首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
We have investigated mutants of phytochrome Cph1 from the cyanobacterium Synechocystis PCC6803 in order to study chromophore-protein interactions. Cph1Delta2, the 514-residue N-terminal sensor module produced as a recombinant His6-tagged apoprotein in Escherichia coli, autoassembles in vitro to form a holoprotein photochemically indistinguishable from the full-length product. We generated 12 site-directed mutants of Cph1Delta2, focusing on conserved residues which might be involved in chromophore-protein autoassembly and photoconversion. Folding, phycocyanobilin-binding and Pr-->Pfr photoconversion were analysed using CD and UV-visible spectroscopy. MALDI-TOF-MS confirmed C259 as the chromophore attachment site. C259L is unable to attach the chromophore covalently but still autoassembles to form a red-shifted photochromic holoprotein. H260Q shows UV-visible properties similar to the wild-type at pH 7.0 but both Pr and Pfr (reversibly) bleach at pH 9.0, indicating that the imidazole side chain buffers chromophore protonation. Mutations at E189 disturbed folding but the residue is not essential for chromophore-protein autoassembly. In D207A, whereas red irradiation of the ground state leads to bleaching of the red Pr band as in the wild-type, a Pfr-like peak does not arise, implicating D207 as a proton donor for a deprotonated intermediate prior to Pfr. UV-Vis spectra of both H260Q under alkaline conditions and D207A point to a particular significance of protonation in the Pfr state, possibly implying proton migration (release and re-uptake) during Pr-->Pfr photoconversion. The findings are discussed in relation to the recently published 3D structure of a bacteriophytochrome fragment.  相似文献   

2.
Psakis G  Mailliet J  Lang C  Teufel L  Essen LO  Hughes J 《Biochemistry》2011,50(28):6178-6188
Cyanobacterial phytochrome 1 (Cph1) is a red/far-red light regulated histidine kinase, which together with its response regulator (Rcp1) forms a two-component light signaling system in Synechocystis 6803. In the present study we followed the in vitro autophosphorylation of Cph1 and the subsequent phosphotransfer to Rcp1 in different ionic milieus and following different light treatments. Both processes were red/far-red reversible with activity manifested in the Pr ground state (in darkness or after far-red irradiation) and with strongest activities being exhibited in the presence of Mn(2+). In vivo and in vitro assembled holoproteins in the Pr state displayed at least 4-fold higher efficiencies (k(cat)/K(m)) for autophosphorylation and phosphotransfer than the apoprotein or the holoprotein at photoequilibrium in red light. The reduced activities observed following red light treatments were consistent with the Pfr state being enzymatically inactive. Thus, both the rate of kinase autophosphorylation and the rate of phosphotransfer regulate the phosphorylation state of the response regulator, consistent with the rotary switch model regulating accessibility of the histidine target.  相似文献   

3.
Lamparter T  Michael N 《Biochemistry》2005,44(23):8461-8469
Photoconversion of phytochrome from the red-absorbing form Pr to the far-red-absorbing form Pfr is initiated by a Z to E isomerization around the ring C-ring D connecting double bond; the chromophore undergoes a ZZZ to ZZE isomerization. In vivo, phytochrome chromophores are covalently bound to the protein, but several examples of noncovalent in vitro adducts have been reported which also undergo Pr to Pfr photoconversion. We show that free biliverdin or phycocyanobilin, highly enriched in the ZZE isomer, can easily be obtained from chromophores bound in a noncovalent manner to Agrobacterium phytochrome Agp1, and used for spectral assays. Photoconversion of free biliverdin in a methanol/HCl solution from ZZE to ZZZ proceeded with a quantum yield of 1.8%, but was negligible in neutral methanol solution, indicating that this process is proton-dependent. The ZZE form of biliverdin and phycocyanobilin were tested for their ability to assemble with Agp1 and cyanobacterial phytochrome Cph1, respectively. In both cases, a Pfr-like adduct was formed but the chromophore was bound in a noncovalent manner to the protein. Agp1 Pfr undergoes dark reversion to Pr; the same feature was found for the noncovalent ZZE adduct. After dark reversion, the chromophore became covalently bound to the protein. In analogy, the PCB chromophore became covalently bound to Cph1 upon irradiation with strong far-red light which initiated ZZE to ZZZ isomerization. Agrobacterium Agp2 belongs to a yet small group of phytochromes which also assemble in the Pr form but convert from Pr to Pfr in darkness. When the Agp2 apoprotein was assembled with the ZZE form of biliverdin, the formation of the final adduct was accelerated compared to the formation of the ZZZ control, indicating that the ZZE chromophore fits directly into the chromophore pocket of Agp2.  相似文献   

