首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Using Chinese hamster/mouse somatic cell hybrids segregating hamster chromosomes, we assigned 15 enzyme genes to six different Chinese hamster autosomes. Of the 15 loci, three genes, HK1, PEPC, and SORD, were newly assigned to chromosomes 1, 5, and 6, respectively, while ENO1, PGD, and PGM1 were assigned to the long arm of chromosome 2, in the segment 2q113----qter. The locations of the following loci were confirmed: ESD, NP, and PEPB on chromosome 1, ME1 and MPI on chromosome 4, AK1 on chromosome 6, and GPI and PEPD on chromosome 9. Comparative mapping of Chinese hamster and laboratory mouse chromosomes revealed conservation of syntenic groups and extensive banding homology between the Chinese hamster and mouse chromosomes on which homologous enzyme markers have been mapped.  相似文献   

2.
Polyethylene glycol-mediated fusion of Chinese hamster ovary (CHO) cells with mouse Cl1D cells produced interspecific somatic cell hybrids which slowly segregated CHO chromosomes. Cytogenetic and isozyme analysis of HAT- and bromodeoxyuridine-selected hybrid subclones and of members of a hybrid clone panel retaining different combinations of CHO chromosomes enabled provisional assignments of the following enzyme loci to CHO chromosomes: TK, GALK, and ACP1 to chromosome 7; TK and GALK to chromosome Z13; ACP1, ADA, and ITPA to chromosome Z8; and ADA and ITPA to chromosome Z9. These genetic markers reflect the origin of each of these Z group chromosomes and indicate the functional activity of alleles located on rearranged chromosomes. Identification of diploid electrophoretic shift mutations for ADA and ITPA was consistent with those observations. Assignment of the functional TK locus in TK+/- CHO-AT3-2 cells indicated that gene deletion may be responsible for TK hemizygosity in this subline.  相似文献   

3.
Many selectable mutants of somatic Chinese hamster cells have been described, but very few of the mutations have been mapped to specific chromosomes. We have utilized the microcell-mediated gene transfer technique to establish the location of three selectable genetic markers on chromosome 2 of Chinese hamster. Microcells were prepared from the methotrexate-resistant MtxRIII line of Flintoff et al. (Somatic Cell Genet. 2:245-261, 1976) and fused to wild-type CHO cells, and microcell hybrids (transferants) were selected in medium containing methotrexate. All transferants were karyotyped and found to contain a marker chromosome from the donor MtxRIII line. This marker chromosome, called 2p-, consisted of a chromosome 2 with a reduced short arm resulting from a reciprocal translocation between 2p and 5q. In experiments utilizing emetine-resistant (Emtr) or chromate-resistant (Chrr) recipient cells it was found that the emt+ and chr+ wild-type genes were cotransferred with the 2p- chromosomes. Karyotype analysis of several transferants with rearranged or broken 2p- markers allowed regional localization of the emt and chr loci to the proximal third of the long arm and localization of the gene or genes conferring methotrexate resistance to the short arm. These results confirm our earlier assignment of the emt and chr loci to chromosome 2 in Chinese hamster.  相似文献   

4.
To gain insight into the nature of hemizygosity in Chinese hamster ovary (CHO) cells and the mechanisms by which it has arisen, we are attempting to map and determine linkage relationships for as many hemizygous loci as possible. In this study, we have shown by segregation analysis of intraspecific somatic cell hybrids that the hemizygous gene locus associated with resistance to methylglyoxalbisguanyl hydrazone (MBG) in CHO cells is linked to the hemizygous IDH2 locus on chromosome Z3. Nine of the ten autosomal hemizygous gene loci that have been mapped to date in CHO cells are clustered on three chromosomes, with five such markers on chromosome 2, two on chromosome 8, and now two on the Z3 chromosome. With the mapping of MBG to the Z3 chromosome, selectable drug resistance markers are now available on eight different CHO chromosomes.  相似文献   

