首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 178 毫秒
1.
Nimodipine, a Ca2+ antagonist with cerebrovasodilatory and anti-ischemic effects, binds to rat, guinea pig, and human brain membranes with high affinity (less than 1 nM). Only at higher concentrations has nimodipine been reported to block the release of some neurotransmitters and hormones from neuronal tissue. Nimodipine has no consistent effect on brain oxygen consumption or cortical ATP or phosphocreatine levels, although the ischemia-induced fall of brain ATP levels in gerbils or the lowering of intracellular brain pH in rabbits with focal cerebral ischemia were antagonized by the drug. In rats and baboons with middle cerebral artery occlusion, nimodipine was found to reduce neurological deficits without an increase in intracranial pressure or brain edema. Electrophysiological studies with nimodipine suggested a direct neuronal action. In rabbit dorsal root ganglion cells, concentrations as low as 20 nM were reported to block inward Ca2+ currents. Recent studies have suggested that nimodipine may also improve memory in brain-damaged or old rats, restore sensorimotor function and abnormal walking patterns of old rats, and accelerate acquisition of associative learning in aging rabbits. Blockade of age-related changes in Ca2+ fluxes in rat hippocampal neurones by nimodipine in vitro pointed to neuronal plasma membrane as the site of nimodipine action. The therapeutic usefulness of nimodipine appears not to be limited to cerebral ischemia, but may include dementia, age-related degenerative diseases, epilepsy, and ethanol intoxication.  相似文献   

2.
The effects of nimodipine, a 1,4-dihydropyridine calcium channel blocker, on multiunit activity (MUA) of several brain structures were investigated in cats during 6 h immediately following acute global cerebral ischemia-anoxia induced by a 10 min cardiorespiratory arrest (CRA), as well as in cats exposed to sham procedures corresponding to CRA. Four groups of cats were studied: 1) CRA and continuous administration of nimodipine, 1 microgram/kg/min iv during 6 h; 2) CRA and continuous administration of vehicle; 3) sham and continuous administration of nimodipine as in group 1; 4) sham and vehicle as in group 2. MUA and electroencephalogram disappeared during ischemia-anoxia; their progressive recovery occurred throughout the hours following CRA, although 6 h after CRA MUA was still lower than its control prearrest values in all the recorded subcortical structures. Delta-like waves, isolated spikes, and bursts of fast EEG waves occurred during the recovery of EEG activity. Nimodipine inhibited the otherwise increasing MUA in mesencephalic reticular formation, hippocampus and putamen, but not in ventromedial hypothalamus, during the hours following acute global cerebral ischemia-anoxia. Absence of isolated spikes and bursts of fast EEG activity was noted in the EEG of CRA-, nimodipine-treated cats. Nimodipine significantly reduced MUA in hippocampus but not in other cerebral structures in cats of the sham treated group. The results suggest the involvement of 1,4 dihydropyridine sensitive calcium channels in the cellular mechanisms related to neuronal activity after cerebral ischemia-anoxia, and the possible relationship between the effects of nimodipine on MUA and better functional conditions of the central nervous system after acute global cerebral ischemia-anoxia.  相似文献   

3.
The effect of the calcium channel blocker nimodipine on the previously described regional cerebral acidosis accompanying thiamine deficiency was investigated. Local cerebral pH (LCpH) and blood flow (LCBF) were separately determined autoradiographically in normal and 16-day thiamine-deficient rats administered the calcium antagonist drug and compared to appropriate controls. Nimodipine did not modify LCpH in normal brain. In thiamine deficiency, nimodipine significantly raised LCpH in 5 of 17 structures evaluated, two of which, the medial dorsal nucleus of the thalamus and the mammillary body, are vulnerable to the development of histological lesions in this condition. Although the calcium blocker augmented LCBF in normal brain, it had no effect on the hyperperfusion already present by day 16 of thiamine deprivation. Thus, the pH changes we are reporting are probably not related to an effect on cerebral perfusion, but could have resulted from an improved ability of the brain to reduce its proton load in the presence of nimodipine. These results may have wider therapeutic implications than in thiamine deficiency alone.  相似文献   

