首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
We introduce the term ‘silent agonists’ to describe ligands that can place the α7 nicotinic acetylcholine receptor (nAChR) into a desensitized state with little or no apparent activation of the ion channel, forming a complex that can subsequently generate currents when treated with an allosteric modulator. KC-1 (5′-phenylanabaseine) was synthesized and identified as a new silent agonist for the α7 nAChR; it binds to the receptor but does not activate α7 nAChR channel opening when applied alone, and its agonism is revealed by co-application with the type II positive allosteric modulator PNU-120596 in the Xenopus oocyte system. The concise synthesis was accomplished in three steps with the C–C bonds formed via Pd-catalyzed mono-arylation and organolithium coupling with N-Boc piperidinone. Comparative structural analyses indicate that a positive charge, an H-bond acceptor, and an aryl ring in a proper arrangement are needed to constitute one class of silent agonist for the α7 nAChR. Because silent agonists may act on signaling pathways not involving ion channel opening, this class of α7 nAChR ligands may constitute a new alternative for the development of α7 nAChR therapeutics.  相似文献   

2.
Antibodies to a synthetic peptide from the 'amphipathic helix' of the alpha-chain of the nicotinic acetylcholine receptor (nAChR) bound both to detergent-solubilised and membrane-bound nAChR, indicating that this region, suggested as a component of the transmembrane ion channel in one model, is not buried in the membrane. Trypsinisation of membranes prior to affinity purification yielded preparations lacking the amphipathic helices of the alpha- and beta-chains and probably also of the gamma- and delta-chains. Such material should allow direct testing, by reconstitution experiments, of the importance of these regions for channel activity.  相似文献   

3.
Studies were conducted to ascertain the temporal and dose-dependent effects of nicotinic ligand exposure on functional activity of different nicotinic acetylcholine receptor (nAChR) subtypes, as expressed by cells of the PC12 rat pheochromocytoma (ganglia-type nAChR) or the TE671/RD human (muscle-type nAChR) clonal line. Chronic (3-72-h) agonist (nicotine or carbamylcholine) treatment of cells led to a complete (TE671) or nearly complete (PC12) loss of functional nAChR responses, which is referred to as "functional inactivation." Some inactivation of nAChR function was also observed for the nicotinic ligands d-tubocurarine (d-TC), mecamylamine, and decamethonium. Half-maximal inactivation of nAChR function was observed within 3 min for TE671 cells and within 10 min for PC12 cells treated with inactivating ligands. Functional inactivation occurred with dose dependencies that could not always be reconciled with those obtained for acute agonist activation of nAChR function or for acute inhibition of those responses by d-TC, decamethonium, or mecamylamine. Treatment of TE671 or PC12 cells with the nicotinic antagonist pancuronium or alcuronium alone had no effect on levels of expression of functional nAChRs. However, evidence was obtained that either of these antagonists protected TE671 cell muscle-type nAChRs or PC12 cell ganglia-type nAChRs from functional inactivation on long-term treatment with agonists. Recovery of TE671 cell nAChR function following treatment with carbamylcholine, nicotine, or d-TC occurred with half-times of 1-3 days whether cells were maintained in situ or harvested and replated after removal of ligand. By contrast, 50% recovery of functional nAChRs on PC12 cells occurred within 2-6 h after drug removal. In either case the time course for recovery from nAChR functional inactivation is much slower than recovery from nAChR "functional desensitization," which is a reversible process that occurs on shorter-term (0-5-min) agonist exposure of cells. These results indicate that ganglia-type and muscle-type nAChRs are similar in their sensitivities to functional inactivation by nicotinic ligands but differ in their rates of recovery from and onset of those effects. The ability of drugs such as the agonists d-TC, decamethonium, and mecamylamine to induce functional inactivation may relate to their activities as partial/full agonists, channel blockers, and/or allosteric regulators. Effects of drugs such as pancuronium and alcuronium are likely to reflect simple competitive inhibition of primary ligand binding at functional activation sites.(ABSTRACT TRUNCATED AT 400 WORDS)  相似文献   