5.
In an attempt to investigate the molecular mechanism that leads to apoptotic death in Chinese hamster ovary (CHO) cells in batch and fed-batch cultures, we cloned caspase-2, -8 and -9 from a CHO cDNA library. Recombinant Chinese hamster caspase-2 and -9 expressed in Escherichia coli show highest activities towards commercial peptide substrates Ac-VDVAD-pNA and Ac-LEHD-pNA, the designated commercial substrates for human caspase-2 and -9, respectively. However, Chinese hamster caspase-8 shows a broad specificity profile and it cleaves the caspase-9 substrate more efficiently than it cleaves the caspase-8 substrate. The commercially available fluoromethyl ketone type of caspase inhibitors, such as Z-LEHD-fmk, Z-IETD-fmk, Z-VDVAD-fmk and Z-DEVD-fmk, were shown to completely lack specificity in inhibiting these caspases. The reversible aldehyde form of inhibitors for human caspase-8 and -9, Ac-LEHD-CHO and Ac-IETD-CHO, are equally efficient in inhibiting Chinese hamster caspase-8. Therefore, the wildly used method of utilizing the "caspase-specific" inhibitors to track the role of individual caspases in dying cells can be inaccurate and thus misleading. As an alternative, we stably expressed dominant negative (DN) mutants of Chinese hamster caspase-2, -8 and -9 to specifically inhibit these enzymes in CHO cells. Our results showed that inhibition of either endogenous caspase-8 or caspase-9 enhanced the viability of the CHO cells in both batch and fed-batch suspension cultures, but the inhibition of caspase-2 had minimal effects. These results suggest that caspase-8 and -9 are possibly involved in the apoptotic cell death in batch and fed-batch cultures of CHO cells, whereas caspase-2 is not. These findings can be valuable in the development of strategies for genetically engineering CHO cells to counter apoptotic death in batch and fed-batch cultures.  相似文献   

6.
Similarity of G-band patterns between the long arm of Chinese hamster chromosome 6 and mouse chromosome 2, combined with the assignments of AK1, ADA, and ITPA to hamster chromosome 6 and AK1 to mouse chromosome 2, suggested mouse chromosome 2 also might contain ADA and ITPA. Here, concordant segregation analysis of enzyme loci and chromosomes in mouse spleen X CHO as well as mouse microcell X CHO somatic cell hybrids established the assignments of ADA and ITPA onto mouse chromosome 2 in the region between the first G-band and the terminus (C1----ter). This assignment presents a demonstration of the conservation and evolution of enzyme and proto-oncogene loci linkage since two cellular homologs of viral oncogenes--c-src and c-abl--also map to mouse chromosome 2. In humans c-src, ADA, and ITPA remain conserved on chromosome 20, whereas AK1 and c-abl are together on chromosome 9. These observations and concepts are discussed with respect to the role of proto-oncogenes in chromosomal evolution and suggest the long arm of chromosome 6 as a fruitful place to look for c-src and c-abl in the Chinese hamster.  相似文献   

7.
Chinese hamster ovary cells (line CHO) have been used extensively for metabolic, genetic, and radiobiological studies with only a superficial appreciation for the degree of aneuploidy characteristic of the line. A thorough karyologic analysis of CHO chromosomes using autoradiographic replication patterns, as well as centromere band (C-band) and Giemsa band (G-band) analysis, is presented. Our results demonstrate that only 8 of the 21 CHO chromosomes are normal when compared with euploid Chinese hamster chromosomes. In the 13 altered chromosomes, we found evidence of translocations, deletions, and pericentric inversions. These altered chromosomes have been characterized with respect to both origin and destination of translocated material. With the exception of the X2 chromosome, essentially all of the euploid chromatin is present in CHO cells. Autoradiographic replication patterns show that the normal sequence of chromosomal DNA synthesis is altered. Some sites which replicate late in euploid cells replicate early in CHO, and several late-replicating chromosomes in CHO cells replicate in early- or mid-S in euploid material. These studies may serve to elucidate the observed differences in mutagenic behavior between euploid fibroblasts and CHO cells.  相似文献   