4.
Femtosecond time-resolved transient absorption spectroscopy was employed to characterize for the first time the primary photoisomerization dynamics of a bacterial phytochrome system in the two thermally stable states of the photocycle. The 85-kDa phytochrome Cph1 from the cyanobacterium Synechocystis PCC 6803 expressed in Escherichia coli was reconstituted with phycocyanobilin (Cph1-PCB) and phycoerythrobilin (Cph1-PEB). The red-light-absorbing form Pr of Cph1-PCB shows an approximately 150 fs relaxation in the S(1) state after photoexcitation at 650 nm. The subsequent Z-E isomerization between rings C and D of the linear tetrapyrrole-chromophore is best described by a distribution of rate constants with the first moment at (16 ps)(-1). Excitation at 615 nm leads to a slightly broadened distribution. The reverse E-Z isomerization, starting from the far-red-absorbing form Pfr, is characterized by two shorter time constants of 0.54 and 3.2 ps. In the case of Cph1-PEB, double-bond isomerization does not take place, and the excited-state lifetime extends into the nanosecond regime. Besides a stimulated emission rise time between 40 and 150 fs, no fast relaxation processes are observed. This suggests that the chromophore-protein interaction along rings A, B, and C does not contribute much to the picosecond dynamics observed in Cph1-PCB but rather the region around ring D near the isomerizing C(15) [double bond] C(16) double bond. The primary reaction dynamics of Cph1-PCB at ambient temperature is found to exhibit very similar features as those described for plant type A phytochrome, i.e., a relatively slow Pr, and a fast Pfr, photoreaction. This suggests that the initial reactions were established already before evolution of plant phytochromes began.  相似文献   

5.
Phytochromes are biliprotein photoreceptors that can be photoswitched between red-light-absorbing state (Pr) and far-red-light-absorbing state (Pfr). Although three-dimensional structures of both states have been reported, the photoconversion and intramolecular signaling mechanisms are still unclear. Here, we report UV-Vis absorbance, fluorescence and CD spectroscopy along with various photochemical parameters of the wild type and Y263F, Y263H and Y263S mutants of the Cph1 photosensory module, as well as a 2.0-Å-resolution crystal structure of the Y263F mutant in its Pr ground state. Although Y263 is conserved, we show that the aromatic character but not the hydroxyl group of Y263 is important for Pfr formation. The crystal structure of the Y263F mutant (Protein Data Bank ID: 3ZQ5) reaffirms the ZZZssa chromophore configuration and provides a detailed picture of its binding pocket, particularly conformational heterogeneity around the chromophore. Comparison with other phytochrome structures reveals differences in the relative position of the PHY (phytochrome specific) domain and the interaction of the tongue with the extreme N-terminus. Our data support the notion that native phytochromes in their Pr state are structurally heterogeneous.  相似文献   

6.
Strauss HM  Schmieder P  Hughes J 《FEBS letters》2005,579(18):3970-3974
Phytochromes, photoreceptors controlling important physiological processes in plants and many prokaryotes, are photochromic biliproteins. The red-absorbing Pr ground state is converted by light into the farred-absorbing Pfr which can be photoconverted back to Pr. In plants at least Pfr is the physiologically active signalling state. Here, we show that the N-terminal photochromic module of Cph1 homodimerises reversibly and independently in Pr and Pfr, Pfr-dimers being significantly more stable. Implications for the mechanism of signal transduction are discussed.  相似文献   

