoclonal antibody R2 or the peptide AE152 immobilized on Sepharose. The two affinity ligands perform equally well in purifying uPAR from Drosophila melanogaster Schneider 2 cell culture medium and yield products of comparable purity, activity, and stability as judged by SDS-PAGE, size exclusion chromatography and surface plasmon resonance analysis. The general availability of peptide synthesis renders the present AE152-based affinity purification of uPAR more accessible than the traditional protein-based affinity purification strategies. In this way, large amounts of recombinant uPAR can conveniently be purified for further structural and functional studies.  相似文献   

9.
A number of ligands for the selective purification by affinity chromatography of the trypsin-like protease, porcine pancreatic kallikrein, were designed de novo by computer-aided molecular design. The ligands were designed to mimic the side-chains of a number of arginyl dipeptides and included a benzamidine moiety substituted on a triazine ring. The ligands displayed inhibitory activities against pancreatic kallikrein which mirrored the specificity constants of the dipeptides they were designed to mimic. The ligand with the highest affinity for the enzyme, an analogue of a Phe-Arg dipeptide, when immobilized to Sepharose CL-4B via a hexamethylene spacer arm, purified pancreatic kallikrein 110-fold in one step from a crude pancreatic acetone extract.  相似文献   

10.
We describe a one-step affinity method for purifying ribosomes from the budding yeast Saccharomyces cerevisiae. Extracts from yeast strains expressing only C-terminally tagged Rpl25 protein or overexpressing this protein in the presence of endogenous Rpl25p were used as the starling materials. The purification was specific for tagged 60S subunits, and resulted in the copurification of 80S subunits and polysomes, as well as ribosome-associated proteins and mRNAs. Two of these associated proteins, Mpt4p and Asc1p, were nearly stoichiometrically bound to the ribosome. In addition, the degree of mRNA association with the purified ribosomes was found to reflect the mRNA's translational status within the cell. The one-step purification of ribosome and its associated components from a crude extract should provide an important tool for future structural and biochemical studies of the ribosome, as well as for expression profiling of translated mRNAs.  相似文献   

11.
A hexahistidine tag was fused to the N-terminus of apoaequorin. A suitable vector encoding the fusion protein was constructed and used for transformation of Escherichia coli JM109 cells. Apoaequorin was overexpressed under the control of tac promoter. It was found, however, that most of the protein existed in the form of inclusion bodies. Inclusion bodies were solubilized with urea, followed by purification and refolding of (His)(6)-apoaequorin in a single chromatographic step by immobilized metal-ion affinity chromatography using Ni(2+)-nitrilotriacetic acid agarose. The purity, as determined by SDS-PAGE analysis, was greater than 80%. The yield was 0.7-1 mg apoaequorin from a 50 ml bacterial culture. The kinetics of light emission of purified aequorin upon addition of Ca(2+) was typical of the commercial aequorin. The luminescence of the purified aequorin was a linear function of its concentration extending over six orders of magnitude. As low as 0.5 attomoles purified aequorin gave a signal-to-noise ratio of 1.8.  相似文献   

12.
The outer mitochondrial membrane porin, voltage-dependent anion-selective channel (VDAC), is believed to play an important role in mediating mitochondria-dependent apoptosis. However, detailed structure-function studies of VDAC have been hindered by the difficulties to obtain a soluble, correctly folded, and fully active form of the recombinant VDAC and its mutant variants due to its transmembrane nature. Here we report a high-throughput one-step chromatographic procedure in purification of recombinant human VDAC1 (rhVDAC1) protein overexpressed in bacteria. The improved methodology could generate a large quantity of rhVDAC1 with correct folding in terms of the secondary structure, with full biological activities in mediating cytochrome c release and in interaction with Bcl-X(L). The method will significantly benefit genetic, biochemical, and structural studies of this critical channel protein.  相似文献   