4.
Zhu D  Li R  Liu G  Hua W 《Life sciences》1999,65(15):PL221-PL231
The effect of nimodipine on nitric oxide synthase (NOS) activities in brains in transient focal cerebral ischemia rats, in cultured mouse neurons and astroglial cells and bovine brain capillary endothelial cells (BCECs) was investigated. The administration of nimodipine (3 mg.kg(-1), p.o., twice a day, for 3 days) before middle cerebral artery (MCA) occlusion significantly reduced infarct size, decreased nitrite/nitrate (NOx) content and inhibited Ca2+-independent NOS activity in the infarct area. Nimodipine inhibited the Ca2+-independent NOS activity induced by lipopolysaccharide (LPS) + tumor necrosis factor alpha (TNF alpha) in mouse astroglial cells with an IC50 value of 0.036+/-0.003 mM and Ca2+-dependent NOS activity in mouse neurons with an IC50 value of 0.047+/-0.003 mM, but did not affect Ca2+-dependent NOS activity in BCECs. The inhibition of Ca2+-independent NOS activity by nimodipine in astroglial cells was competitive with respect to L-arginine. Nimodipine also inhibited the induction of Ca2+-independent NOS activity in vitro. These results suggest that nimodipine in addition to its cerebral vasodilating effect may protect brain from ischemic neuronal damage through modifying NOS activity.  相似文献   

5.
降纤酶联合尼莫地平治疗急性脑梗死疗效观察   总被引:4,自引:0,他引:4  
目的:观察降纤酶联合尼莫地平治疗急性脑梗死的临床疗效及相关生化指标,探讨降纤、抗栓、复流和脑保护在急性脑梗死治疗中的必要性。方法:对符合条件的病例随机分2组,治疗组予降纤酶加尼莫地平治疗,对照组临床疗效及血栓通加胞二磷胆碱治疗,分别对其疗效,血液流变学,凝血酶原时间进行比较。结果:治疗组临床疗效及血液流变学指标改善明显,且无增加副作用。结论:降纤酶有降纤、抗凝、溶栓作用,尼莫地平抑制Ca^2 内流,保护脑细胞,同时有改善血液流变性,两药联合应用治疗急性脑梗死有协同作用,可增加疗效。  相似文献   

6.
大鼠脑血管痉挛时NO和ET—1变化及尼莫地平的影响   总被引:1,自引:0,他引:1  
目的探讨蛛网膜下腔出血(SAH)后脑血管痉挛(CVS)时脑组织一氧化氮(NO)和内皮素-1(ET-1)含量变化及尼莫地平(ND)对其影响。方法将135只Wistar大鼠随机均分为SAH组、ND处理组和假手术组,观察手术前后基底动脉管径,及24h内局部脑血流量(rCBF)、脑组织NO和ET-1含量动态改变,并行海马病理检查。结果SAH后rCBF明显而持续降低,基底动脉管径显著缩小;海马CAl区锥体细胞严重受损;脑组织NO和ET-1含量均在SAH后1~24h显著增加(P<0.05~0.01)。ND处理后使上述异常变化均减轻。结论SAH后脑组织NO、ET-1增多可能参与了CVS所致脑损害过程,ND通过减轻CVS和拮抗脑组织NO及ET-1的病理性改变而发挥脑保护作用。  相似文献   

7.
Methylmercury distribution, biotransformation, and neurotoxicity in the brain of male Swiss albino mice were investigated. Mice were orally dosed with [203 Hg]methylmercury chloride (10 mg/kg) for 1 to 9 days. Methylmercury was evenly distributed among the posterior cerebral cortex, subcortex, brain stem, and cerebellum. The The anterior cerebral cortex had a significantly higher methylmercury concentration than the rest of the brain. The distribution of methylmercury's inorganic mercury metabolite was found to be uneven in the brain. The pattern of distribution was cerebellum greater than brain stem greater than subcortex greater than cerebral cortex. The order of the severity of histological damage was cerebral cortex greater than cerebellum greater than subcortex greater than brain stem. There was no correlation between methylmercury distribution in the brain and structural brain damage. However, there was a relationship between the distribution of methylmercury's inorganic mercury metabolite and structural damage in the anterior cerebral cortex (positive correlation) and the anterior subcortex (negative correlation). There was also a positive correlation between the fraction of methylmercury's metabolite of the total mercury present and structural brain damage in the anterior cerebral cortex. This study suggests that biotransformation may have a role in mediating methylmercury neurotoxicity.  相似文献   