7.
Site-directed mutagenesis was performed with the chromophore-bearing N-terminal domain of oat phytochrome A apoprotein (amino acid residues 1-595). Except for Trp366, which was replaced by Phe (W366F), all the residues exchanged are in close proximity to the chromophore-binding Cys321 (i.e. P318A, P318K, H319L, S320K, H322L and the double mutant L323R/Q324D). The mutants were characterized by their absorption maxima, and the kinetics of chromophore-binding and the Pr-->Pfr conversion. The strongest effect of mutation on the chromoprotein assembly, leading to an almost complete loss of the chromophore binding capability, was found for the exchanges of His322 by Leu (H322L) and Pro318 by Lys (P318K), whereas a corresponding alanine mutant (P318A) showed wild-type behavior. The second histidine (H319) is also involved in chromophore fixation, as indicated by a slower assembly rate upon mutation (H319L). For the other mutants, an assembly process very similar to that of the wild-type protein was found. The light-induced Pr-->Pfr conversion kinetics is altered in the mutations H319L and S320K and in the double mutant L323R/Q324D, all of which exhibited a significantly faster I700 decay and accelerated Pfr formation. P318 is also involved in the Pr-->Pfr conversion, the millisecond steps (formation of Pfr) being significantly slower for P318A. Lacking sufficient amounts of W366F, assembly kinetics could not be determined in this case, while the fully assembled mutant underwent the Pr-->Pfr conversion with kinetics similar to wild-type protein.  相似文献   

8.
Phytochrome degradation   总被引:18,自引:3,他引:15  
Plants actively modulate the levels of the various phyto-chrome isoforms during their life cycle to optimize light absorption and perception. For phytochrome A (phyA), one of the most influential methods of control is selective turnover of the photoreceptor upon photoconversion from the red-absorbing form (Pr) to the far-red-absorbing form (Pfr). Whereas the Pr form has a half-life of approximately 1 week, the Pfr form is rapidly degraded with a half-life of 1–2 h. The ubiquitin/26S proteasome pathway has been implicated in phyA breakdown. In this proteolytic pathway, multiple ubiquitins are covalently attached to proteins committed for degradation; these ubiquitin-protein conjugates then serve as intermediates in the breakdown of the target protein by the 26S proteasome, a multi-subunit proteolytic complex. In several plant species, ubiquitin-phyA conjugates have been detected in vivo following Pfr formation that show accumulation and decay kinetics expected for Pfr degradation intermediates. Analyses of phyA mutants and phyA/phyB chimeras expressed in transgenic plants have been particularly useful in mapping domains within the chromoprotein that are necessary for Pfr degradation. Several domains have been identified within both the N- and C-terminal portions of the photoreceptor that presumably serve as recognition and/or acceptor sites for ubiquitination  相似文献   

9.
Phytochromes are dimeric photoreceptors that regulate a range of responses in plants and microorganisms through interconversion of red light-absorbing (Pr) and far-red light-absorbing (Pfr) states. Photoconversion between these states is initiated by light-driven isomerization of a bilin cofactor, which triggers protein structural change. The extent of this change, and how light-driven structural changes in the N-terminal photosensory region are transmitted to the C-terminal regulatory domain to initiate the signalling cascade, is unknown. We have used pulsed electron-electron double resonance (PELDOR) spectroscopy to identify multiple structural transitions in a phytochrome from Synechocystis sp. PCC6803 (Cph1) by measuring distances between nitroxide labels introduced into the protein. We show that monomers in the Cph1 dimer are aligned in a parallel ‘head-to-head’ arrangement and that photoconversion between the Pr and Pfr forms involves conformational change in both the N- and C-terminal domains of the protein. Cryo-trapping and kinetic measurements were used to probe the extent and temporal properties of protein motions for individual steps during photoconversion of Cph1. Formation of the primary photoproduct Lumi-R is not affected by changes in solvent viscosity and dielectric constant. Lumi-R formation occurs at cryogenic temperatures, consistent with their being no major structural reorganization of Cph1 during primary photoproduct formation. All remaining steps in the formation of the Pfr state are affected by solvent viscosity and dielectric constant and occur only at elevated temperatures, implying involvement of a series of long-range solvent-coupled conformational changes in Cph1. We show that signalling is achieved through ultrafast photoisomerization where localized structural change in the GAF domain is transmitted and amplified to cause larger-scale and slower conformational change in the PHY and histidine kinase domains. This hierarchy of timescales and extent of structural change orientates the histidine kinase domain to elicit the desired light-activated biological response.  相似文献   

