首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
IQ motifs are widespread in nature. Mlc1p is a calmodulin-like myosin light chain that binds to IQ motifs of a class V myosin, Myo2p, and an IQGAP-related protein, Iqg1p, playing a role in polarized growth and cytokinesis in Saccharomyces cerevisiae. The crystal structures of Mlc1p bound to IQ2 and IQ4 of Myo2p differ dramatically. When bound to IQ2, Mlc1p adopts a compact conformation in which both the N- and C-lobes interact with the IQ motif. However, in the complex with IQ4, the N-lobe no longer interacts with the IQ motif, resulting in an extended conformation of Mlc1p. The two light chain structures relate to two distinct subfamilies of IQ motifs, one of which does not interact with the N-lobes of calmodulin-like light chains. The correlation between light chain structure and IQ sequence is demonstrated further by sedimentation velocity analysis of complexes of Mlc1p with IQ motifs from Myo2p and Iqg1p. The resulting 'free' N-lobes of myosin light chains in the extended conformation could mediate the formation of ternary complexes during protein localization and/or partner recruitment.  相似文献   

2.
Calmodulin, regulatory, and essential myosin light chain are evolutionary conserved proteins that, by binding to IQ motifs of target proteins, regulate essential intracellular processes among which are efficiency of secretory vesicles release at synapsis, intracellular signaling, and regulation of cell division. The yeast Saccharomyces cerevisiae calmodulin Cmd1 and the essential myosin light chain Mlc1p share the ability to interact with the class V myosin Myo2p and Myo4 and the class II myosin Myo1p. These myosins are required for vesicle, organelle, and mRNA transport, spindle orientation, and cytokinesis. We have used the budding yeast model system to study how calmodulin and essential myosin light chain selectively regulate class V myosin function. NMR structural analysis of uncomplexed Mlc1p and interaction studies with the first three IQ motifs of Myo2p show that the structural similarities between Mlc1p and the other members of the EF-hand superfamily of calmodulin-like proteins are mainly restricted to the C-lobe of these proteins. The N-lobe of Mlc1p presents a significantly compact and stable structure that is maintained both in the free and complexed states. The Mlc1p N-lobe interacts with the IQ motif in a manner that is regulated both by the IQ motifs sequence as well as by light chain structural features. These characteristic allows a distinctive interaction of Mlc1p with the first IQ motif of Myo2p when compared with calmodulin. This finding gives us a novel view of how calmodulin and essential light chain, through a differential binding to IQ1 of class V myosin motor, regulate this activity during vegetative growth and cytokinesis.  相似文献   

3.
Little is known about the molecular machinery that directs secretory vesicles to the site of cell separation during cytokinesis. We show that in Saccharomyces cerevisiae, the class V myosin Myo2p and the Rab/Ypt Sec4p, that are required for vesicle polarization processes at all stages of the cell cycle, form a complex with each other and with a myosin light chain, Mlc1p, that is required for actomyosin ring assembly and cytokinesis. Mlc1p travels on secretory vesicles and forms a complex(es) with Myo2p and/or Sec4p. Its functional interaction with Myo2p is essential during cytokinesis to target secretory vesicles to fill the mother bud neck. The role of Mlc1p in actomyosin ring assembly instead is dispensable for this process. Therefore, in yeast, as recently shown in mammals, class V myosins associate with vesicles via the formation of a complex with Rab/Ypt proteins. Further more, myosin light chains, via their ability to be transported by secretory vesicles and to interact with class V myosin IQ motifs, can regulate vesicle polarization processes at a specific location and stage of the cell cycle.  相似文献   