8.
It has been shown that the X-ray-sensitive Chinese hamster V79 mutants (V-E5, V-C4 and V-G8) are similar to ataxia-telangiectasia (A-T) cells. To determine whether the AT-like rodent cell mutants are defective in the gene homologous to A-T (group A, C or D), human chromosome 11 was introduced to the V-E5 and V-G8 mutant cells by microcell-mediated chromosome transfer. Forty independent hybrid clones were obtained in which the presence of chromosome 11 was determined by in situ hybridization. The presence of the region of chromosome 11q22–23 was shown by molecular analysis using polymorphic DNA markers specific for the ATA, ATC and ATD loci. Seventeen of the obtained monochromosomal Chinese hamster hybrids contained a cytogenetically normal human chromosome 11, but only twelve hybrid cell lines were shown to contain an intact 11q22–23 region. Despite the complementation of the X-ray sensitivity by a normal chromosome 11 introduced to A-T cells (complementation group D), these twelve Chinese hamster hybrid clones showed lack of complementation of X-ray and streptonigrin hypersensitivity. The observed lack of complementation does not seem to be attributable to hypermethylation of the human chromosome 11 in the rodent cell background, since 5-azacytidine treatment had no effect on the streptonigrin hypersensitivity of the hybrid cell lines. These results indicate that the gene defective in the AT-like rodent cell mutants is not homologous to the ATA, ATC or ATD genes and that the human gene complementing the defect in the AT-like mutants seems not to be located on human chromosome 11.  相似文献   

9.
Somatic cell hybrids constructed between UV-hypersensitive Chinese hamster ovary cell line UV20 and human lymphocytes were used to examine the influence of a human DNA repair gene, ERCC1, on UV photoproduct repair, mutability at several drug-resistance loci, UV cytotoxicity and UV split-dose recovery. In hybrid cell line 20HL21-4, which contains human chromosome 19, UV-induced mutagenesis at the APRT, HPRT and Na+/K+-ATPase loci was comparable to that in repair-proficient CHO AA8 cells, whereas cell line 20HL21-7, a reduced human-CHO hybrid not containing human chromosome 19, exhibited a hypermutable phenotype at all 3 loci indistinguishable from that of UV20 cells. The response of 20HL21-4 cells to UV cytotoxicity reflected substantial but incomplete restoration of wild-type UV cytotoxic response, whereas responses of UV20 and 20HL21-7 cell lines to UV cytotoxicity were essentially the same, reflecting several-fold UV hypersensitivity. Repair of UV-induced (5-6) cyclobutane dimers and (6-4) photoproducts was examined by radioimmunoassay; (6-4) photoproduct repair was deficient in UV20 and 20HL21-7 cell lines, and intermediate in 20HL21-4 cells relative to wild-type CHO AA8 cells. UV split-dose recovery in 20HL21-4 cells was also intermediate relative to AA8 cells. These results show that the human ERCC1 gene on chromosome 19 is responsible for substantial restoration of UV survival and mutation responses in repair-deficient UV20 cells, but only partially restores (6-4) UV photoproduct repair and UV split-dose recovery.  相似文献   

10.
Genetic and biochemical experiments have enabled us to more clearly distinguish three genetic loci, emtA, emtB, and emtC, all of which can be altered to give rise to resistance to the protein synthesis inhibitor, emetine, in cultured Chinese hamster cells. Genetic experiments have demonstrated that, unlike the emtB locus, neither the emtA locus nor the emtC locus is linked to chromosome 2 in Chinese hamster cells, clearly distinguishing the latter two genes from emtB. emtA mutants can also be distinguished, biochemically, from emtB and emtC mutants based upon different degrees of cross-resistance to another inhibitor of protein synthesis, cryptopleurine. Two-dimensional gel electrophoretic analysis of ribosomal proteins failed to detect any electrophoretic alterations in ribosomal proteins from emtA or emtC mutants that could be correlated with emetine resistance. However, a distinct electrophoretic alteration in ribosomal protein S14 was observed in an emtB mutant. In addition, the parental Chinese hamster peritoneal cell line of an emtC mutant, and the emtC mutant itself, are apparently heterozygous for an electrophoretic alteration in ribosomal protein L9.  相似文献   