10.
Strauss HM  Hughes J  Schmieder P 《Biochemistry》2005,44(23):8244-8250
Precise structural information regarding the chromophore binding pocket is essential for an understanding of photochromicity and photoconversion in phytochrome photoreceptors. To this end, we are studying the 59 kDa N-terminal module of the cyanobacterial phytochrome Cph1 from Synechocystis sp. PCC 6803 in both thermally stable forms (Pr and Pfr) using solution-state NMR spectroscopy. The protein is deuterated, while the chromophore, phycocyanobilin (PCB), is isotopically labeled with (15)N or (13)C and (15)N. We have established a simple approach for preparing labeled PCB based on BG11 medium supplemented with an appropriate buffer and NaH(13)CO(3) and Na(15)NO(3) as sole carbon and nitrogen sources, respectively. We show that structural details of the chromophore binding pocket in both Pr and Pfr forms can be obtained using multidimensional heteronuclear solution-state NMR spectroscopy. Using one-dimensional (15)N NMR spectra, we show unequivocally that the chromophore is protonated in both Pr and Pfr states.  相似文献   

11.
Phytochrome photoreceptors undergo reversible photoconversion between the red-absorbing form, Pr, and the far-red-absorbing form, Pfr. The first step in the conversion from Pr to Pfr is a Z to E isomerization around the C15=C16 double bond of the bilin chromophore. We prepared four synthetic biliverdin (BV) derivatives in which rings C and D are sterically locked by cyclizing with an additional carbon chain. In these chromophores, which are termed 15Za, 15Zs, 15Ea, and 15Es, the C15=C16 double bond is in either the Z or E configuration and the C14-C15 single bond in either the syn or anti conformation. The chromophores were assembled with Agrobacterium phytochrome Agp1, which incorporates BV as natural chromophore. All locked BV derivatives bound covalently to the protein and formed adducts with characteristic spectral properties. The 15Za adduct was spectrally similar to the Pr form and the 15Ea adduct similar to the Pfr form of the BV adduct. Thus, the chromophore of Agp1 adopts a C15=C16 Z configuration and a C14-C15 anti conformation in the Pr form and a C15=C16 E configuration and a C14-C15 anti conformation in the Pfr form. Both the 15Zs and the 15Es adducts absorbed only in the blue region of the visible spectra. All chromophore adducts were analyzed by size exclusion chromatography and histidine kinase activity to probe for protein conformation. In either case, the 15Za adduct behaved like the Pr and the 15Ea adduct like the Pfr form of Agp1. Replacing the natural chromophore by a locked 15Ea derivative can thus bring phytochrome holoprotein in the Pfr form in darkness. In this way, physiological action of Pfr can be studied in vivo and separated from Pr/Pfr cycling and other light effects.  相似文献   

12.
A set of rat monoclonal antibodies (ARC MAC 48 to 52 and 54 to 56), raised to phytochrome from dark-grown seedlings of Avena sativa L. was tested for the ability to discriminate between the red-absorbing (Pr) and far-red-absorbing (Pfr) forms of phytochrome by indirect enzyme-linked immunosorbent assay. MAC 50 bound more strongly to Pfr and MAC 49 and 52 showed preferential binding to Pr from extracts of dark-grown Avena seedlings; MAC 50 also bound more strongly to Pfr from brushite-purified phytochrome. The remainder of the monoclonal antibodies and a rabbit polyclonal antiphytochrome preparation did not discriminate between Pr and Pfr. The results provide evidence for conformational changes in defined regions of the phytochrome apoprotein upon photoconversion.Abbreviations ELISA enzyme-linked immunosorbent assay - FR far-red light - McAb monoclonal antibody(ies) - PBS phosphate-buffered saline - Pfr far-red-absorbing form of phytochrome - Pr red-absorbing form of phytochrome - R red light - PMSF phenylmethylsulphonylfluoride  相似文献   