4.
Cytokinesis in animal cells is accomplished through constriction of an actomyosin ring [1] [2] [3], which must assemble at the correct time and place in order to ensure proper division of genetic material and organelles. Budding yeast is a useful model system for determining the biochemical pathway of contractile ring assembly. The budding yeast IQGAP-like protein, Cyk1/Iqg1p, has multiple roles in the assembly and contraction of the actomyosin ring [4] [5] [6]. Previously, the IQ motifs of Cyk1/Iqg1p were shown to be required for the localization of this protein at the bud neck [6]. We have investigated the binding partner of the IQ motifs, which are predicted to interact with calmodulin-like proteins. Mlc1p was originally identified as a light chain for a type V myosin, Myo2p; however, a cytokinesis defect associated with disruption of the MLC1 gene suggested that the essential function of Mlc1p may involve interactions with other proteins [7]. We show that Mlc1p binds the IQ motifs of Cyk1/Iqg1p and present evidence that this interaction recruits Cyk1/Iqg1p to the bud neck. Immunofluorescence staining shows that Mlc1p is localized to sites of polarized cell growth as well as the bud neck before and independently of Cyk1p. These results demonstrate that Mlc1p is important for the assembly of the actomyosin ring in budding yeast and that this function is mediated through interaction with Cyk1/Iqg1p.  相似文献   

5.
Cytokinesis in animal and fungal cells utilizes a contractile actomyosin ring (AMR). However, how myosin II is targeted to the division site and promotes AMR assembly, and how the AMR coordinates with membrane trafficking during cytokinesis, remains poorly understood. Here we show that Myo1 is a two-headed myosin II in Saccharomyces cerevisiae, and that Myo1 localizes to the division site via two distinct targeting signals in its tail that act sequentially during the cell cycle. Before cytokinesis, Myo1 localization depends on the septin-binding protein Bni5. During cytokinesis, Myo1 localization depends on the IQGAP Iqg1. We also show that the Myo1 tail is sufficient for promoting the assembly of a "headless" AMR, which guides membrane deposition and extracellular matrix remodeling at the division site. Our study establishes a biphasic targeting mechanism for myosin II and highlights an underappreciated role of the AMR in cytokinesis beyond force generation.  相似文献   

6.
During budding of yeast cells peroxisomes are distributed over mother cell and bud, a process that involves the myosin motor protein Myo2p and the peroxisomal membrane protein Inp2p. Here, we show that Pex19p, a peroxin implicated in targeting and complex formation of peroxisomal membrane proteins, also plays a role in peroxisome partitioning. Binding studies revealed that Pex19p interacts with the cargo-binding domain of Myo2p. We identified mutations in Myo2p that specifically reduced binding to Pex19p, but not to Inp2p. The interaction between Myo2p and Pex19p was also reduced by a mutation that blocked Pex19p farnesylation. Microscopy revealed that the Pex19p-Myo2p interaction is important for peroxisome inheritance, because mutations that affect this interaction hamper peroxisome inheritance in vivo. Together these data suggest that both Inp2p and Pex19p are required for proper association of peroxisomes to Myo2p.  相似文献   

7.
The yeast myosin light chain 1 (Mlc1p) belongs to a branch of the calmodulin superfamily and is essential for vesicle delivery at the mother-bud neck during cytokinesis due to is ability to bind to the IQ motifs of the class V myosin Myo2p. While calcium binding to calmodulin promotes binding/release from the MyoV IQ motifs, Mlc1p is unable to bind calcium and the mechanism of its interaction with target motifs has not been clarified. The presence of Mlc1p in a complex with the Rab/Ypt Sec4p and with Myo2p suggests a role for Mlc1p in regulating Myo2p cargo binding/release by responding to the activation of Rab/Ypt proteins. Here we show that GTP or GTPgammaS potently stimulate Mlc1p interaction with Myo2p IQ motifs. The C-terminus of the Rab/Ypt GEF Sec2p, but not Sec4p activation, is essential for this interaction. Interestingly, overexpression of constitutively activated Ypt32p, a Rab/Ypt protein that acts upstream of Sec4p, stimulates Mlc1p/Myo2p interaction similarly to GTP although a block of Ypt32 GTP binding does not completely abolish the GTP-mediated Mlc1p/Myo2p interaction. We propose that Mlc1p/Myo2p interaction is stimulated by a signal that requires Sec2p and activation of Ypt32p.  相似文献   