4.
The effect of nicotine on the mouse liver mitochondria was studied by fluorescent flow cytometry. Mice consumed nicotine during 65 days; alternatively, nicotine was added to isolated mitochondria. Mitochondria of nicotine-treated mice had significantly lower basic levels of membrane potential and granularity as compared to those of the control group. Pre-incubation of the isolated mitochondria with nicotine prevented from dissipation of their membrane potential stimulated with 0.8 microM CaCl2 depending on the dose, and this effect was strengthened by the antagonist of alpha7 nicotinic receptors (alpha7 nAChR) methyllicaconitine. Mitochondria of mice intravenously injected with the antibodies against alpha7 nAChR demonstrated lower levels of membrane potential. Introduction of nicotine, choline, acetylcholine or synthetic alpha7 nAChR agonist PNU 282987 into the incubation medium inhibited Ca2+ accumulation in mitochondria, although the doses of agonists were too low to activate the alpha7 nAChR ion channel. It is concluded that nicotine consumption worsens the functional state of mitochondria by affecting their membrane potential and granularity, and this effect, at least in part, is mediated by alpha7 nAChR desensitization.  相似文献   

5.
Rapid neurotransmission is mediated through a superfamily of Cys-loop receptors that includes the nicotinic acetylcholine (nAChR), gamma-aminobutyric acid (GABA(A)), serotonin (5-HT(3)) and glycine receptors. A class of ligands, including galanthamine, local anesthetics and certain toxins, interact with nAChRs non-competitively. Suggested modes of action include blockade of the ion channel, modulation from undefined extracellular sites, stabilization of desensitized states, and association with annular or boundary lipid. Alignment of mammalian Cys-loop receptors shows aromatic residues, found in the acetylcholine or ligand-binding pocket of nAChRs, are conserved in all subunit interfaces of neuronal nAChRs, including those that are not formed by alpha subunits on the principal side of the transmitter binding site. The amino-terminal domain containing the ligand recognition site is homologous to the soluble acetylcholine-binding protein (AChBP) from mollusks, an established structural and functional surrogate. We assess ligand specificity and employ X-ray crystallography with AChBP to demonstrate ligand interactions at subunit interfaces lacking vicinal cysteines (i.e. the non-alpha subunit interfaces in nAChRs). Non-competitive nicotinic ligands bind AChBP with high affinity (K(d) 0.015-6 microM). We mutated the vicinal cysteine residues in loop C of AChBP to mimic the non-alpha subunit interfaces of neuronal nAChRs and other Cys loop receptors. Classical nicotinic agonists show a 10-40-fold reduction in binding affinity, whereas binding of ligands known to be non-competitive are not affected. X-ray structures of cocaine and galanthamine bound to AChBP (1.8 A and 2.9 A resolution, respectively) reveal interactions deep within the subunit interface and the absence of a contact surface with the tip of loop C. Hence, in addition to channel blocking, non-competitive interactions with heteromeric neuronal nAChR appear to occur at the non-alpha subunit interface, a site presumed to be similar to that of modulating benzodiazepines on GABA(A) receptors.  相似文献   

6.
7.
The expression and function of nicotinic ACh receptors (nAChRs) in rat coronary microvascular endothelial cells (CMECs) were examined using RT-PCR and whole cell patch-clamp recording methods. RT-PCR revealed expression of mRNA encoding for the subunits alpha(2), alpha(3), alpha(4), alpha(5), alpha(7), beta(2), and beta(4) but not beta(3). Focal application of ACh evoked an inward current in isolated CMECs voltage clamped at negative membrane potentials. The current-voltage relationship of the ACh-induced current exhibited marked inward rectification and a reversal potential (E(rev)) close to 0 mV. The cholinergic agonists nicotine, epibatidine, and cytisine activated membrane currents similar to those evoked by ACh. The nicotine-induced current was abolished by the neuronal nAChR antagonist mecamylamine. The direction and magnitude of the shift in E(rev) of nicotine-induced current as a function of extracellular Na(+) concentration indicate that the nAChR channel is cation selective and follows that predicted by the Goldman-Hodgkin-Katz equation assuming K(+)/Na(+) permeability ratio of 1.11. In fura-2-loaded CMECs, application of ACh, but not of nicotine, elicited a transient increase in intracellular free Ca(2+) concentration. Taken together, these results demonstrate that neuronal nAChR activation by cholinergic agonists evokes an inward current in CMECs carried primarily by Na(+), which may contribute to the plasma nicotine-induced changes in microvascular permeability and reactivity induced by elevations in plasma nicotine.  相似文献   

