首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Development of left/right handedness in the chick heart.   总被引:2,自引:0,他引:2  
The chick heart tube develops from the fusion of the right and left areas of precardiac mesoderm and in almost all cases loops to the embryo's right-hand side. We have investigated whether any intrinsic difference exists in the right and left areas of precardiac mesoderm, that influences the direction of looping of the heart tube. Chick embryos incubated to stages 4,5 and 6 were cultured by the New method. Areas of precardiac mesoderm were exchanged between donor and host embryos of the same stage and different stages to form control, double-right and double-left sided embryos. Overall, double-right sided embryos formed many more left-hand loops than double-left sided embryos. At stages 4 and 5 a small percentage of double-right embryos formed left-hand loops (13%) whereas at stage 6 almost 50% of hearts had left-hand loops. Control embryos formed right-hand loops in 97% of cases. The stability of right-hand heart looping by double-left sided embryos, may be related to the process of 'conversion', whereas the direction of looping by double-right sided embryos has become randomised. There is some indication that an intrinsic change occurred in the precardiac mesoderm between stages 5 and 6 that later influenced the direction of looping of the heart tube. The direction of body turning is suggested to be linked to the direction of heart looping.  相似文献   

2.
Knowing in your heart what's right   总被引:1,自引:0,他引:1  
  相似文献   

3.
《Biophysical journal》2020,118(3):742-752
In mammals and birds, embryonic development of the heart involves conversion of a straight tubular structure into a three-dimensional helical loop, which is a chiral structure. We investigated theoretically the mechanism of helical loop formation of the mouse embryonic heart, especially focusing on determination of left-/right-handedness of the helical loop. In geometrical terms, chirality is the result of the combination of three axial asymmetries in three-dimensional space. We hypothesized the following correspondences between axial asymmetries and morphogenesis (bending and displacement): the dorsal-ventral asymmetry by ventral bending of a straight tube of the initial heart and the left-right and anterior-posterior asymmetries, the left-right asymmetry by rightward displacement of the heart tube, which is confined to the anterior region of the tube. Morphogenesis of chiral looping of the embryonic heart is a large-scaled event of the multicellular system in which substantial physical force operates dynamically. Using computer simulations with a cell-based physico-mechanical model and experiments with mouse embryos, we confirmed the hypothesis. We conclude that rightward displacement of the tube determines the left-handed screw of the loop. The process of helix loop formation consists of three steps: 1) the left-right biasing system involving Nodal-related signals that leads to left-right asymmetry in the embryonic body; 2) the rightward displacement of the tube; and finally 3) the left-handed helical looping. Step 1 is already established. Step 3 is elucidated by our study, which highlights the need for step 2 to be clarified; namely, we explore how the left-right asymmetry in the embryonic body leads to the rightward displacement of the heart tube.  相似文献   

4.
5.
Cardiac looping is a vital morphogenetic process that transforms the initially straight heart tube into a curved tube normally directed toward the right side of the embryo. While recent work has brought major advances in our understanding of the genetic and molecular pathways involved in looping, the biophysical mechanisms that drive this process have remained poorly understood. This paper examines the role of biomechanical forces in cardiac rotation during the initial stages of looping, when the heart bends and rotates into a c-shaped tube (c-looping). Embryonic chick hearts were subjected to mechanical and chemical perturbations, and tissue stress and strain were studied using dissection and fluorescent labeling, respectively. The results suggest that (1) the heart contains little or no intrinsic ability to rotate, as external forces exerted by the splanchnopleure (SPL) and the omphalomesenteric veins (OVs) drive rotation; (2) unbalanced forces in the omphalomesenteric veins play a role in left-right looping directionality; and (3) in addition to ventral bending and rightward rotation, the heart tube also bends slightly toward the right. The results of this study may help investigators searching for the link between gene expression and the mechanical processes that drive looping.  相似文献   