8.
Class V myosins are widely distributed among diverse organisms and move cargo along actin filaments. Some myosin Vs move multiple types of cargo, where the timing of movement and the destinations of selected cargoes are unique. Here, we report the discovery of an organelle-specific myosin V receptor. Vac17p, a novel protein, is a component of the vacuole-specific receptor for Myo2p, a Saccharomyces cerevisiae myosin V. Vac17p interacts with the Myo2p cargo-binding domain, but not with vacuole inheritance-defective myo2 mutants that have single amino acid changes within this region. Moreover, a region of the Myo2p tail required specifically for secretory vesicle transport is neither required for vacuole inheritance nor for Vac17p-Myo2p interactions. Vac17p is localized on the vacuole membrane, and vacuole-associated Myo2p increases in proportion with an increase in Vac17p. Furthermore, Vac17p is not required for movement of other cargo moved by Myo2p. These findings demonstrate that Vac17p is a component of a vacuole-specific receptor for Myo2p. Organelle-specific receptors such as Vac17p provide a mechanism whereby a single type of myosin V can move diverse cargoes to distinct destinations at different times.  相似文献   

9.
In Saccharomyces cerevisiae, the unconventional myosin Myo2p is of fundamental importance in polarized growth. We explore the role of the neck region and its associated light chains in regulating Myo2p function. Surprisingly, we find that precise deletion of the six IQ sites in the neck region results in a myosin, Myo2-Δ6IQp, that can support the growth of a yeast strain at 90% the rate of a wild-type isogenic strain. We exploit this mutant in a characterization of the light chains of Myo2p. First, we demonstrate that the localization of calmodulin to sites of polarized growth largely depends on the IQ sites in the neck of Myo2p. Second, we demonstrate that a previously uncharacterized protein, Mlc1p, is a myosin light chain of Myo2p. MLC1 (YGL106w) is an essential gene that exhibits haploinsufficiency. Reduced levels of MYO2 overcome the haploinsufficiency of MLC1. The mutant MYO2-Δ6IQ is able to suppress haploinsufficiency but not deletion of MLC1. We used a modified gel overlay assay to demonstrate a direct interaction between Mlc1p and the neck of Myo2p. Overexpression of MYO2 is toxic, causing a severe decrease in growth rate. When MYO2 is overexpressed, Myo2p is fourfold less stable than in a wild-type strain. High copies of MLC1 completely overcome the growth defects and increase the stability of Myo2p. Our results suggest that Mlc1p is responsible for stabilizing this myosin by binding to the neck region.  相似文献   

10.
Myosin V is an actin-based motor essential for a variety of cellular processes including skin pigmentation, cell separation and synaptic transmission. Myosin V transports organelles, vesicles and mRNA by binding, directly or indirectly, to cargo-bound receptors via its C-terminal globular tail domain (GTD). We have used the budding yeast myosin V Myo2p to shed light on the mechanism of how Myo2p interacts with post-Golgi carriers. We show that the Rab/Ypt protein Ypt32p, which associates with membranes of the trans -Golgi network, secretory vesicles and endosomes and is related to the mammalian Rab11, interacts with the Myo2p GTD within a region previously identified as the 'vesicle binding region'. Furthermore, we show that the essential myosin light chain 1 (Mlc1p), required for vesicle delivery at the mother-bud neck during cytokinesis, binds to the Myo2p GTD in a region overlapping that of Ypt32p. Our data are consistent with a role of Ypt32p and Mlc1p in regulating the interaction of post-Golgi carriers with Myo2p subdomain II.  相似文献   