8.
Decay kinetics of the postsynaptic excitatory currents (EPSC), distribution of the antibodies specific to different α-subunits of neuronal nicotinic acetylcholine receptors (nAChR), and the effects of these antibodies on ACh-induced membrane currents were studied in neurons of different autonomic ganglia of rats. It was shown that α3-, α5- and α7-subunits were present in all studied cultured neurons of the rat superior cervical ganglion (SCG), while the α4-subunit was present only in about half of the neurons; this α-subunit distribution differed from that in cultured intracardial neurons of rats. Two nAChR populations were found in rat SCG neurons, and a series of nAChR populations were found in murine superior mesenteric ganglion neurons; they differed in kinetics of their ion channel activity, voltage dependence and the rate of their open channel blockade. The possible functional role of neuronal nAChR heterogeneity is discussed.  相似文献   

9.
The effect of tetraethylammonium (TEA) on the currents evoked in neurons of the rat superior cervical ganglion by iontophoretic application of acetylcholine (ACh) was studied using a whole-cell patch-clamp recording technique. Tetraethylammonium was used at a concentration of about 20 µM, providing no blocking effect on the ACh-induced membrane currents at a range of positive membrane potentials and reducing these currents recorded at a range of negative membrane potentials by about half. The blocking effect of TEA increased with hyperpolarization within the –50 to –90 mV membrane potential range, and did not depend on the membrane potential level within a range of 0 to –50 mV. The analysis of dose dependence showed that both the voltage-dependent and the voltage-independent blocking effects are due to TEA competitive action on the ganglionic nicotinic acetylcholine receptors (nAChR). The results suggest that the TEA-induced competitive blockade is voltage-dependent.Neirofiziologiya/Neurophysiology, Vol. 27, No. 1, pp. 63–66, January–February, 1995.  相似文献   

10.
Over the past three decades, the Torpedo californica nicotinic acetylcholine receptor (nAChR) has been one of the most extensively studied membrane protein systems. However, the effects of detergent solubilization on nAChR stability and function are poorly understood. The use of lipid-analog detergents for nAChR solubilization has been shown to preserve receptor stability and functionality. The present study used lipid-analog detergents from phospholipid-analog and cholesterol-analog detergent families for solubilization and affinity purification of the receptor and probed nAChR ion channel function using planar lipid bilayers (PLBs) and stability using analytical size exclusion chromatography (A-SEC) in the detergent-solubilized state. We also examined receptor mobility on the lipidic cubic phase (LCP) by measuring the nAChR mobile fraction and diffusion coefficient through fluorescence recovery after photobleaching (FRAP) experiments using lipid-analog and non-lipid-analog detergents. Our results show that it is possible to isolate stable and functional nAChRs using lipid-analog detergents, with characteristic ion channel currents in PLBs and minimal aggregation as observed in A-SEC. Furthermore, fractional mobility and diffusion coefficient values observed in FRAP experiments were similar to the values observed for these parameters in the recently LCP-crystallized β(2)-adrenergic receptor. The overall results show that phospholipid-analog detergents with 16 carbon acyl-chains support nAChR stability, functionality and LCP mobility.  相似文献   

11.
We used molecular dynamics (MD) simulations to explore the transport of single cations through the channel of the muscle nicotinic acetylcholine receptor (nAChR). Four MD simulations of 16 ns were performed at physiological and hyperpolarized membrane potentials, with and without restraints of the structure, but all without bound agonist. With the structure unrestrained and a potential of −100 mV, one cation traversed the channel during a transient period of channel hydration; at −200 mV, the channel was continuously hydrated and two cations traversed the channel. With the structure restrained, however, cations did not traverse the channel at either membrane potential, even though the channel was continuously hydrated. The overall results show that cation selective transport through the nAChR channel is governed by electrostatic interactions to achieve charge selectivity, but ion translocation relies on channel hydration, facilitated by a trans-membrane field, coupled with dynamic fluctuations of the channel structure.  相似文献   

12.
Nicotinic receptors, allosteric proteins and medicine   总被引:1,自引:0,他引:1  
The nicotinic acetylcholine receptor (nAChR) was the first ion channel and membrane receptor of a neurotransmitter to be isolated and chemically identified and is one of the best known membrane proteins involved in signal transduction. Subsequently, nAChRs have been a target for drug discovery because of their potential to impact numerous brain diseases and disorders. Here, we consider recent developments in our understanding of nAChR structure and of the conformational transitions that link the acetylcholine (ACh)-binding site and the ion channel to mediate fast neurotransmission. The knowledge of such allosteric mechanisms is essential to understand pathologies such as congenital myasthenia, autosomal dominant nocturnal frontal lobe epilepsies, sudden infant death syndrome, attention deficit hyperactivity disorder and nicotine addiction and to design novel therapies.  相似文献   