8.
The time course and distribution of alterations in cerebral metabolic activity after haloperidol administration were evaluated in relation to the pharmacokinetics of haloperidol and the topography of the dopaminergic system in the brain. Local cerebral glucose utilization was measured, using the 2-deoxyglucose technique, in awake rats after i.p. administration of the dopamine antagonist haloperidol (0.5 or 1 mg/kg). Haloperidol significantly reduced glucose utilization in 60% of 59 brain regions examined, but produced a large increase in the lateral habenula. The regional distribution of changes in glucose utilization was not closely related to the known anatomy of the brain dopaminergic system. The time course of the effect of haloperidol on cerebral metabolism was different for the two doses studied (0.5 and 1 mg/kg), and was not simply related to estimated brain concentrations of haloperidol. However, a linear relation between the metabolic effect and the time-integrated brain concentration was demonstrated. These results show that haloperidol has an effect on CNS metabolic activity that is more widespread than would be predicted from the topography of the dopaminergic system; this may be due to indirect propagation of the primary effects of haloperidol. The metabolic response to haloperidol depends on brain concentration and duration of exposure to the drug.  相似文献   

9.
Abstract: Fetal cerebral metabolism changes during development. The normal fetal metabolic rate must be known to evaluate pathophysiological changes. Therefore, we determined the regional cerebral glucose consumption in the fetal guinea pig. This required the application of the 2-deoxyglucose method to this species. We measured both the transfer coefficients of deoxyglucose and glucose between the maternal arterial plasma and the fetal brain and the lumped constant in chronically prepared undisturbed guinea pig dams using a three-compartment model. Furthermore, the ratio between the initial clearances of deoxyglucose and glucose between the maternal arterial plasma and the fetal brain and the ratio between the phosphorylation coefficients of these substrates in the fetal brain were determined. The total cerebral glucose consumption measured by the deoxyglucose method (10 ± 1.2 µmol/100 g/min) was similar to that calculated from the glucose concentration and the phosphorylation coefficient of glucose in the cerebrum (10 ± 0.4 µmol/100 g/min). We conclude that the 2-deoxyglucose method is applicable to the guinea pig, and we further conclude that in the fetal guinea pig cerebral glucose consumption is 10 times lower than that in the adult.  相似文献   

10.
We investigated the hypothesis that cerebral prostanoid and peptidoleukotriene (LTs) (LTC4/D4/E4/F4) synthesis are increased during postischemic reperfusion of newborn pig brains. Prostanoids and LTs extracted from brain tissue were determined by RIA in sham-control piglets and at 1h, 3h, or 12h after a 20-min period of total cerebral ischemia. During reperfusion following ischemia, all regional brain tissue (cerebrum, brain stem and cerebellum) prostanoids (6-keto-PGF1 alpha, TXB2, PGE2 and PGF2 alpha) were increased at 1h compared with those in sham-control piglets. Only cerebral and brain stem 6-keto-PGF1 alpha and cerebral TXB2 remained elevated at 3h postischemia and all prostanoids returned to control levels by 12h postischemia. Brain tissue LTs were lower than prostanoids and were not altered 1, 3, or 12h following ischemia. These data indicate that 1) newborn pig brain tissue prostanoids are increased initially, and then returned to control levels at later stages of reperfusion following ischemia; 2) LTs are present in newborn pig brain tissue, but are not increased by ischemia/reperfusion injury and therefore probably do not play a significant role in cerebral ischemia-reperfusion injury.  相似文献   

11.
Opioids, when co-administered with L-type calcium channel blockers (L-CCBs) show morphine like higher antinociceptive effect. This antinociceptive effect has been further investigated using a different experimental paradigm. The effect of two different L-CCBs (nifedipine and nimodipine) on morphine-induced antinociception was studied by the tail-flick test (40 min after morphine administration) in adult Wistar rats. A fixed-dose of nimodipine or nifedipine (2 mg/kg, once daily) was combined with a fixed dose of morphine (10 mg/kg, twice daily) for 10 days. Co-administration of L-CCBs significantly increased the antinociceptive effect of morphine, even 12 hr after administration. Also, nimodipine was more effective than nifedipine. Nimodipine was further studied using a higher and escalating doses of morphine (20-30 mg/kg twice daily for 14 days). Nimodipine increased the antinociceptive effect of morphine in the latter part of the study (days nine to fourteen) though significant difference was observed on 11th evening and 12th morning. No obvious adverse effects were observed in the present study. The results show for the first time that nimodipine is more effective than nifedipine and that these L-CCBs continue to be effective, even 12 hr after administration in the tail-flick test.  相似文献   