11.
Since their identification over 15?years ago, the IQGAP (IQ-motif-containing GTPase-activating protein) family of proteins have been implicated in a wide range of cellular processes, including cytoskeletal reorganization, cell-cell adhesion, cytokinesis and apoptosis. These processes rely on protein-protein interactions, and understanding these (and how they influence one another) is critical in determining how the IQGAPs function. A key group of interactions is with calmodulin and the structurally related proteins myosin essential light chain and S100B. These interactions occur primarily through a series of IQ motifs, which are α-helical segments of the protein located towards the middle of the primary sequence. The three human IQGAP isoforms (IQGAP1, IQGAP2 and IQGAP3) all have four IQ motifs. However, these have different affinities for calmodulin, myosin light chain and S100B. Whereas all four IQ motifs of IQGAP1 interact with calmodulin in the presence of calcium, only the last two do so in the absence of calcium. IQ1 (the first IQ motif) interacts with the myosin essential light chain Mlc1sa and the first two undergo a calcium-dependent interaction with S100B. The significance of the interaction between Mlc1sa and IQGAP1 in mammals is unknown. However, a similar interaction involving the Saccharomyces cerevisiae IQGAP-like protein Iqg1p is involved in cytokinesis, leading to speculation that there may be a similar role in mammals.  相似文献   

12.
MLC1 is a haploinsufficient gene encoding the essential light chain for Myo1, the sole myosin‑II heavy chain in the budding yeast Saccharomyces cerevisiae. Mlc1 defines an essential hub that coordinates actomyosin ring function, membrane trafficking, and septum formation during cytokinesis by binding to IQGAP, myosin‑II, and myosin‑V. However, the mechanism of how Mlc1 is targeted to the division site during the cell cycle remains unsolved. By constructing a GFP‑tagged MLC1 under its own promoter control and using quantitative live‑cell imaging coupled with yeast mutants, we found that septin ring and actin filaments mediate the targeting of Mlc1 to the division site before and during cytokinesis, respectively. Both mechanisms contribute to and are collectively required for the accumulation of Mlc1 at the division site during cytokinesis. We also found that Myo1 plays a major role in the septin‑dependent Mlc1 localization before cytokinesis, whereas the formin Bni1 plays a major role in the actin filament–dependent Mlc1 localization during cytokinesis. Such a two‑tiered mechanism for Mlc1 localization is presumably required for the ordered assembly and robustness of cytokinesis machinery and is likely conserved across species.  相似文献   

13.
The proposed function of Cdc4p, an essential contractile ring protein in Schizosaccharomyces pombe, is that of a myosin essential light chain. However, five conditionally lethal cdc4 alleles exhibit complementation in diploids. Such interallelic complementation is not readily explained if the sole function of Cdc4p is that of a myosin essential light chain. Complementation of cdc4 alleles could occur only if different mutant forms can assemble into an active oligomeric complex or if Cdc4p has more than one essential function. To search for other proteins that may interact with Cdc4p, we performed a two-hybrid screen and identified two such candidates: one similar to Saccharomyces cerevisiae Vps27p and the other a putative phosphatidylinositol (PI) 4-kinase. Binding of Cdc4p to the latter and to myosin heavy chain (Myo2p) was confirmed by immunosorbent assays. Deletion studies demonstrated interaction between the Cdc4p C-terminal domain and the PI 4-kinase C-terminal domain. Furthermore, interaction was abolished by the Cdc4p C-terminal domain point mutation, Gly107 to Ser. This allele also causes failure of cytokinesis. Ectopic expression of the PI 4-kinase C-terminal domain caused cytokinesis defects that were most extreme in cells carrying the G107S allele. We suggest that Cdc4p plays multiple roles in cytokinesis and that interaction with a PI 4-kinase may be important for contractile ring assembly and/or function.  相似文献   