13.
Resonance Raman (RR) scattering from intact pea phytochrome was observed in resonance with the blue band at ambient temperature. The relative populations of the red-light-absorbing form (Pr) and far-red-light-absorbing form (Pfr) under laser illumination were estimated from the absorption spectra. The most prominent RR band of Pr obtained by 364-nm excitation under 740-nm pumping exhibited a frequency shift between H2O and D2O solutions, but that of Pfr obtained by 407-nm excitation under 633-nm pumping did not, indicating a distinct difference in a protonation state of their chromophores. Since the protonation level of a whole molecule of intact phytochrome remains unchanged between Pr and Pfr, this observation indicates migration of a proton from the chromophore of Pr to the protein moiety of Pfr. As model compounds, octaethylbiliverdin (OEBV-h3), its deuterated and 15N derivatives, and their protonated forms were also studied with both RR and 1H and 15N NMR spectroscopies. The RR spectrum of the protonated form, for which the protonation site was determined to be C-ring pyrrole nitrogen by NMR, displayed a deuteration shift corresponding to that of Pr, suggesting a similar protonated structure for the pyrrolic rings of Pr. The RR spectral difference between OEBV-h3 and OEBV-d3 and that between H2O and D2O solutions of Pfr suggested that the N-H protons of the A-, B-, and D-rings of intact phytochrome are replaced with deuterons in D2O. A role of the 7-kDa segment of phytochrome is discussed on the basis of RR spectral differences between the intact and large phytochromes.  相似文献   

14.
Park CM  Shim JY  Yang SS  Kang JG  Kim JI  Luka Z  Song PS 《Biochemistry》2000,39(21):6349-6356
The secondary, tertiary, and quaternary structures of the Synechocystis Cph1 phytochrome were investigated by absorption and circular dichroism spectroscopy, size exclusion chromatography, and limited proteolysis. The Cph1 protein was coexpressed with a bacterial thioredoxin in Escherichia coli, reconstituted in vitro with tetrapyrrole chromophores, and purified by chitin affinity chromatography. The resultant Cph1 holoproteins were essentially pure and had the specific absorbance ratio (SAR) of 0.8-0.9. Circular dichroism spectroscopy and limited proteolysis showed that the chromophore binding induced marked conformational changes in the Cph1 protein. The alpha-helical content increased to 42-44% in the holoproteins from 37% in the apoprotein. However, no significant difference in the secondary structure was detected between the Pr and Pfr forms. The tertiary structure of the Cph1 apoprotein appeared to be relatively flexible but became more compact and resistant to tryptic digestion upon chromophore binding. Interestingly, a small chromopeptide of about 30 kDa was still predominant even after longer tryptic digestion. The N-terminal location of this chromopeptide was confirmed by expression in E. coli and in vitro reconstitution with chromophores of the 32.5 kDa N-terminal fragment of the Cph1 protein. This chromopeptide was fully photoreversible with the spectral characteristic similar to that of the full-size Cph1 protein. The Cph1 protein forms dimers through the C-terminal region. These results suggest that the prokaryotic Cph1 phytochrome shares the structural and conformational characteristics of plant phytochromes, such as the two-domain structure consisting of the relatively compact N-terminal and the relatively flexible C-terminal regions, in addition to the chromophore-induced conformational changes.  相似文献   

15.
Phytochrome of oat (Avena sativa L., cv. Garry) coleoptile cells in the red-light-absorbing form, Pr, is diffusely distributed while after conversion to the far-red-light-absorbing form, Pfr, it is observed only in very small areas within the cell. Comparison of phytochrome photoversibility measurements to the distribution of the pigment within the cell indicates that the spectral assay is not influenced by the observed compartmentalization of the chromoprotein. However, the observed compartmentalization of phytochrome is correlated with a loss in spectrophotometrically detectable Pr.Abbreviations Pr red-absorbing form of phytochrome - Pfr farred-absorbing form of phytochrome - R red light - FR far-red light C.I.W.-D.P.B. Publication No. 622  相似文献   

16.
Seeds (nutlets) of Rumex obtusifolius L. fail to germinate in darkness at 25° C, but are stimulated by short exposure to red light (R) the effectiveness of which can be negated by a subsequent short exposure to far red light (F) indicating phytochrome control. Short periods of elevated temperature treatment (e.g. 5 min at 35° C) can induce complete germination in darkness. Although short F cannot revert the effect of 35° C treatment, cycling the phytochrome pool by exposure to short R before short F results in reversion of at least 50% of the population. Prolonged or intermittent F can also revert the germination induced by 35° C treatment. The effect of elevated temperature treatment is interpreted on the basis of two possible models; (i) that it increases the sensitivity of the seeds to a low level of pre-existing active form of phytochrome (Pfr) (ii) that it induces the appearance of Pfr in the dark. In both cases it is envisaged that elevated temperature treatment and Pfr control germination at a common point in the series of reactions that lead to germination.Abbreviations D Dark - F far red light - P phytochrome - Pr red absorbing form of P - Pfr far red absorbing form of P - R red light  相似文献   