11.
Galectins are implicated in a large variety of biological functions, many of which depend on their carbohydrate-binding ability. Fifteen members of the family have been identified in vertebrates based on binding to galactose (Gal) that is mediated by one or two, evolutionarily conserved, carbohydrate-recognition domains (CRDs). Variations in glycan structures expressed on glycoconjugates at the cell surface may, therefore, affect galectin binding and functions. To identify roles for different glycans in the binding of the three types of mammalian galectins to cells, we performed fluorescence cytometry at 4 degrees C with recombinant rat galectin-1, human galectin-3, and three forms of human galectin-8, to Chinese hamster ovary (CHO) cells and 12 different CHO glycosylation mutants. All galectin species bound to parent CHO cells and binding was inhibited >90% by 0.2 M lactose. Galectin-8 isoforms with either a long or a short inter-CRD linker bound similarly to CHO cells. However, a truncated form of galectin-8 containing only the N-terminal CRD bound only weakly to CHO cells and the C-terminal galectin-8 CRD exhibited extremely low binding. Binding of the galectins to the different CHO glycosylation mutants revealed that complex N-glycans are the major ligands for each galectin except the N-terminal CRD of galectins-8, and also identified some fine differences in glycan recognition. Interestingly, increased binding of galectin-1 at 4 degrees C correlated with increased propidium iodide (PI) uptake, whereas galectin-3 or -8 binding did not induce permeability to PI. The CHO glycosylation mutants with various repertoires of cell surface glycans are a useful tool for investigating galectin-cell interactions as they present complex and simple glycans in a natural mixture of multivalent protein and lipid glycoconjugates anchored in a cell membrane.  相似文献   

12.
A human DNA repair gene, ERCC2 (Excision Repair Cross Complementing 2), was assigned to human chromosome 19 using hybrid clone panels in two different procedures. One set of cell hybrids was constructed by selecting for functional complementation of the DNA repair defect in mutant CHO UV5 after fusion with human lymphocytes. In the second analysis, DNAs from an independent hybrid panel were digested with restriction enzymes and analyzed by Southern blot hybridization using DNA probes for the three DNA repair genes that are located on human chromosome 19: ERCC1, ERCC2, and X-Ray Repair Cross Complementing 1 (XRCC1). The results from hybrids retaining different portions of this chromosome showed that ERCC2 is distal to XRCC1 and in the same region of the chromosome 19 long arm (q13.2-q13.3) as ERCC1, but on different MluI macrorestriction fragments. Similar experiments using a hybrid clone panel containing segregating Chinese hamster chromosomes revealed the hamster homologs of the three repair genes to be part of a highly conserved linkage group on Chinese hamster chromosome number 9. The known hemizygosity of hamster chromosome 9 in CHO cells can account for the high frequency at which genetically recessive mutations are recovered in these three genes in CHO cells. Thus, the conservation of linkage of the repair genes explains the seemingly disproportionate number of repair genes identified on human chromosome 19.  相似文献   