6.
The heart of any vertebrate is formed from an apparently symmetric cardiac tube that loops consistently in the same direction along the left-right axis of the embryo. In the amphibian Xenopus laevis, inhibition of proteoglycan synthesis by p-nitrophenyl-beta-D-xylopyranoside during a narrow period of development from late gastrula to early neurula specifically eliminated the looping of the cardiac tube. Most of the proteoglycans synthesized during this period were heparan sulfate proteoglycans. Treatment with p-nitrophenyl-alpha-D-xylopyranoside, an analogue that does not inhibit proteoglycan synthesis, did not interfere with cardiac looping. The critical period for proteoglycan synthesis was coincident with the migration of cardiac primordia to the ventral midline. The inhibition of cardiac looping was further explored in explants of cardiac primordia and anterioventral ectoderm. In recombinate embryos in which half the embryo, and thus one of the two heart primordia, was treated with p-nitrophenyl-beta-D-xylopyranoside, and the other half was untreated, cardiac looping occurred normally. It is proposed that the left-right axis in Xenopus, as reflected in cardiac looping, is established early in development, and that proteoglycan synthesis is involved in the transduction of left-right axial information to the cardiac primordia during migration.  相似文献   

7.
8.
Sarcomere formation has been shown to be deficient in the myocardium of axolotl embryos homozygous for the recessive cardiac lethal gene c. We examined the developing hearts of normal and cardiac mutant embryos from tailbud stage 33 to posthatching stage 43 by scanning electron microscopy in order to determine whether that deficiency has any effect on heart morphogenesis. Specifically, we investigated the relationships of myocardial cells during the formation of the heart tube (stage 33), the initiation of dextral looping (stages 34-36), and the subsequent flexure of the elongating heart (stages 38-43). In addition, we compared the morphogenetic events in the axolotl to the published accounts of comparable stages in the chick embryo. In the axolotl (stage 33), changes in cell shape and orientation accompany the closure of the myocardial trough to form the tubular heart. The ventral mesocardium persists longer in the axolotl embryo than in the chick and appears to contribute to the asymmetry of dextral looping (stages 34-36) in two ways. First, as a persisting structure it places constraints on the simple elongation of the heart tube and the ability of the heart to bend. Second, after it is resorbed, the ventral myocardial cells that contributed to it are identifiable by their orientation, which is orthogonal to adjacent cells: a potential source of shearing effects. Cardiac lethal mutant embryos behave identically during these events, indicating that functional sarcomeres are not necessary to these processes. The absence of dynamic apical myocardial membrane changes, characteristic of the chick embryo (Hamburger and Hamilton stages 9-11), suggests that sudden hydration of the cardiac jelly is less likely to be a major factor in axolotl cardiac morphogenesis. Subsequent flexure (stages 38-43) of the axolotl heart is the same in normal and cardiac lethal mutant embryos as the myocardial tube lengthens within the confines of a pericardial cavity of fixed length. However, the cardiac mutant begins to exhibit abnormalities at this time. The lack of trabeculation (normally beginning at stage 37) in the mutant ventricle is evident at the same time as an increase in myocardial surface area, manifest in extra bends of the heart tube at stage 39. Nonbeating mutant hearts (stage 41) have an abnormally large diameter in the atrioventricular region, possibly the result of the accumulation of ascites fluid. In addition, mutant myocardial cells have a larger apical surface area compared to normals.  相似文献   

9.
The nodal and nodal-related genes play fundamental roles during deuterostome left-right axis formation. Several of these genes show left-sided expression in the lateral plate mesoderm and brain region. We have isolated the nodal-related gene, CyNodal, from Cynops pyrrhogaster. CyNodal mRNA is detected at the marginal zone and left side of several tissues. The left-sideness of CyNodal mRNA expression is highly conserved throughout vertebrate evolution. However, CyNodal mRNA expression shows little variation from the Xenopus nodal-related gene 1, in that CyNodal gene expression in the left lateral plate mesoderm shifts from posterior to anterior at least twice.  相似文献   