14.
The fission yeast Schizosaccharomyces pombe undergoes cell division through a medially placed actomyosin-based contractile ring. One of the key components of this ring is the F-actin based motor protein myosin II. The myosin II heavy chain Myo2p has two light-chain-binding domains, IQl and IQ2, which bind the essential light chain, Cdc4p, and the regulatory light chain, Rlc1p. Previously, we have reported the characterization of cells expressing Myo2p lacking the IQ2 domain that facilitates Myo2p interaction with Rlc1p. In this study, we have created and characterized S. pombe strains carrying precise deletions of IQ1 and the entire neck region encompassing the IQ1 and IQ2 domains. Surprisingly, we found that the entire neck region of Myo2p is dispensable for Myo2p function. Cells deleted for IQ1, IQ2 and the entire neck region of Myo2p do not display any obvious cytoskeletal abnormalities. Immunofluorescence studies indicated that Cdc4p localizes at the ring in early and late mitotic cells in a strain in which interactions of Cdc4p with both the myosin II heavy chains (Myo2p and Myp2p) are abolished. Unlike mutations in Rlc1p that are suppressed by a simultaneous deletion of its binding site on Myo2p, mutations in the essential light chain Cdc4p are not suppressed by deletion of its binding sites on Myo2p, suggesting that Cdc4p may have additional partners essential for cytokinesis. Consistent with this, we provide evidence that two other IQ-domain containing actomyosin ring proteins, Rng2p (an IQGAP-related protein) and Myo51p (a type V myosin heavy chain), physically interact with Cdc4p. We concluded that Cdc4p, a novel myosin light chain, interacts with multiple actomyosin ring components to effect cytokinesis.  相似文献   

15.
The translation termination factor eRF1 recognizes stop codons at the A site of the ribosome and induces peptidyl-tRNA hydrolysis at the peptidyl transferase centre. Recent data show that, besides translation, yeast eRF1 is also involved in cell cycle regulation. To clarify the mechanisms of non-translational functions of eRF1, we performed a genetic screen for its novel partner proteins. This screen revealed the gene for myosin light chain, Mlc1p, acting as a dosage suppressor of a temperature-sensitive mutation in the SUP45 gene encoding eRF1. eRF1 and Mlc1p are able to interact with each other and, similarly to depletion of Mlc1p, mutations in the SUP45 gene may affect cytokinesis. Immunofluorescent staining performed to determine localization of Mlc1p has shown that the sup45 mutation, which arrests cytokinesis, redistributed Mlc1p, causing its disappearance from the bud tip and the bud neck. The data obtained demonstrate that yeast eRF1 has an important non-translational function effecting cytokinesis via interaction with Mlc1p.  相似文献   

16.
A split-EGFP based bimolecular fluorescence complementation (BiFC) assay has been used to detect interactions between the Saccharomyces cerevisiae cytoskeletal scaffolding protein Iqg1p and three targets: myosin essential light chain (Mlc1p), calmodulin (Cmd1p) and the small GTPase Cdc42p. The format of the BiFC assay used ensures that the proteins are expressed at wild type levels thereby avoiding artefacts due to overexpression. This is the first direct in vivo detection of these interactions; in each case, the complex is localised to discrete regions of the yeast cytoplasm. The labelling with EGFP fragments results in changes in growth kinetics, cell size and budding frequency. This is partly due to the reassembled EGFP locking the complexes into essentially permanent interactions. The consequences of this for Iqg1p interactions and BiFC assays in general are discussed.  相似文献   

17.
In the yeast Saccharomyces cerevisiae, a ring of myosin II forms in a septin-dependent manner at the budding site in late G1. This ring remains at the bud neck until the onset of cytokinesis, when actin is recruited to it. The actomyosin ring then contracts, septum formation occurs concurrently, and cytokinesis is soon completed. Deletion of MYO1 (the only myosin II gene) is lethal on rich medium in the W303 strain background and causes slow-growth and delayed-cell-separation phenotypes in the S288C strain background. These phenotypes can be suppressed by deletions of genes encoding nonessential components of the anaphase-promoting complex (APC/C). This suppression does not seem to result simply from a delay in mitotic exit, because overexpression of a nondegradable mitotic cyclin does not suppress the same phenotypes. Overexpression of either IQG1 or CYK3 also suppresses the myo1Delta phenotypes, and Iqg1p (an IQGAP protein) is increased in abundance and abnormally persistent after cytokinesis in APC/C mutants. In vitro assays showed that Iqg1p is ubiquitinated directly by APC/C(Cdh1) via a novel recognition sequence. A nondegradable Iqg1p (lacking this recognition sequence) can suppress the myo1Delta phenotypes even when expressed at relatively low levels. Together, the data suggest that compromise of APC/C function allows the accumulation of Iqg1p, which then promotes actomyosin-ring-independent cytokinesis at least in part by activation of Cyk3p.  相似文献   