13.
The ldlA locus is one of four Chinese hamster ovary (CHO) cell loci which are known to be required for the synthesis of functional low-density lipoprotein (LDL) receptors. Previous studies have suggested that the ldlA locus is diploid and encodes the LDL receptor. To confirm this assignment, we have isolated a partial genomic clone of the Chinese hamster LDL receptor gene and used this and other nucleic acid and antibody probes to study a family of ldlA mutants isolated after gamma-irradiation. Our analysis suggests that there are two LDL receptor alleles in wild-type CHO cells. Each of the three mutants isolated after gamma-irradiation had detectable deletions affecting one of the two LDL receptor alleles. One of the mutants also had a disruption of the remaining allele, resulting in the synthesis of an abnormal receptor precursor which was not subject to Golgi-associated posttranslational glycoprotein processing. The correlation of changes in the expression, structure, and function of LDL receptors with deletions in the LDL receptor genes in these mutants directly demonstrated that the ldlA locus in CHO cells is diploid and encodes the LDL receptor. In addition, our analysis suggests that CHO cells in culture may contain a partial LDL receptor pseudogene.  相似文献   

14.
Eukaryotic expression vectors have been used successfully in viral LT-expressing cell lines (ie. COS) to clone cDNAs encoding proteins that can be detected through their bio-activity or reactivity with specific antibodies. Since Chinese hamster ovary cells (CHO) have been used extensively for the isolation and characterization of somatic cell mutants, we felt it would be an advantage to develop an expression cloning system in CHO cells. We have modified the eukaryotic expression vector CDM8 by replacing the polyoma and SV40 origins of replication with the 427bp non-coding region of the Syrian hamster papovavirus. Wild-type CHO cells and the CHO glycosylation-mutant Lec4A were transfected with plasmids bearing the early genes of either polyoma virus or hamster papovavirus in order to establish stable, LT antigen-expressing cell lines designated CHOP or CHOH, respectively. CHOP cell lines expressing polyoma LT antigen supported efficient replication of CDM8, but replicated pMH poorly. Conversely, CHOH cells expressing the hamster papovavirus LT antigen supported replication of pMH, and at a lower efficiency, CDM8. Replication of CDM8 and pMH vectors were equally efficient in selected CHOP and CHOH cell lines, respectively and comparable to that of CDM8 replication in COS-1 cells. A bacterial beta-galactosidase fusion gene inserted into the multiple cloning site of a CDM8 derivative was efficiently expressed when transiently transfected into CHOP and CHOH cells but not CHO cells since only the former supports autonomous plasmid replication. These results show that expression-cloning in CHO cells expressing either polyoma virus or hamster papovavirus LT antigens is possible using either the CDM8 or the pMH vectors, respectively.  相似文献   

15.
Summary An electrophoretic analysis of peptidases was carried out in a population of American mink. Based on substrate and tissue specificities, as well as subunit composition, homologies were established between mink peptidases A, B, C, D and S and human peptidases. Polymorphism for peptidases B and D was demonstrated for minks of three coat colour types. Breeding data indicated that the peptidase variations are under the control of allele pairs at distinct autosomal loci designated as PEPB and PEPD, respectively. Using a panel of American mink-Chinese hamster hybrid clones, the gene for PEPB was assigned to mink chromosome 9.  相似文献   

16.
pSV2gpt-Transformed and wild-type Chinese hamster ovary (CHO) cell lines have been used to study radiation-induced mutation at the molecular level. The transformant, designated AS52, was constructed from a hypoxanthine-guanine phosphoribosyl transferase (HPRT)-deficient CHO cell line and contains a single, functional copy of the Escherichia coli xanthine-guanine phosphoribosyl transferase (XPRT) gene (gpt) stably integrated into the Chinese hamster genome. AS52 and wild-type CHO-K1-BH4 cells exhibit similar cytotoxic responses to uv light and X rays; however, significant differences occur in mutation induction at the gpt and hprt loci. A number of HPRT and XPRT mutants which arose following irradiation were analyzed by Southern-blot hybridization. Most XPRT (21/26) and all HPRT (23/23) mutants induced by uv light exhibited hybridization patterns indistinguishable from their parental cell lines. In contrast, all XPRT (26/26) and most HPRT mutants (15/21) induced by X irradiation contained deletion mutations affecting some or all of the gpt and hprt loci, respectively. These results indicate that X rays induce predominantly deletion mutations, while uv light is likely to induce point mutations at both loci.  相似文献   