10.
In human development, it is postulated based on histological sections, that the cardiogenic mesoderm rotates 180° with the pericardial cavity. This is also thought to be the case in mouse development where gene expression data suggests that the progenitors of the right ventricle and outflow tract invert their position with respect to the progenitors of the atria and left ventricle. However, the inversion in both cases is inferred and has never been shown directly. We have used 3D reconstructions and cell tracing in chick embryos to show that the cardiogenic mesoderm is organized such that the lateralmost cells are incorporated into the cardiac inflow (atria and left ventricle) while medially placed cells are incorporated into the cardiac outflow (right ventricle and outflow tract). This happens because the cardiogenic mesoderm is inverted. The inversion is concomitant with movement of the anterior intestinal portal which rolls caudally to form the foregut pocket. The bilateral cranial cardiogenic fields fold medially and ventrally and fuse. After heart looping the seam made by ventral fusion will become the greater curvature of the heart loop. The caudal border of the cardiogenic mesoderm which ends up dorsally coincides with the inner curvature. Physical ablation of selected areas of the cardiogenic mesoderm based on this new fate map confirmed these results and, in addition, showed that the right and left atria arise from the right and left heart fields. The inversion and the new fate map account for several unexplained observations and provide a unified concept of heart fields and heart tube formation for avians and mammals.  相似文献   

11.
The left-right asymmetry of the vertebrate heart is evident in the topology of the heart loop, and in the dissimilar morphology of the left and right chambers. How left-right asymmetric gene expression patterns influence the development of these features is not understood, since the individual roles of the left and right sides of the embryo in heart looping or chamber morphogenesis have not been specifically defined. To this end, we have constructed a bilateral heart-specific fate map of the left and right contributions to the developing heart in the Xenopus embryo. Both the left and right sides contribute to the conoventricular segment of the heart loop; however, the left side contributes to the inner curvature and ventral face of the loop while the right side contributes to the outer curvature and dorsal aspect. In contrast, the left atrium is derived mainly from the original left side of the embryo, while the right atrium is derived primarily from the right side. A comparison of our fate map with the domain of expression of the left-right gene, Pitx2, in the left lateral plate mesoderm, reveals that this Pitx2-expressing region is fated to form the inner curvature of the heart loop, the left atrioventricular canal, and the dorsal aspect of the left atrium. We discuss the implications of these results for the role of left-right asymmetric gene expression in heart looping and chamber morphogenesis.  相似文献   

12.
Vitamin A-deficient (VAD) quail embryos have severe abnormalities, including a high incidence of reversed cardiac situs. Using this model we examined in vivo the physiological function of vitamin A in the left/right (L/R) cardiac asymmetry pathway. Molecular analysis reveals the expression of early asymmetry genes activin receptor IIa, sonic hedgehog, Caronte, Lefty-1, and Fgf8 to be unaffected by the lack of retinoids, while expression of the downstream genes nodal-related, snail-related (cSnR), and Pitx2 is altered. In VAD embryos nodal expression in left lateral plate mesoderm (LPM) is severely downregulated and the expression domain altered during neurulation. Similarly, the expression of cSnR in the right LPM and of Pitx2 in the left side posterior heart-forming region (HFR) is downregulated in the VAD embryos. The lack of retinoids does not cause randomization or ectopic expression of nodal, cSnR, or Pitx2. At the six- to eight-somite stage nodal is expressed transiently in the left posterior HFR of normal quail embryos; this expression is missing in VAD embryos and may be linked to the loss of Pitx2 expression in this region of VAD quail embryos. Administration of retinoids to VAD embryos prior to the six-somite stage rescues the expression of nodal, cSnR, and Pitx2 as well as the randomized VAD cardiac phenotype. There is an absolute requirement for retinoids at the four- to five-somite developmental window for cardiogenesis and cardiac L/R specification to proceed normally. We conclude that retinoids do not regulate the left/right-specific sidedness assignments for expression of genes on the vertebrate cardiac asymmetry pathway, but are required during neurulation for the maintenance of adequate levels of their expression and for the development of the posterior heart tube and a loopable heart. Cardiac asymmetry may be but one of several critical events regulated by retinoid signaling in the retinoid-sensitive developmental window.  相似文献   