12.
The permanent occlusion of bilateral common carotid arteries (2VO) in rats has been shown to cause progressive and long-lasting cognitive deficits which may be due to impairment of memory retention and/or memory recall process. To clarify the function of voltage dependent calcium channels and the receptor binding of nimodipine by chronic cerebral ischemia, we examined specific (+)-[3H]PN 200-110 binding and the effect of oral administration of nimodipine in brain regions and hearts of rats, at 2 weeks to 4 months after permanent 2VO. There was no significant difference in either dissociation constant (Kd) or maximal number of binding sites (Bmax) for (+)-[3H]PN 200-110 in the cerebral cortex, hippocampus, corpus striatum and thalamus between 2VO and sham rats. In addition, in vitro inhibitory effect of nimodipine on cerebral cortical (+)-[3H]PN 200-110 binding in 2VO rats was similar to that in sham rats. Compared to control rats, oral administration of nimodipine to both 2VO and sham rats at 2 months after permanent 2VO brought about a significant increase in Kd values of specific (+)-[3H]PN 200-110 binding in the cerebral cortex, hippocampus, thalamus and myocardium, and the increase in Kd values was much larger in brain regions of 2VO rats than sham rats. However, the increase in Kd values in the myocardium did not differ between 2VO and sham rats. This observation suggests an increased in vivo binding affinity for nimodipine in chronic ischemic brain. In conclusion, the present study has shown that oral administration of nimodipine may cause a greater occupation in vivo of 1,4-dihydropyridine (DHP) calcium channel antagonist receptors in brains of permanent 2VO rats than in sham rats. Thus, nimodipine may be pharmacologically effective in preventing brain dysfunction due to cerebral ischemia in vivo.  相似文献   

13.
Reversibility of Nimodipine Binding to Brain in Transient Cerebral Ischemia   总被引:2,自引:0,他引:2  
Using autoradiography, we have measured the in vivo binding of [3H]nimodipine to brain in a rat model of reversible cerebral ischemia. Ischemia was induced by simultaneous occlusion of the middle cerebral artery (MCA) and ipsilateral common carotid artery by microaneurysm clips. Rats were studied after 15 min of ischemia (ischemic group) or after 45 min of reperfusion following 15 min of ischemia (reperfused group). Regional cerebral blood flow (CBF) was determined autoradiographically using [14C]iodoantipyrine in both ischemic (n = 6) and reperfused (n = 6) groups. During ischemia blood flow in the territory of the MCA was depressed and recovered to normal only in the distal territory of the MCA following reperfusion. [3H]Nimodipine binding in the ischemic group (n = 12) was elevated in ischemic brain regions and declined significantly (p < 0.01) in these regions in the reperfused group (n = 11). The ratio of the volume of cortex showing increased binding to the total volume of the forebrain was 0.113 +/- 0.025 (mean +/- SD) in the ischemic group and declined to 0.080 +/- 0.027 following reperfusion (p < 0.005). In general, infarct was only observed in regions showing persistent elevation of nimodipine binding following reperfusion as determined by histology performed in a separate group of rats (n = 8) after 24 h of reperfusion. We conclude that increased nimodipine binding to ischemic tissue is initially reversible with prompt reestablishment of CBF and is a sensitive indicator of early and reversible ischemia-induced cerebral dysfunction.  相似文献   

14.
目的:研究miR-21在脑缺血/再灌注(cerebral ischemia-reperfusion,I/R)损伤过程中对血脑屏障(Blood Brain Barrier)的保护作用。方法:采用线栓法构建SD大鼠脑缺血/再灌注模型。实验随机分为空白质粒组,miR-2l-mimic组和miR-21 inhibitor组。利用Western Blot检测大鼠大脑皮层组织中Bax蛋白的表达变化,透射电镜观察大鼠大脑皮层组织中细胞形态和血脑屏障的完整性,免疫荧光检测大脑皮层组织中自噬相关蛋白LC-3的分布情况。结果:Western Blot实验结果显示:与空白质粒相比,给予miR-2l-mimic的大鼠脑组织中Bax蛋白的表达显著降低,而给予miR-21 inhibitor的大鼠脑组织中Bax蛋白的表达升高;透射电镜结果显示:与空白质粒组相比较,miR-2l-mimic组中内皮细胞周围星形胶质细胞的板层突基本完整,而miR-21 inhibitor组中明显可见自噬小体、溶酶体,并有吞噬物存在;免疫荧光结果显示:与空白质粒组比较,miR-21-mimic组中自噬相关蛋白LC-3表达降低,而miR-21 inhibitor组中LC3蛋白的分布增加。结论:miR-2l可能通过下调Bax蛋白的表达抑制凋亡或通过抑制自噬保护血脑屏障。  相似文献   