17.
Genomic rearrangements are a common phenomenon in rapidly growing cell lines such as Chinese hamster ovary (CHO) cells, a feature that in the context of production of biologics may lead to cell line and product instability. Few methods exist to assess such genome wide instability. Here, we use the population distribution of chromosome numbers per cell as well as chromosome painting to quantify the karyotypic variation in several CHO host cell lines. CHO‐S, CHO‐K1 8 mM glutamine, and CHO‐K1 cells adapted to grow in media containing no glutamine were analyzed over up to 6 months in culture. All three cell lines were clearly distinguishable by their chromosome number distribution and by the specific chromosome rearrangements that were present in each population. Chromosome Painting revealed a predominant karyotype for each cell line at the start of the experiment, completed by a large number of variants present in each population. Over time in culture, the predominant karyotype changed for CHO‐S and CHO‐K1, with the diversity increasing and new variants appearing, while CHO‐K1 0 mM Gln preferred chromosome pattern increased in percent of the population over time. As control, Chinese hamster lung fibroblasts were shown to also contain an increasing number of variants over time in culture.  相似文献   

18.
Experiments are described in which human cells carrying balanced reciprocal translocations involving four different regions of chromosome 9 were fused with a Chinese hamster cell line and the resulting hybrids used to obtain subchromosomal assignments of the loci ASS, AK3, and ACONS. ASS was localized on the distal portion of the long arm of chromosome 9, in the region 9q34 leads to 9qter, and AK3 and ACONS on the short arm, in the region 9pter leads to 9p13.  相似文献   

19.
The pyrrolopyrimidine nucleosides toyocamycin and tubercidin show several unique features of growth inhibition in Chinese hamster ovary (CHO) cells. Stable mutants which are more than 600-fold resistant to these drugs are obtained in CHO cells at a strikingly high frequency of approximately 10(-3), in the absence of mutagenesis. The mutants resistant to toyocamycin (Toyr) and tubercidin (Tubr) exhibit similar cross-resistance patterns to the two selective drugs as well as to adenosine and 6-methyl mercaptopurine riboside, indicating that the same lesion is probably involved in all cases. The mutants examined were found to be deficient in the enzyme adenosine kinase (AK), indicating that the phosphorylation of these analogs is an essential first step in their toxic action. The above mutants (AK-) behaved recessively in cell hybrids, and segregation studies indicate that the AK locus is not linked to the X chromosome. The frequencies of similar Toyr mutants in other Chinese hamster lines, e.g., V79, CHW, M3-1, GM7, and CHO-K1, varied from similar to more than three logs less than that observed for CHO cells, indicating that various cell lines probably differ in the number of functional gene copies for this locus.  相似文献   

20.
Chinese hamster ovary (CHO) cells were subjected to ultraviolet radiation (UV) at doses resulting in 100% (no irradiation), 50–30%, 20–10% and ≈1% survival. 2 divisions after UV exposure surviving cells were cloned and clones expanded for electrophoretic analysis of the products of ≈40 enzyme loci. 4 different classes of variants (electrophoretic shifts, nulls, enzyme re-expression and enzyme modification) were detected in 29 of 1329 clones analyzed and proven mutants by subclone analysis. The frequency of mutants in the irradiated groups (28/38391 loci screened or 7.3 × 10?4) was significantly higher than controls. The frequency of shift mutants at 10–20% survival was higher than shifts at 30–50% survival and was significantly higher than shifts at ≈1% survival. The frequency of nulls increased with dose. 12 of the 28 mutants obtained in the irradiated groups were at only 3 of the mean 41 loci screened/clone. The results indicated that shift mutants could be detected more efficiently than nulls at lower dose and that loci varied widely with respect to their susceptibility to UV mutagenesis. Multiple null mutants at 2 loci, isocitrate dehydrogenase 2 and hexokinase 2, indicated they may be hemizygous in CHO cells.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号