13.
In vertebrates, the positioning of the internal organs relative to the midline is asymmetric and evolutionarily conserved. A number of molecules have been shown to play critical roles in left-right patterning. Using representational difference analysis to identify genes that are differentially expressed on the left and right sides of the chick embryo, we cloned chick Claudin-1, an integral component of epithelial tight junctions. Here, we demonstrate that retroviral overexpression of Claudin-1, but not Claudin-3, on the right side of the chick embryo between HH stages 4 and 7 randomizes the direction of heart looping. This effect was not observed when Claudin-1 was overexpressed on the left side of the embryo. A small, but reproducible, induction of Nodal expression in the perinodal region on the right side of the embryo was noted in embryos that were injected with Claudin-1 retroviral particles on their right sides. However, no changes in Lefty,Pitx2 or cSnR expression were observed. In addition, Flectin expression remained higher in the left dorsal mesocardial folds of embryos with leftwardly looped hearts resulting from Claudin-1 overexpression on the right side of the embryo. We demonstrated that Claudin-1's C-terminal cytoplasmic tail is essential for this effect: mutation of a PKC phosphorylation site in the Claudin-1 C-terminal cytoplasmic domain at threonine-206 eliminates Claudin-1's ability to randomize the direction of heart looping. Taken together, our data provide evidence that appropriate expression of the tight junction protein Claudin-1 is required for normal heart looping and suggest that phosphorylation of its cytoplasmic tail is responsible for mediating this function.  相似文献   

14.
During early embryogenesis, the heart is a single, relatively straight tube which bends and twists (loops) rightward to create the basic plan of the mature heart. Despite intensive study for many decades, the biophysical mechanisms which drive and regulate cardiac looping have remained poorly understood. This review discusses, from a historical perspective, studies of looping mechanics and various theories which have been proposed for this complex process. Then, based on recently acquired data, a new biomechanical hypothesis is proposed for the rst phase of looping (c-looping). Understanding morphogenetic mechanisms would facilitate research devoted to preventing and treating congenital heart malformations caused by looping abnormalities.  相似文献   

15.
Recent studies in chick and mouse embryos have identified a previously unrecognized secondary heart field (SHF), located in the ventral midline splanchnic mesenchyme, which provides additional myocardial cells to the outflow tract as the heart tube lengthens during cardiac looping. In order to further delineate the contribution of this secondary myocardium to outflow development, we labeled the right SHF of Hamburger-Hamilton (HH) stage 14 chick embryos via microinjection of DiI/rhodamine and followed the fluorescently labeled cells over a 96-h time period. These experiments confirmed the movement of the SHF into the outflow and its spiraling migration distally, with the right side of the SHF contributing to the left side of the outflow. In contrast, when the right SHF was labeled at HH18, the fluorescence was limited to the caudal wall of the lengthening aortic sac. We then injected a combination of DiI and neutral red dye, and ablated the SHF in HH14 or 18 chick embryos. Embryos were allowed to develop until day 9, and harvested for assessment of outflow alignment. Of the embryos ablated at HH14, 76% demonstrated cardiac defects including overriding aorta and pulmonary atresia, while none of the sham-operated controls were affected. In addition, the more severely affected embryos demonstrated coronary artery anomalies. The embryos ablated at HH18 also manifested coronary artery anomalies but maintained normal outflow alignment. Therefore, the myocardium added to the outflow by the SHF at earlier stages is required for the elongation and appropriate alignment of the outflow tract. However, at later stages, the SHF contributes to the smooth muscle component of the outflow vessels above the pulmonary and aortic valves which is important for the development of the coronary artery stems. This work suggests a role for the SHF in a subset of congenital heart defects that have overriding aorta and coronary artery anomalies, such as tetralogy of Fallot and double outlet right ventricle.  相似文献   