13.
14.
The nicotinic acetylcholine receptor (nAChR) and the Na,K-ATPase functionally interact in skeletal muscle (Krivoi, I. I., Drabkina, T. M., Kravtsova, V. V., Vasiliev, A. N., Eaton, M. J., Skatchkov, S. N., and Mandel, F. (2006) Pflugers Arch. 452, 756–765; Krivoi, I., Vasiliev, A., Kravtsova, V., Dobretsov, M., and Mandel, F. (2003) Ann. N.Y. Acad. Sci. 986, 639–641). In this interaction, the specific binding of nanomolar concentrations of nicotinic agonists to the nAChR stimulates electrogenic transport by the Na,K-ATPase α2 isozyme, causing membrane hyperpolarization. This study examines the molecular nature and membrane localization of this interaction. Stimulation of Na,K-ATPase activity by the nAChR does not require ion flow through open nAChRs. It can be induced by nAChR desensitization alone, in the absence of nicotinic agonist, and saturates when the nAChR is fully desensitized. It is enhanced by noncompetitive blockers of the nAChR (proadifen, QX-222), which promote non-conducting or desensitized states; and retarded by tetracaine, which stabilizes the resting nAChR conformation. The interaction operates at the neuromuscular junction as well as on extrajunctional sarcolemma. The Na,K-ATPase α2 isozyme is enriched at the postsynaptic neuromuscular junction and co-localizes with nAChRs. The nAChR and Na,K-ATPase α subunits specifically coimmunoprecipitate with each other, phospholemman, and caveolin-3. In a purified membrane preparation from Torpedo californica enriched in nAChRs and the Na,K-ATPase, a ouabain-induced conformational change of the Na,K-ATPase enhances a conformational transition of the nAChR to a desensitized state. These results suggest a mechanism by which the nAChR in a desensitized state with high apparent affinity for agonist interacts with the Na,K-ATPase to stimulate active transport. The interaction utilizes a membrane-delimited complex involving protein-protein interactions, either directly or through additional protein partners. This interaction is expected to enhance neuromuscular transmission and muscle excitation.  相似文献   

15.
The nicotinic acetylcholine receptor (nAChR) β3 subunit is thought to serve an accessory role in nAChR subtypes expressed in dopaminergic regions implicated in drug dependence and reward. When β3 subunits are expressed in excess, they have a dominant-negative effect on function of selected nAChR subtypes. In this study, we show, in Xenopus oocytes expressing α2, α3 or α4 plus either β2 or β4 subunits, that in the presumed presence of similar amounts of each nAChR subunit, co-expression with wild-type β3 subunits generally (except for α3*-nAChR) lowers amplitudes of agonist-evoked, inward peak currents by 20-50% without having dramatic effects (≤ 2-fold) on agonist potencies. By contrast, co-expression with mutant β3(V9'S) subunits generally (except for α4β2*-nAChR) increases agonist potencies, consistent with an expected gain-of-function effect. This most dramatically demonstrates formation of complexes containing three kinds of subunit. Moreover, for oocytes expressing nAChR containing any α subunit plus β4 and β3(V9'S) subunits, there is spontaneous channel opening sensitive to blockade by the open channel blocker, atropine. Collectively, the results indicate that β3 subunits integrate into all of the studied receptor assemblies and suggest that natural co-expression with β3 subunits can influence levels of expression and agonist sensitivities of several nAChR subtypes.  相似文献   

16.
Abstract: The present study further investigated whether nicotinic acetylcholine receptor (nAChR) subtypes differ in their ability to up-regulate following chronic exposure to nicotinic agonists. Seven nicotinic agonists were studied for their ability to influence the number of chick α4β2 nAChR binding sites stably transfected in fibroblasts (M10 cells) following 3 days of exposure. The result showed a positive correlation between the K i values for binding inhibition and EC50 values for agonist-induced α4β2 nAChR up-regulation. The effects of epibatidine and nicotine were further investigated in human neuroblastoma SH-SY5Y cells (expressing α3, α5, β2, and β4 nAChR subunits). Nicotine exhibited a 14 times lower affinity for the nAChRs in SH-SY5Y cells as compared with M10 cells, whereas epibatidine showed similar affinities for the nAChRs expressed in the two cell lines. The nicotine-induced up-regulation of nAChR binding sites in SH-SY5Y cells was shifted to the right by two orders of magnitude as compared with that in M10 cells. The epibatidine-induced up-regulation of nAChR binding sites in SH-SY5Y cells was one-fourth that in M10 cells. The levels of mRNA of the various nAChR subunits were measured following the nicotinic agonist exposure. In summary, the various nAChR subtypes show different properties in their response to chronic stimulation.  相似文献   