17.
A combination of physiological and genetic approaches was used to investigate whether phytochromes and blue light (BL) photoreceptors act in a fully independent manner during photomorphogenesis of Arabidopsis thaliana (L.) Heynh. Wild-type seedlings and phyA, phyBand hy4 mutants were daily exposed to 3 h BL terminated with either a red light (R) or a far-red light (FR) pulse. In wild-type and phyA-mutant seedlings, BL followed by an R pulse inhibited hypocotyl growth and promoted cotyledon unfolding. The effects of BL were reduced if exposure to BL was followed by an FR pulse driving phytochrome to the R-absorbing form (Pr). In the wild type, the effects of R versus FR pulses were small in seedlings not exposed to BL. Thus, maximal responses depended on the presence of both BL and the FR-absorbing form of phytochrome (Pfr) in the subsequent dark period. Impaired responses to BL and to R versus FR pulses were observed in phyB and hy4 mutants. Simultaneous irradiation with orange light indicated that BL, perceived by specific BL photoreceptors (i.e. not by phytochromes), required phytochrome B to display a full effect. These results indicate interdependent co-action between phytochrome B and BL photoreceptors, particularly the HY4 gene product. No synergism between phytochrome A (activated by continuous or pulsed FR) and BL photoreceptors was observed.Abbreviations BL blue light - D darkness - FR far-redlight - FRc continuous FR - Pfr FR-absorbing form of phytochrome - Pfr/P proportion of phytochrome as Pfr - phyA phytochrome A - phyB phytochrome B - R red light - WT wild type We thank Professors R.E. Kendrick and M. Koornneef (Wageningen Agricultural University, The Netherlands), Professor J. Chory (Salk Institute, Calif., USA) and the Arabidopsis Biological Resource Center (Ohio State University, Ohio, USA) for their kind provision of the original seed batches. This work was financially supported by CONICET, Universidad de Buenos Aires (AG 040) and Fundación Antorchas (A-12830/1 0000/9)  相似文献   

18.
The plant photoreceptor chromoprotein, phytochrome, is rapidly degraded in vivo after photoconversion from a stable red light-absorbing form (Pr) to a far-red light-absorbing form (Pfr). Previously, we demonstrated that during Pfr degradation in etiolated oat seedlings, ubiquitin-phytochrome conjugates, (Ub-P), appear and disappear suggesting that phytochrome is degraded via a ubiquitin-dependent proteolytic pathway (Shanklin, J., Jabben, M., and Vierstra, R. D. (1987) Proc. Natl. Acad. Sci. U. S. A. 84, 359-363). Here, we provide additional kinetic and localization data consistent with this hypothesis by exploiting the unique ability to photoregulate phytochrome degradation in vivo. An assay for the quantitation of Ub-P was developed involving immunoprecipitation of total conjugates with anti-ubiquitin antibodies, followed by the detection of Ub-P with anti-phytochrome antibodies. Using this immunoassay, we found that Ub-P will accumulate to approximately 5% of initial phytochrome during Pfr degradation induced by a saturating red light pulse. Reducing the amount of Pfr produced initially by attenuating the red light pulse, lowered the amount of phytochrome degraded in the following dark period and concomitantly reduced the maximal accumulation of Ub-P. Continuous far-red irradiations that maintained only 4% of phytochrome as Pfr induced rapid phytochrome degradation similar to that induced by a red light pulse converting 86% of Pr to Pfr. The appearance and disappearance of Ub-P were similar for each irradiation indicating that Ub-P accumulation is independent of the level of Pfr provided rapid phytochrome degradation is maintained. Pulse-chase studies employing continuous far-red light followed by darkness showed that Ub-P are continuously synthesized during phytochrome degradation and rapidly disappear once degradation ceases. Ub-P also accumulated during "cycled Pr" degradation induced by the transformation of Pr to Pfr and back to Pr. The commitment to degrade cycled Pr and form Ub-P occurred within seconds after Pfr formation making the cause(s) underlying this phenomenon one of the fastest phytochrome reactions known. Within seconds after Pfr formation, a majority of phytochrome is also known to aggregate in vivo (previously defined as sequestered or pelletable), with aggregated phytochrome preferentially lost during phytochrome degradation. In vitro analysis of aggregated phytochrome indicated that they contain most of the Ub-P. Moreover, the appearance of Ub-P in the aggregated and soluble fractions correlated with the time that phytochrome disappeared from that fraction.(ABSTRACT TRUNCATED AT 400 WORDS)  相似文献   