13.
In the affinity purification of recombinant fusion proteins, the rate-limiting step is usually the efficient proteolytic cleavage and removal of the affinity tail and the protease from the purified recombinant protein. We have developed a rapid, convenient, and efficient method of affinity purification that can overcome this limitation. In one example of the method, the protease 3C from a picornavirus (3Cpro), which cleaves specific sequences containing a minimum of 6-7 amino acids, has been expressed as a fusion with glutathione S-transferase. The resultant recombinant "fusion protease" cleaves fusion proteins bearing (from the amino-terminus) the same affinity tail as the fusion protease, a 3Cpro cleavage recognition site, and the recombinant protein of interest. The recombinant protein is purified in a single chromatographic step, which removes both the affinity tail and the fusion protease. The advantages over existing methods include much improved specificity of proteolytic cleavage, complete removal of the protease and the affinity tail in one step, and the option of adding any desired amount of fusion protease to ensure efficient cleavage. The potential flexibility of the method is shown by the use of various affinity tails and alternative fusion proteases.  相似文献   

14.
An efficient one-step affinity purification of bovine brain G protein betagamma subunits (betagamma's) is described. The betagamma's, in a detergent extract of brain membranes, are first dissociated from the alpha subunits (alpha's), reassociated with decahistidine-tagged alphail produced in bacteria, and then adsorbed onto Ni2+-nitrilotriacetic acid-agarose via the histidine tag. This mild adsorption retained the high activity of the ligand alpha's, in contrast to the commonly used chemical crosslinking methods. A wash step with a buffer containing chaotropic ions (SCN-) completely removed contaminating proteins that were refractory to washes with high concentrations of detergents, after which the highly purified betagamma's were eluted with a buffer containing Al3+, Mg2+, and F- ions. The obtained betagamma's were found to be fully functional, as assessed by their ability to support pertussis toxin-catalyzed ADP-ribosylation of alphail. Since the combination of the mild adsorption via the histidine tag and the wash with chaotropic ions can be easily applied to purifying betagamma's from various animal tissues, this new chromatographic method is expected to facilitate the purification of other membrane proteins that bind to Galpha and/or Galphabetagamma.  相似文献   

15.
16.
17.
A number on new cationic ligands have been designed and synthesized for the selective resolution an purification of the trypszin-like proteases. A series of ligands based on 4-[2′-methyl-4′-(2″,4″-dichloro-1″,3″,5″-triazin-6-ylamino) phenylazo]benzamidine were able to bind to trypsin and the trypsin-like proteases, thrombin and urokinase, but bound pancreatic kallikrein only weakly. Ligands possessing a second cationic group (either 4-aminophenyltrimethylammonium or 4-aminobenzamidine) substituted onto the triazine ring displayed higher affinities than the parent compound for trypsin in solution but bound the enzyme weakly or not at all after immobilization. In contrast, these bis-cationic ligands bound pancreatic kallikrein in solution ad following immobilization. The presence of the second cationic group was crucial, since its replacement by neutral or anionic groups led to loss of affinity for pancreatic kallikrein. One of the bis-cationic ligands was used to purify pancreatic kallikrein 9.5-fold from a crude pancreatic extract in 79% yield, to generate a product 99.9% free of contaminating trypsin activity.  相似文献   

18.
19.
Since the development of affinity chromatography, affinity purification technology has been applied to many aspects of biological research, becoming an indispensable tool. Efficient strategies for the identification of biologically active compounds based on biochemical specificity have not yet been established, despite widespread interest in identifying chemicals that directly alter biomolecular functions. Here, we report a novel method for purifying chemicals that specifically interact with a target biomolecule using reverse affinity beads, a receptor-immobilized high-performance solid-phase matrix. When FK506-binding protein 12 (FKBP12) immobilized beads were used in this process, FK506 was efficiently purified in one step either from a mixture of chemical compounds or from fermented broth extract. The reverse affinity beads facilitated identification of drug/receptor complex binding proteins by reconstitution of immobilized ligand/receptor complexes on the beads. When FKBP12/FK506 and FKBP12/rapamycin complexes were immobilized, calcineurin and FKBP/rapamycin-associated protein were purified from a crude cell extract, respectively. These data indicate that reverse affinity beads are powerful tools for identification of both specific ligands and proteins that interact with receptor/ligand complexes.  相似文献   

20.
A mutant strain of Bacillus subtilis carrying lesions in the structural genes for extracellular neutral (nprE) and serine (aprA) proteases was constructed by the gene conversion technique. This mutant had less than 4% of the extracellular protease activity of the wild type and sporulated normally, indicating that neither of these sporulation-associated proteases is essential for development.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号