15.
Acute injection of alpha-amino-3-hydroxy-5-methyl-4-isoxazole propionate (AMPA) into the rat globus pallidus leads to calcium precipitation, neuronal death and gliosis. In order to determine whether L-type calcium channels and/or release of Ca(2+) from intracellular stores contribute to the effects of AMPA, nimodipine and 8-(N,N-diethylamino) octyl-3,4,5-trimethoxybenzoate hydrochloride (TMB-8) were administered in combination with AMPA. Nimodipine, but not TMB-8, tended to exacerbate the calcification process initiated by AMPA; the AMPA/nimodipine/TMB-8 combination produced much more calcium deposition than AMPA (+62%, P<0.05). AMPA alone induced a slight but not significant astroglial reaction. Nimodipine slightly enhanced the astroglial reaction triggered by AMPA, whereas TMB-8 doubled it (P<0.001 versus AMPA). These data suggest that blockade of L-type calcium channels by nimodipine enhances calcium imbalance triggered by AMPA, and the calcium release from the endoplasmic reticulum does not participate in the AMPA-induced calcification.  相似文献   

16.
1. We review the biochemical and molecular changes in brain with developing cerebral infarction, based on recent findings in experimental focal cerebral ischemia.2. Occlusion of a cerebral artery produces focal ischemia with a gradual decline of blood flow, differentiating a severely ischemic core where infarct develops rapidly and an area peripheral to the core where the blood flow reduction is moderate (called penumbra). Neuronal injury in the penumbra is essentially reversible but only for several hours. The penumbra area tolerates a longer duration of ischemia than the core and may be salvageable by pharmacological agents such as glutamate antagonists or prompt reperfusion.3. Upon reperfusion, brain cells alter their genomic properties so that protein synthesis becomes restricted to a small number of proteins such as stress proteins. Induction of the stress response is considered to be a rescue program to help to mitigate neuronal injury and to endow the cells with resistance to subsequent ischemic stress. The challenge now is to determine how the neuroprotection conferred by prior sublethal ischemia is achieved so that rational strategies can be developed to detect and manipulate gene expression in brain cells vulnerable to ischemia.4. Expansion of infarction may be caused by an apoptotic mechanism. Investigation of apoptosis may also help in designing novel molecular strategies to prevent ischemic cell death.5. Ischemia/reperfusion injury is accompanied by inflammatory reactions induced by neutrophils and monocytes/macrophages infiltrated and accumulated in ischemic areas. When the role of the inflammatory/immune systems in ischemic brain injury is revealed, new therapeutic targets and agents will emerge to complement and synergize with pharmacological intervention directed against glutamate and Ca2+ neurotoxicity.  相似文献   

17.

Objective

Explore the possible protective effect of Sargentodoxa cuneata total phenolic acids on cerebral ischemia reperfusion injury rats.

Methods

Focal cerebral ischemia reperfusion rats model were established by linear thrombus. Nimodipine group, Naoluotong group, the high, middle and low dose of Sargentodoxa cuneata total phenolic acids groups were given related drugs via intragastric administration before operation for seven days, once a day. At the same time sham operation group, and ischemia reperfusion group were given the same volume of physiological saline. One hour after the last administration, establish focal cerebral ischemia- reperfusion model in rats by thread method, and the thread was taken out after 2?h ischemia to achieve cerebral ischemia reperfusion injury in rats. After reperfusion for 24?h, the rats were given neurologic deficit score. The brain tissue was taken to measure the levels of IL-6, IL-1β, TNF-α, Bcl-2, Bax, Casp-3 and ICAM-1; HE staining observed histopathological changes in the hippocampus and cortical areas of the brain; Immunohistochemistry was used to observe the expression of NGF and NF-KBp65.