19.
The red-light(R)-absorbing form of phytochrome (Pr) was detected spectrophotometrically in a 20,000 g particulate fraction prepared from a 1,000 g supernatant fraction from epicotyl tissue of pea (Pisum sativum L.) seedlings grown in the dark and only briefly exposed to dim green light. The difference spectrum of phytochrome in this fraction was essentially the same as that of soluble phytochrome from the same tissue. When the non-irradiated 20,000 g particulate fraction was incubated in the dark at 25° C, an absorbance change (decrease) of Pr after actinic red irradiation was found only in the far-red (FR) region. When the 20,000 g particulate fraction was irradiated with R and then incubated in the dark, the FR-absorbing form of phytochrome (Pfr) disappeared spectrally at a rate about half that in the soluble fraction, and the difference spectrum of the Pr which became detectable after dark incubation of the 20,000 g particulate fraction was markedly distorted. In contrast, Pfr in a 20,000 g particulate fraction prepared from tissues irradiated with R did not change optically during dark incubation at 25° C for 60 min, while Pfr in the soluble fraction from the same tissue disappeared in the dark. No dissociation of either Pr or Pfr from the 20,000 g particulate fraction was indicated during a 60-min dark incubation at 25° C, but Pfr in a 20,000 g particulate fraction prepared in vitro from R-irradiated 1,000 g supernatant fraction in the presence of CaCl2 disappeared spectrally and the difference spectrum of Pr in the 20,000 g particulate fraction became quite distorted during the dark incubation.Abbreviations Pr red-light-absorbing form of phytochrome - Pfr far-red-light-absorbing form of phytochrome - FR far-red light - FR1 first actinic far-red light - FR2 second actinic far-red light - R red light - R1 first actinic red light - 1kS 1,000 g supernatant fraction - 20kS 20,000 g supernatant fraction - 20kP 20,000 g particulate fraction  相似文献   

20.
We investigated the functional roles of putative active site residues in Escherichia coli CheA by generating nine site-directed mutants, purifying the mutant proteins, and quantifying the effects of those mutations on autokinase activity and binding affinity for ATP. We designed these mutations to alter key positions in sequence motifs conserved in the protein histidine kinase family, including the N box (H376 and N380), the G1 box (D420 and G422), the F box (F455 and F459), the G2 box (G470, G472, and G474), and the "GT block" (T499), a motif identified by comparison of CheA to members of the GHL family of ATPases. Four of the mutant CheA proteins exhibited no detectable autokinase activity (Kin(-)). Of these, three (N380D, D420N, and G422A) exhibited moderate decreases in their affinities for ATP in the presence or absence of Mg(2+). The other Kin(-) mutant (G470A/G472A/G474A) exhibited wild-type affinity for ATP in the absence of Mg(2+), but reduced affinity (relative to that of wild-type CheA) in the presence of Mg(2+). The other five mutants (Kin(+)) autophosphorylated at rates slower than that exhibited by wild-type CheA. Of these, three mutants (H376Q, D420E, and F455Y/F459Y) exhibited severely reduced k(cat) values, but preserved K(M)(ATP) and K(d)(ATP) values close to those of wild-type CheA. Two mutants (T499S and T499A) exhibited only small effects on k(cat) and K(M)(ATP). Overall, these results suggest that conserved residues in the N box, G1 box, G2 box, and F box contribute to the ATP binding site and autokinase active site in CheA, while the GT block makes little, if any, contribution. We discuss the effects of specific mutations in relation to the three-dimensional structure of CheA and to binding interactions that contribute to the stability of the complex between CheA and Mg(2+)-bound ATP in both the ground state and the transition state for the CheA autophosphorylation reaction.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号