17.
Using the crosstalk between the nicotinic acetylcholine receptor (nAChR) and its lipid microenvironment as a paradigm, this short overview analyzes the occurrence of structural motifs which appear not only to be conserved within the nAChR family and contemporary eukaryotic members of the pentameric ligand-gated ion channel (pLGIC) superfamily, but also extend to prokaryotic homologues found in bacteria. The evolutionarily conserved design is manifested in: 1) the concentric three-ring architecture of the transmembrane region, 2) the occurrence in this region of distinct lipid consensus motifs in prokaryotic and eukaryotic pLGIC and 3) the key participation of the outer TM4 ring in conveying the influence of the lipid membrane environment to the middle TM1–TM3 ring and this, in turn, to the inner TM2 channel-lining ring, which determines the ion selectivity of the channel. The preservation of these constant structural–functional features throughout such a long phylogenetic span likely points to the successful gain-of-function conferred by their early acquisition. This article is part of a Special Issue entitled: Lipid–protein interactions.  相似文献   

18.
9 N-alkylated derivatives of dextromethorphan are synthesized and studied as non-competitive inhibitors of α3β4 nicotinic acetylcholine receptors (nAChRs). In vitro activity towards α3β4 nicotinic acetylcholine receptor is determined using a patch-clamp technique and is in the micromolar range. Homology modeling, molecular docking and molecular dynamics of ligand-receptor complexes in POPC membrane are used to find the mode of interactions of N-alkylated dextromethorphan derivatives with α3β4 nAChR. The compounds, similarly as dextromethorphan, interact with the middle portion of α3β4 nAChR ion channel. Finally, behavioral tests confirmed potential application of the studied compounds for the treatment of addiction.  相似文献   

19.
Abstract

Similar to other neuroreceptors of the vertebrate central nervous system, the nicotinic acetylcholine receptor (nAChR) is subject to modulatory control by allosterically acting ligands. Of particular interest in this regard are allosteric ligands that enhance the sensitivity of the receptor to its natural agonist acetylcholine (ACh), as such ligands could be useful as drugs in diseases associated with impaired nicotinic neurotransmission. Here we discuss the action of a novel class of nAChR ligands which act as allosterically potentiating ligands (APL) on the nicotinic responses induced by ACh and competitive agonists. In addition, APLs also act as noncompetitive agonists of very low efficacy, and as direct blockers of ACh-activated channels. These actions are observed with nAChRs from brain, muscle and electric tissue, and they depend on the structure of the APL and the concentration range applied. We focus here on Torpedo nAChR because (i) the unusual pharmacology of these ligands was first discovered with this system, and (ii) large quantities of this receptor are readily available for biochemical studies.  相似文献   

20.
The recent characterization of an acetylcholine binding protein (AChBP) from the fresh water snail, Lymnaea stagnalis, shows it to be a structural homolog of the extracellular domain of the nicotinic acetylcholine receptor (nAChR). To ascertain whether the AChBP exhibits the recognition properties and functional states of the nAChR, we have expressed the protein in milligram quantities from a synthetic cDNA transfected into human embryonic kidney (HEK) cells. The protein secreted into the medium shows a pentameric rosette structure with ligand stoichiometry approximating five sites per pentamer. Surprisingly, binding of acetylcholine, selective agonists, and antagonists ranging from small alkaloids to larger peptides results in substantial quenching of the intrinsic tryptophan fluorescence. Using stopped-flow techniques, we demonstrate rapid rates of association and dissociation of agonists and slow rates for the alpha-neurotoxins. Since agonist binding occurs in millisecond time frames, and the alpha-neurotoxins may induce a distinct conformational state for the AChBP-toxin complex, the snail protein shows many of the properties expected for receptor recognition of interacting ligands. Thus, the marked tryptophan quenching not only documents the importance of aromatic residues in ligand recognition, but establishes that the AChBP will be a useful functional as well as structural surrogate of the nicotinic receptor.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号