Result

Focal cerebral ischemia reperfusion rats model was copyed successed. Compared with model group, each dose group of Sargentodoxa cuneata total phenolic acids could decreased the neurologic deficit score (P?<?0.05 or P?<?0.01), decreased the levels of IL-6, IL-1β, ICAM-1, TNF-α, Bax and Caspase-3 in brain tissue (P?<?0.05 or P?<?0.01), increased the levels of IL-10, Bcl-2, NGF in brain tissue (P?<?0.05 or P?<?0.01), decreased the express of NF-KBp65 in brain (P?<?0.05 or P?<?0.01).

Conclusion

Sargentodoxa cuneata total phenolic acids can improve focal cerebral ischemia reperfusion injury rats tissue inflammation, apoptosis pathway, increase nutrition factor to protect the neurons, reduce the apoptosis of nerve cells, activate brain cells self-protect, improve the histopathological changes in the hippocampus and cortical areas of the brain, reduce cerebral ischemia reperfusion injury.  相似文献   

18.
Glucose is the primary fuel for brain function, and determining the kinetics of cerebral glucose transport and utilization is critical for quantifying cerebral energy metabolism. The kinetic parameters of cerebral glucose transport, K(M)(t) and V(max)(t), in humans have so far been obtained by measuring steady-state brain glucose levels by proton ((1)H) NMR as a function of plasma glucose levels and fitting steady-state models to these data. Extraction of the kinetic parameters for cerebral glucose transport necessitated assuming a constant cerebral metabolic rate of glucose (CMR(glc)) obtained from other tracer studies, such as (13)C NMR. Here we present new methodology to simultaneously obtain kinetic parameters for glucose transport and utilization in the human brain by fitting both dynamic and steady-state (1)H NMR data with a reversible, non-steady-state Michaelis-Menten model. Dynamic data were obtained by measuring brain and plasma glucose time courses during glucose infusions to raise and maintain plasma concentration at ~17 mmol/l for ~2 h in five healthy volunteers. Steady-state brain vs. plasma glucose concentrations were taken from literature and the steady-state portions of data from the five volunteers. In addition to providing simultaneous measurements of glucose transport and utilization and obviating assumptions for constant CMR(glc), this methodology does not necessitate infusions of expensive or radioactive tracers. Using this new methodology, we found that the maximum transport capacity for glucose through the blood-brain barrier was nearly twofold higher than maximum cerebral glucose utilization. The glucose transport and utilization parameters were consistent with previously published values for human brain.  相似文献   

19.
Our previous studies demonstrated that inflammatory reaction and neuronal apoptosis are the most important pathological mechanisms in ischemia-induced brain damage. Propofol has been shown to attenuate ischemic brain damage via inhibiting neuronal apoptosis. The present study was performed to evaluate the effect of propofol on brain damage and inflammatory reaction in rats of focal cerebral ischemia. Sprague–Dawley rats underwent permanent middle cerebral artery occlusion, then received treatment with propofol (10 or 50 mg/kg) or vehicle after 2 h of ischemia. Neurological deficit scores, cerebral infarct size and morphological characteristic were measured 24 h after cerebral ischemia. The enzymatic activity of myeloperoxidase (MPO) was assessed 24 h after cerebral ischemia. Nuclear factor-kappa B (NF-κB) p65 expression in ischemic rat brain was detected by western blot. Cyclooxygenase-2 (COX-2) expression in ischemic rat brain was determined by immunohistochemistry. ELISA was performed to detect the serum concentration of tumor necrosis factor-α (TNF-α). Neurological deficit scores, cerebral infarct size and MPO activity were significantly reduced by propofol administration. Furthermore, expression of NF-κB, COX-2 and TNF-α were attenuated by propofol administration. Our results demonstrated that propofol (10 and 50 mg/kg) reduces inflammatory reaction and brain damage in focal cerebral ischemia in rats. Propofol exerts neuroprotection against ischemic brain damage, which might be associated with the attenuation of inflammatory reaction and the inhibition of inflammatory genes.  相似文献   

20.
Summary In the adult mammalian brain, the energy metabolism is almost entirely dependent on glucose. Furthermore, a close relationship between the energy metabolism and the functional activity could be shown. Thus, the functional activity of the brain or parts thereof can be quantified by measuring the cerebral metabolic rate for glucose. Studying in vivo the fate of a radioactive labeled analogue of glucose, the 2-deoxy-d-[1-14C]glucose, and using quantitative autoradiographic techniques, it is possible to estimate the cerebral glucose utilization of every discrete brain region. The advantage of the 2-deoxyglucose method is, that the local cerebral glucose utilization represents a metabolic encephalography (Sokoloff 1982).  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号