18.
In the budding yeast Saccharomyces cerevisiae, an actomyosin-based contractile ring is present during cytokinesis, as occurs in animal cells. However, the precise requirement for this structure during budding yeast cytokinesis has been controversial. Here we show that deletion of MYO1, the single myosin II gene, is lethal in a commonly used strain background. The terminal phenotype of myo1Delta is interconnected chains of cells, suggestive of a cytokinesis defect. To further investigate the role of Myo1p in cytokinesis, we conditionally disrupted Myo1 function by using either a dominant negative Myo1p construct or a strain where expression of Myo1p can be shut-off. Both ways of disruption of Myo1 function result in a failure in cytokinesis. Additionally, we show that a myo1Delta strain previously reported to grow nearly as well as the wild type contains a single genetic suppressor that alleviates the severe cytokinesis defects of myo1Delta. Using fluorescence time-lapse imaging and electron microscopy techniques, we show that cytokinesis in this strain is achieved through formation of multiple aberrant septa. Taken together, these results strongly suggest that the actomyosin ring is crucial for successful cytokinesis in budding yeast, but new cytokinetic mechanisms can evolve through genetic changes when myosin II function is impaired.  相似文献   

19.
The F-actin based motor protein myosin II has a key role in cytokinesis. Here we show that the Schizosaccharomyces pombe regulatory light chain (RLC) protein Rlc1p binds to Myo2p in manner that is dependent on the IQ sequence motif (the RLC-binding site), and that Rlc1p is a component of the actomyosin ring. Rlc1p is important for cytokinesis at all growth temperatures and is essential for this process at lower temperatures. Interestingly, all deleterious phenotypes associated with the loss of Rlc1p function are suppressed by deletion of the RLC binding site on Myo2p. We conclude that the sole essential function of RLCs in fission yeast is to relieve the auto-inhibition of myosin II function, which is mediated by the RLC-binding site, on the myosin heavy chain (MHC).  相似文献   

20.
The Saccharomyces cerevisiae mitotic exit network (MEN) is a conserved set of genes that mediate the transition from mitosis to G(1) by regulating mitotic cyclin degradation and the inactivation of cyclin-dependent kinase (CDK). Here, we demonstrate that, in addition to mitotic exit, S. cerevisiae MEN gene MOB1 is required for cytokinesis and cell separation. The cytokinesis defect was evident in mob1 mutants under conditions in which there was no mitotic-exit defect. Observation of live cells showed that yeast myosin II, Myo1p, was present in the contractile ring at the bud neck but that the ring failed to contract and disassemble. The cytokinesis defect persisted for several mitotic cycles, resulting in chains of cells with correctly segregated nuclei but with uncontracted actomyosin rings. The cytokinesis proteins Cdc3p (a septin), actin, and Iqg1p/ Cyk1p (an IQGAP-like protein) appeared to correctly localize in mob1 mutants, suggesting that MOB1 functions subsequent to actomyosin ring assembly. We also examined the subcellular distribution of Mob1p during the cell cycle and found that Mob1p first localized to the spindle pole bodies during mid-anaphase and then localized to a ring at the bud neck just before and during cytokinesis. Localization of Mob1p to the bud neck required CDC3, MEN genes CDC5, CDC14, CDC15, and DBF2, and spindle pole body gene NUD1 but was independent of MYO1. The localization of Mob1p to both spindle poles was abolished in cdc15 and nud1 mutants and was perturbed in cdc5 and cdc14 mutants. These results suggest that the MEN functions during the mitosis-to-G(1) transition to control cyclin-CDK inactivation and cytokinesis.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号