16.
17.
The rightward looping of the primary heart tube is dependent upon upstream patterning events that establish the vertebrate left-right axis. In Xenopus, a left-sided Vg1 signaling pathway has been implicated in instructing cells to adopt a 'left-sided identity'; however, it is not known whether 'right-sided identity' is acquired by a default pathway or by antagonism of Vg1 signaling. Here, we propose that an antagonistic, BMP/ALK2/Smad-mediated signaling pathway is active on the right side of the Xenopus embryo. Truncated ALK2 receptor expression on the right side of the blastula elicits heart reversals and altered nodal expression. Consistent with these findings, constitutively active ALK2 (CA-ALK2) receptor expression on the left side of the blastula also elicits heart reversals and altered nodal expression. Coexpression of CA-ALK2 with mature Vg1 ligand results in predominantly left-sided nodal expression patterns and normal heart looping, demonstrating that the ALK2 pathway can 'rescue' left-right reversals that otherwise occur following right-sided misexpression of mature Vg1 ligand alone. Results with chimeric precursor proteins indicate that the mature domain of BMP ligands can mimic the ability of the ALK2 signaling pathway to antagonize the Vg1 pathway. Consistent with the observed antagonism between BMP and Vg1 ligands, left-sided ectopic expression of Xolloid results in heart reversals. Moreover, ectopic expression of Smad1 or Smad7 identified two downstream modulators of the BMP/ALK2 signaling pathway that also can regulate cardiac orientation. Collectively, these results define a BMP/ALK2-mediated pathway on the right side of the Xenopus embryo and, moreover, suggest that left-right patterning preceding cardiac morphogenesis involves the activation of two distinct and antagonistic, left- and right-sided TGF(beta)-related signaling pathways.  相似文献   

18.
研究以斑马鱼(Danio rerio)为研究模型,选择心脏和血管荧光标记的2个品系斑马鱼为实验材料,设定低氧和常氧2种水体溶氧条件,用荧光显微镜检测低氧胁迫对胚胎形态结构、心脏和血管外部形态、心率、胚胎躯干部主要血管形成的影响.研究发现低氧导致胚胎存活率低于常氧.低氧不仅滞后胚胎发育,而且造成胚胎形态异常.低氧胁迫后斑...  相似文献   

19.
Heparan sulfate (HS) has been shown to be involved in left-right asymmetry formation, including the process of dextral heart looping during embryonic development. The structural features of HS required in this process, however, have not been explored. In this study, we examined the structure of HS from the heart-forming regions (or heart fields) of Hamburger and Hamilton stage 5-9 chick embryos. No significant differences were found in HS to chondroitin sulfate (CS) ratio, HS chain length, or [35S] sulfate incorporation at HS disaccharide level between the left and the right heart fields. Compared to other parts of the embryo, however, lower ratio of HS to CS, shorter HS chain length, and higher [35S] sulfate incorporation at 6-O position of the glucosamine residue in the HS chains were observed in the heart-forming regions. Moreover, HS from the left and the right heart fields exhibit differential cleavage by heparanase, an endo-beta-d- glucuronidase that cleaves specific sequences within the HS chain. In embryo culture, microinjection of the active human heparanase enzyme into the right but not the left pericardial cavity at stage 7-8+ resulted in reversed heart looping in a dose-dependent manner. Heart reversal following microinjection of heparin or heparin derivatives suggests the involvement of N- and 6-O-sulfation but not 2-O-sulfation in the heart looping process.  相似文献   

20.
The heart develops from a linear tubular precursor, which loops to the right and undergoes terminal differentiation to form the multichambered heart. Heart looping is the earliest manifestation of left-right asymmetry and determines the eventual heart situs. The signalling processes that impart laterality to the unlooped heart tube and thus allow the developing organ to interpret the left-right axis of the embryo are poorly understood. Recent experiments in zebrafish led to the suggestion that bone morphogenetic protein 4 (BMP4) may impart laterality to the developing heart tube. Here we show that in Xenopus, as in zebrafish, BMP4 is expressed predominantly on the left of the linear heart tube. Furthermore we demonstrate that ectopic expression of Xenopus nodal-related protein 1 (Xnr1) RNA affects BMP4 expression in the heart, linking asymmetric BMP4 expression to the left-right axis. We show that transgenic embryos overexpressing BMP4 bilaterally in the heart tube tend towards a randomisation of heart situs in an otherwise intact left-right axis. Additionally, inhibition of BMP signalling by expressing noggin or a truncated, dominant negative BMP receptor prevents heart looping but allows the initial events of chamber specification and anteroposterior morphogenesis to occur. Thus in Xenopus asymmetric BMP4 expression links heart development to the left-right axis, by being both controlled by Xnr1 expression and necessary for heart looping morphogenesis.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号